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The systems of interest

o &g M T T
SRR
?m po }‘@‘5 Solvated systems:
olail ,’}}Ad‘: a ﬁsupra molecular system within an environment which is

‘% } - “almost” homogeneous & isotropic

Embedded systems:

a (supra)molecular system within an
environment which is heterogeneous &
anisotropic

Composite systems:

a (suEra)moIecular system within an the environment
which is composed by parts with different
macromolecular characteristics




Modeling complex systems:

two main problems to face

/ How to deal
/' with the large \
| dimension of |
\the system? /

/ How to achieve\
~astatistically
, correct ,
\, description? /



A possible strategy:

the focused approach

The system is hierarchically partitioned in two parts:
the part of interest (the “solute”) and the rest (the “environment”)

QM

The solute is described at a high
level (QM) and the environment
at lower level (classical).
Classical

Which classical model?




Ihe continuum approach

The environment is replaced by an infinite continuum
dielectric around the cavity containing the solute

How to deal
with the large 1
. dimension of
%, the systems? /

’ The dimensions remain the same as for
' the isolated molecule

to achieve a '}
statistically
correct

The statistics is implicitly taken into account by the
{ i) use of macroscopic solvent properties (dielectric
constant, refractive index, etc)

N\, description? /




Solvated molecules: continuum approach

Which ingredients!?

€The definition of the boundary between solute & solvent
€The definition of the interactions between the two parts

€The model used to represent the interactions



The boundary

Simple models Q O NOT ENOUGH!

Sphere
Ellipsoid

We need molecular models

l. van der Waals Surface (VWS):

is constructed from the overlapping vdW
spheres of the atoms

But we have to consider the dimension of
the solvent:

Solvent Accessible Surface 2. Solvent Accessible Surface (SAS):

Y

is the surface traced by the center of the probe
sphere (the solvent).

probe

3. Solvent excluded Surface (SES or
Connolly):

is traced by the inward-facing part of the probe

sphere as it rolls on the vdW surface.
Solvent Excluded Surface



An example




Solvent-excluded surface (SES):

a simpler aefinrtion

ConnO”)’ ( I 983) Probe sphere representing the

solvent

e

Spheres centered on

Reentrant (concave) surface
solute atoms

Alternative approach: GePol (Pascual-Ahuir 1994)

Added sphere

/ not centered
on atoms

Easier to
Convex surface implement!




he Interactions:

the definrtion of the energy

Let’s consider a solvated molecule

AG,, = the free energy change to transfer a molecule
from vacuum to an infinite isotropic solution.

AG =W (M/S)+AG,
/ \

work necessary to molecular motion
ub Id " the Solute correction:
. ulid up it results from changes in
M in the solvent S, also molecular motions on
called the Coupling going from gas to solution
phase

work of M with S.



The coupling work W

We introduce a partition in terms of different interactions

W(M/ S) — Gcav T Gelec T GVdW

A N

Cavitation term:
work required to
create the cavity

Electrostatic van der Waals term:
term dispersion &
repulsion




Non electrostatic Contributions

An “imaginary” process

& Create an empty cavity in the solvent: a positive contribution to the
solvation free energy

& Switch on the vdW solute-solvent interactions: positive & negative
contributions to the solvation free energy

We can simplify the process by merging all contributions through an empirical
expression:

Gron-el :Gcav + GVdW — Zi giSi

E,,- is an empirically determined parameter for the i-th

atom and $; is the part of the solvent accessible surface for
the i-th atom




Flectrostatics & Polarization

The effects of an applied field

Electric Field Induced dipole
Microscopically E ‘ n=oFE
(atoms & molecules)
Electric Field Polarization
Macroscopically E P=yE

electric E— 1

_ dielectric constant
susceptibility % —

47T or permittivity




Solute-solvent Electrostatic interactions

Historically, two are the milestones:

* Born Model (1920)

* Onsager Model (1936)




Born model

Electrostatic component of the free energy of solvation for placing a
point charge (q) in a spherical cavity inside the dielectric.

