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Solvated systems: 

a (supra)molecular system within an environment which is 
“almost” homogeneous & isotropic

Embedded systems: 

a (supra)molecular system within an 
environment which is heterogeneous & 
anisotropic

Composite systems:
a (supra)molecular system within an the environment 
which is composed by parts with different 
macromolecular characteristics

The systems of interest



How to achieve 
a statistically 

correct 
description?

How to deal 
with the large 
dimension of 
the system?

Modeling complex systems: 
two main problems to face



The system is hierarchically partitioned in two parts: 
the part of interest (the “solute”) and the rest (the “environment”)

Which classical model?

A possible strategy: 
the focused approach

The solute is described at a high 
level (QM) and the environment 

at lower level (classical).

QM

Classical



The environment is replaced by an infinite continuum 
dielectric around the cavity containing the solute

The continuum approach

How to achieve a 
statistically 

correct 
description?

How to deal 
with the large 
dimension of 
the systems?

The dimensions remain the same as for 
the isolated molecule

The statistics is implicitly taken into account by the 
use of macroscopic solvent properties (dielectric 

constant, refractive index, etc)



Solvated molecules: continuum approach

Which ingredients?

The definition of the boundary between solute & solvent

The definition of the interactions between the two parts

The model used to represent the interactions



Simple models
Sphere

Ellipsoid

2. Solvent Accessible Surface (SAS): 
is the surface traced by the center of the probe 
sphere (the solvent).

3. Solvent excluded Surface (SES or 
Connolly): 
is traced by the inward-facing part of the probe 
sphere as it rolls on the vdW surface. 

We need molecular models

NOT ENOUGH!

Figure 1: This is a 2-dimension (2D) schematics of the Solvent Accessible Surface and the Solvent
Excluded Surface, both defined by a spherical probe in orange rolling over the molecule atoms in
dark blue.

We notice that the above implicit function of the SAS is simple to compute. It seems nevertheless
hopeless to us to further obtain an implicit function of the SES if constructing upon this simple
implicit function ef

sas

(p) which is not a distance function. On the other hand, having the signed
distance function, see (2.1), at hand would allow the construction of an implicit function for the
SES due to the geometrical relationship between the SAS and the SES.

Indeed, according to the fact that any point on the SES has signed distance �r
p

to the SAS,
an implicit function of the SES is obtained directly as:

f
ses

(p) = f
sas

(p) + r
p

, (3.4)

which motivates the choice of using the signed distance function to represent the SAS. From the
above formula, the SES can be represented by a level set f�1

sas

(�r
p

), associated with the signed
distance function f

sas

to the SAS. Therefore, the key point becomes how to compute the signed
distance f

sas

(p) from a point p 2 R3 to the SAS. Generally speaking, given a general surface S ⇢ R3

and any arbitrary point p 2 R3, it is di�cult to compute the signed distance from p to S. However,
considering that the SAS is a special surface formed by the union of SAS-spheres, this computation
can be done analytically.

We state a remark about another implicit function to characterize the SES, proposed by Pomelli
and Tomasi [15]. In [14], this function can be written as:

ef
ses

(p) = min
1i<j<kM

f
ijk

(p), 8p 2 R3, (3.5)

where f
ijk

represents the signed distance function to the SES of the i-th, j-th and k-th VdW atom.
However, this representation might fail sometimes, see two representative 2D examples in Figure 2.
Indeed, the formula (3.5) for each molecule in Figure 2 can be rewritten as:

ef
ses

(p) = min
1i<j3

f
i,j

(p), 8p 2 R2, (3.6)

where f
i,j

represents the signed distance function to the SES of the i-th and the j-th VdW atom.

However, each molecular cavity defined by {p 2 R2 : ef
ses

(p)  0} has excluded the region in grey
inside the real SES.
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But we have to consider the dimension of 
the solvent:

1. van der Waals Surface (VWS): 
is constructed from the overlapping vdW 
spheres of the atoms

The boundary
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Sildenafil – SES

SES

28

Sildenafil – Ball & Stick

29

Sildenafil - VWS

31

Sildenafil - SAS

vdW

SAS

An example



Connolly (1983):

Alternative approach: GePol (Pascual-Ahuir 1994)

Reentrant (concave) surface

Convex surface

Spheres centered on 
solute atoms

Solvent-excluded surface (SES): 
a simpler definition

Probe sphere representing the 
solvent

Added sphere 
not centered 

on atoms

Easier to 
implement!



The interactions:
the definition of the energy

 ΔGsol ⇒ the free energy change to transfer a molecule   
from vacuum to an infinite isotropic solution.

work necessary to 
“build up” the solute 

M in the solvent S, also 
called the coupling 
work of M with S.

molecular motion 
correction: 

it results from changes in 
molecular motions on 

going from gas to solution 
phase

Let’s consider a solvated molecule



The coupling work W

W(M/S) = Gcav + Gelec + GvdW

Cavitation term: 
work required to 
create the cavity

Electrostatic
term

van der Waals term: 
dispersion & 

repulsion

We introduce a partition in terms of different interactions



Non electrostatic Contributions

Create an empty cavity in the solvent: a positive contribution to the 
solvation free energy

Switch on the vdW solute-solvent interactions: positive & negative 
contributions to the solvation free energy

Gnon-el =Gcav + GvdW = Σi ξiSi

ξi  is an empirically determined parameter for the i-th 

atom and Si is the part of the solvent accessible surface for 
the i-th atom

We can simplify the process by merging all contributions through an empirical 
expression:

Si

An “imaginary” process



Electric Field

  
!
µ = α

!
E

Induced dipole

Microscopically
(atoms & molecules)

Macroscopically

Electric Field

  
!
P = χ

!
E

Polarization

Electrostatics & Polarization
The effects of an applied field

electric 
susceptibility

 
χ =

ε −1
4π

dielectric constant 
or permittivity



Solute-solvent Electrostatic interactions

• Born Model (1920)

• Onsager Model (1936)

Historically, two are the milestones:



ΔGelec = − q
2

2a
1− 1

ε
⎛
⎝⎜

⎞
⎠⎟

Electrostatic component of the free energy of solvation for