Sphere Dielectric constant
radius a of the solvent




Onsager model

When a molecule with a permanent dipole [ is surrounded by a solvent, the
electric field produced by the permanent dipole polarizes it.

A possible model:
a dipole at the center of a spherical cavity inside a
dielectric.

The field of the dipole polarizes the dielectric, and — _
the resulting polarization gives rise to a field at the R = f‘LL
dipole: the reaction field R

f is the reaction field factor

Onsager, L. Electric Moments of Molecules in Liquids. ] Am Chem Soc 58, 1486—1493 (1936).




Onsager model

Boundary conditions

(9.),..=(0)._,

d d
(W’ml_ff(wl-a

o = H-r p.7 Electrostatic potential
in 3 inside the cavity
Reaction field of the solvent
1 2(e-1) . fii “It measures the electric field which
a> 2e+1 H H acts upon the dipole as a result of the
electric displacement induced by its
own presence”
u-r Electrostatic potential
D = e outside the cavity
i 3¢ External dipole

- Je+1 H moment




The Reaction field

R= fii= 1 2(e-1) _ Reaction field of

4 2e+1 the solvent
Work done in assembling the ] ]_é .
dipole M within the dielectric 5 H
2
Electrostatic free AG =-— (8 1)[1

energy of solvation elec (25 + 1) a’




A more general strategy



Some electrostatics

In the linear response regime
Electric Field FE mm) Polarization P=yk

Displacement D= E+47xP = ¢eE

|. Gauss’ law: the integral of the

displacement flux over a closed (J‘)D ‘nds = 4ﬂJPdV
surface (I') equals the enclosed charge T >

of a flux over a closed surface

2. Divergence theorem: the integral ¢
equals the enclosed divergence r

E-ﬁdEzjVﬁdv
V

| + 2
V.D(7)=V-| e(F)E(¥) | = 4np(F)



The molecular
problem

A charge density py (the molecular solute)

inside a cavity within a continuum dielectric
described by its permittivity € (the solvent)

The electrostatic potential V has to satisfy Poisson and Laplace equations inside and
outside the cavity (together with the proper boundary conditions)

(

_\7217 — inside the
ViV = 47TPM cavity: €=1 +

) :
V1V =0 out.5|c!e th_e
cavity: pm=0

i =[evri]

Boundary conditions

out

V. =V

in out



The solution

V'is the sum of the electrostatic potential
Vu generated by the charge distribution py

and of the reaction potential
Vr generated by the polarization of the dielectric:

Vir)=V, r)+V,(r)

Which form for the reaction potential V;?

ASC(S) The reaction potential is defined by

V.ir)=V (r)= J' d’s introducing an

‘ apparent surface charge (ASC)
density on the cavity




Partial Differential Equations

The Boundary Element Method

The boundary element method (BEM) is derived through the discretization of an integral
equation that is mathematically equivalent to the original partial differential equation (PDE).

The advantages in the boundary element method arises from the fact that only the boundary (or
boundaries) of the domain of the PDE requires sub-division.

In the finite element method (FEM) or finite difference method (FDM) the whole domain of the
PDE requires discretization.
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In applying the boundary
element method, only a mesh
of the surface iszré'equired.
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Boundary element method:

The mesh




Ihe BEM strategy

The Apparent Surface Charge

1. Construction of the molecular cavity

2. Partition of the cavity surface into N finite
elements (tesserae)

VAY:
T s
N/

A
-
_AVAY‘I"Y "
Wi

3. Discretization of the apparent surface charge O
into N point-like charges q

we assume that O is

constant on each ASC (=) ASC (= R
q S )=a0 S, S
element of area q;

AN

26



1he BEM strategy

The Apparent Surface Charge

Apparent surface charges

qASC( ) aGASC( )

Reaction potential
NTS

V()= _[ |G(S | ll: Vv (7’) Z Q(S

=S

Electrostatic interaction NTS
W, = | p" FIV(F)dF : > W, =D 4G E)
=1

27




Apparent surface charges

28



The original formulation: DPCM

Solvent polarization vector is:

At the boundary of two regions i and j, there is an apparent surface charge
distribution given by

Q
I |
?E

- F)

ij

Taking into account that :
€ =1 (inside the cavity there is no dielectric)

g€> | (outside the cavity there is the solvent)

Ay Rt - W
Are dre

29
S. Miertus, E. Scrocco, . Tomasi, Chem. Phys. 117-129,55 (1981)



The Conductor-like Screening Model

(COSMO)

A conductor (infinite permittivity, € =00) instead of a dielectric: a new condition on
the total potential

V., r)+V, (r)=0

o (5)

f So© Integral operator S

V()= V,(F)= j

I/'—S

G C _ C __¢gl Conductor
VM +50° =0 ‘ © 5 VM apparent charge

We recover the true dielectric behavior by scaling the conductor charges
using the real (finite) dielectric constant:

-1
CPCM — GC

e+0.5

0]

i.e. very polar solvents:

The conductor-like model is the DPCM limit for €= o0 practically, it is a good
approximationofor € > 5

A. Klamt and G. Schiitirmann, J. Chem. Soc. Perkin Trans. Il 799-805,2 (1993).



Integral Equation Formalism: [EFPCM

L. V — _VZV — 4n-pM inside the

Linear in cavity: €=|
differential ot
) outside the
operator LoutV — —EV V=0 cavity: pm=0
Green
Functions

31

E. Cances, B. Mennucci and J. Tomasi, J. Chem. Phys. 3032-3041 107 (1997)



Linear
differential L u(x)= f(x)
operator

The Green function associated to the operator Ly is (by definition)

L, G(x,y) = dé(x —y)

The solution can be written as:

+00
u(z) = / G(z,y) f(y) dy

— 00
in fact;

+o00
Lou(z) — / L.[G(z,)] f(y) dy

+00
= /_ o(x—y) fly) dy = f(x)

32




Integral Equation Formalism: IEFPCM

LinV — _VzV — 477:10M inside the

cavity: €=1

outside the

LoutV — —SVZV =0 cavity: pm=0

|
Ll'n = Gin(x’y) —
A | x—y| Green
1 Functions
Louz‘ = Gout('x’y) =

8‘x—y‘

33



I[EFPCM: a very general formulation

Potential operator

Din/outf(x) = J

Normal field operator r-

b;/outf(x) = J

gin/outVGin/out (X,y) ' n(y):lf(y) dy

Sin/outf(x) = ~.F Gin/out (x’y)f(y) dy

Gin/out:
Green Functions

_gin/outVGin/out (x, y) ' n(x)}f(y) dy

AGIEFPCM — _RV

]A? = |:(27Z'i - ZA)OW ) B S’outs\'i;l (2ﬂi B [)in ):|

It can be applied to different environments:

we have only to change the function G, , (outside the cavity)34



I[EFPCM: a very general formulation

D lonic solutions: Linearized PB equation
ionic strength

2
V. (gv V(F)) +K°V (F)=4mp(F) K= 8::TI I= %szc,-
G (x,y)= exp(_’(‘x_y‘)
47re‘x—y‘

D Anisotropic dielectric: L
For example: a nematic liquid crystal

T " e, 0 O
ensoria
permittivity e= 0 ¢, 0
0 0 ¢,
Gout (x’y) -

amfaedel|e (v-) ) (v)

35



The relations between the

ASC models

|IEFPCM
{ [8—“]1 D }S "M =—(21t] - D, )V,
E

(27:?—15 )V +S

8n & — 0

DPCM COSMO

|:277:[8+1]] D :| DPCM:% Sv O.C :—V
e—1 on



Discretization of the surface charge

-

1\

T()o™C =R

4 N e

—

.| E, -n DPCM (R=1)

V,, cosMo R=1) & IEFPCM.

<}::> qASC(§i) =

T(e)q™" =—Rf

M
Collects electrostatic (= L L
potential (or field) [f ] _ E,(s;)-n(s;)
produced by the solute M1J V (5)
on the surface elements: L M

There are basically two strategies to solve the system:

€ Inverting T by a direct method
q" =-T(e)'Rf,, =Qf,

' . . 37
€ By an iterative method




QM/continuum: a step by step strategy

) The
definition of | 22 Thte ;
the boundary: electrostatic
problem:
the molecular .
cavit the Poisson
! equation
3) The
numerical 4) The QM
solution: problem

the surface
mesh




The QM/continuum approach

The Self-Consistent Reaction Feld (SCRF) method



he effective Hamiltonian

3 A yelec _
Hejf\P o (HQM {HQM/cla;)LP = L£Y
\/
Ve=2.9"V ()

PCM charges T(g)qASC = —RV

oM

Solute electrostatic B A N
potential on the Vou (5,) = <‘P’V,‘ ‘1’> +V ==Y
surface cavity:

The solute wavefuntion depends on the solvent operator
& the solvent operator depends on the wavefunction!




A variational formulation

N

~ 5 non linear effective
Heﬁ‘\lj = (HQM T VR )LP =LY Hamiltonian

The variational principle can be applied but not in the standard form:
here the functional to be minimized does NOT correspond to the eigenvalue

Eigenvalue: ¢ Ao
Internal energy L= <\P‘Hﬁ \P>
Electrostatic Free G = <qj‘]f[€ﬁ" \11>_ l<ql ; \{l> =F — lE
energy functional 2 K s

In a thermodynamical language:
we have to add the work necessary to polarize the solvent which is opposite
in sign and half in magnitude with respect to the interaction energy.



Self consistent reaction field (SCRF)

How do we introduce solvent effects?

we add a new solvent-dependent operator

Effective A i A
Fock (or Kohn-Sham)  F% = F% 4 x#4€
operator

solvent fasc _ G 1 a{q(p)V(p)}
operator op 2 o0

A% =QV(p) [ > X(p)=Y g (p)V,  ioneesre

the SCF cycle



An alternative to continuum models

Continuum solvation models




The atomistic approach

All molecules are treated
explicrtly

Can we maintain a physical realism
together with a computationally
feasible description?

YES!
Through Molecular Mechanics (MM)




Molecular Mechanics

Atoms as spheres and bonds as springs, interactions between particles in terms of
mathematical functions derived from classical mechanics.

Energy = Bonding terms + Non-Bonded Interaction Energy

Torsion

A Bond
A stretching

3 o

Non-Bonded Interactions

The energy function together with the data (parameters) required to describe the
behavior of different kinds of atoms & bonds, are called a force-field.




Energy functions for bonding terms

Stretching
O ()
lkib(ri _rio)2
”
Bending '/_ r
1.,
Eki (91' _Gio )2 |
0;
Torsion AP

R AL st + )|




Non bonded terms: electrostatic interactions

e N
Atoms as point-charges
+
- -
> l i’
+ J ij
S %
4
fo%e) if i and j are bonded (1,2) or bonded to the same atom (1,3) 0
1-4
gij =14 3.0 ifiand jare separated by three bonds (1,4) /
1-3
\1 S5 otherwise 0\—76
1-2



van der Waals interactions:

repulsion & dispersion

Lennard-Jones Potential

O+

( s 12 s 6 )
i<j . ) ] )
i1 1

repulsion dispersion

Repulsion

Energy

dE r..*:21/66..

3 ij ij
erJ =0 -

* —
ELJ = sl.j




Ingredients of the force field

¢ “atom type*

The concept of "atom type" substitutes that of “atom” and
allows the Force Field to correctly reproduce molecular
behaviors & properties and to be transferable.

These are atoms similar enough in the physical and chemical
sense for them to be the same in different molecules,
allowing them to be treated as identical in a MM calculation

The atom types are defined according to:
* |Ibridization
* Atomic charge
» Connectivity

C

=

¢ force constants

Numerical o
¢ Lennard-Jones parameters
parameters

¢ partial atomic charges




QM/MM:;

subtractive vs. additive models

- subtractive: several layers:

double counting on the regions is subtracted

- additive: different methods in different regions +

interaction between the regions




Subtractive QM/MM

Subtractive QM/MM schemes require
|) a MM calculation on the entire system;
2) a QM calculation on the inner subsystem;

3) a MM calculation on the inner subsystem.

total energy

=

No explicit QM—-MM coupling terms are needed; the standard QM & MM procedures can be used

without any modification.



The ONIOM Method

(Own N-layered Integrated Molecular Orbital and
Molecular Mechanics)

Real system @ Developed initially in the group of K. Morokuma.

A
4 )

Model system

First layer: the subsystem of interest (the QM
- A X part in additive QM/MM).
Use the High-level method

Second layer: the rest.
Use the Low-level method

ONIOM energy
— Elow _Elow _I_Ehigh

E ONIOM real model model




Additive QM/MM

The total Hamiltonian

— nt
Heﬁ—HQM+HMM+H

OM | MM

total energy — ‘ +

interaction %




The interaction term

Nonbonding:

-  Electrostatics
- VdWwW

Bonding



Covalent Bonds across QM & MM Regions

\ The Link atom \
MM —
| /MM— strategy > | 7
—8 | QM A—L------- B
QM_  _A B 3
-~ oM N\ 7S N\

An additional atomic center L that is not part of the real system is introduced.
It is covalently bound to the QM atom A and saturates its free valence.

This link atom L is in most cases a hydrogen atom, but any monovalent atom
or group might be used.

QM calculations are performed on an electronically saturated system consisting

of the inner subsystem and the link atom(s).
The bond A-B is described at the MM level.



L ink atoms

\ Problem I:
MM —
Q|M N B/ Each link atom generates three artificial
e \\QM/ . N structural degrees of freedom not

| present in the real system.

Common solution
The position of the link atom becomes a function of the positions of A & B.

The link atom L is placed along A—B, and the distance A—L is related to the distance
A-B by a scaling factor. Exactly three degrees of freedom are removed.

The link atoms appear only in the internal description of the QM/MM coupling
scheme, and they are transparent to geometry-optimization or MD algorithms,
which only handle the set of independent variables.

The link atoms become force-free; their coordinates in the next geometry or time
step are fully determined by the positioning rule, rather than being propagated
according to forces acting on them.



L Ink atoms

Problem 2:
\ : : :
MM — The link atom is spatially very close to the MM
|M PR B/ frontier atom B: the point charge on B will tend to
/Q \\QM/ \ N overpolarize the QM density in the case of

| electrostatic or polarized embedding.

Possible solutions

1)Deletion of the one-electron integrals associated with the link atoms.
2)Deletion of MM point charges in the link region from the Hamiltonian.
3)Shifting/redistribution of the point charges in the link region

2 M2 3
QZ\?1 q'=$ +wqB /
£ e
—Q 2
/\ +'g}3 M3

4)“Smearing” the charges close to the QM region by replacing them by (e.g.,
Gaussian) charge distributions.



Non bonding terms

QM

ok

o

|) Mechanical embedding

The QM calculation is done in the absence of the MM part.

The vdVV interactions are calculated at MM level

The electrostatic interactions between the QM and the MM
regions are described at MM level: the QM part of the system is
replaced with a set of classical charges.

Inaccurate mod—e_—l}




Non bonding terms

€ The vdW interactions are calculated at MM level

€ The QM calculation is done in the presence of the MM part:
the QM part "feels" the MM part as a distribution of point

charges or a multipolar expansion (according to the selected
force field)

€ The QM part is polarized by the MM part.

More accurate model;




Polarizable embedding:

a possible strategy based on induced dipoles

» MM atoms represented with
point charges & (isotropic)
polarizabilities

/jiind = OClE(f’;) =, (EQM (’2)_'— EMM (7‘1))



Ihe induced dipoles

Electric field produced by the

QM density & the MM charges
4

N
, = 0, |E, 1= )y Ly,

\

Electric field produced

] by all dipoles
qFp ! P
\_ J
- _3@A)F @
M rS 7”3
N4
- _
xX° Xy Xz
1 3
Ty=—=75| ¥ ¥ »
r r
Pq Pq 2
X 2y Z




Polarizabilities

The atomic polarizabilities are determined so to reproduce experimental or

calculated molecular polarizabilities.

The additive model

Molecular polarizability reproduced neglecting dipole-dipole interactions.
No explicit intramolecular polarization (implicitly included in the

parameterization).

The interactive model

Molecular polarizability reproduced considering all dipole-dipole interactions.

Explicit intramolecular polarization.



The induced dipoles:

the Iinteractive model

Applequist’s model:

standard dipole interaction tensor

This may lead to infinite polarization by the cooperative interaction between two
nearby inducible dipoles, resulting in “polarization catastrophe”.
The short-range 1-2 and |-3 interactions are excluded to reduce the potential of
“polarization catastrophe”.

Thole model:

smeared dipole interaction tensor

This avoids problems due to “polarization catastrophe”.



Thole mode]

Thole proposed distance-dependent screening functions, f, and f;

f 3 x* Xy Xz

e t 2

T, = 5 I— 5 yx y° yz
pq Pilzx zy 2z

_ 1/6 X, and & are the atomic polarizabilities of atoms p and q with
v = 1pg/|a(a,0) p 304 9

distance r,, @ (the screening length) is a parameter

, In the exponential form
In the linear form:

if (v>=1)f = 1.0, = 1.0 fo=1- <V5+v+1>exp(—v)

if(V<1)fe:4V3_3V4,ft:V4 1, 1,
fi=1— (gv —|—51} —|—v—|—1)exp(—v)



Polarizable QM/classical models
The solute wavefunction depends on the solvent operator &
the solvent operator depends on the wavefunction!

an Iterative procedure Is nhecessary

It can be solved together with the standard
self-consistent-field problem:

Hartree-Fock or Kohn-Sham (DFT) approach




Self consistent reaction field (SCRF)

.
. " )’\(MM ol
Effective Fock or Feﬁ _ FO iy new solvent-dependent
Kohn-Sham operator o )"(ASC operators
\

MMPOL Y MMpol _ qujﬂwﬁk _ 2 w(p)-E

- : They change
at each SCF
Continuum model <{-4sc ASC 5 iteration

i

At convergency, solute & solvent are
mutually polarized



Alternative polarisable embeddings

(not covered In this lecture)

Drude Model:
It represents the induced dipole at every polarizable atom by two charges

of the same magnitude and opposite sign linked by a harmonic spring. The
first charge is located at the nucleus of the atom, while the second one is

mobile.

Fluctuating Charges:

partial charges are generally assigned on the atomic sites in a molecule, and the
charge redistribution in response to the external electric field or conformational
change is governed by electronegativity equilibration method (EEM).



Frasment-based methods

(not covered in this lecture)

They can be seen as polarisable embeddings which do not require empirical
parameterizations but derive all the terms from QM calculations on fragments.

Pruitt, S. R.; Bertoni, C.; Brorsen, K. R.; Gordon, M.S.

Eéi;:e;tlve Fragment Potential Efficient and Accurate Fragmentation Methods,
(EEP) Acc. Chem. Res. 2014, 47, pp 2786-2794.

Xie,W,; Orozco, M.;Truhlar, D. G.; Gao, .

E))épll:cit Polarization Method X-Pol Potential: an Electronic Structure-Based Force Field for
(X-Pol) Molecular Dynamics Simulation of a Solvated Protein in Water.

J. Chem.Theory Comp. 2009, 5, pp 459—467.



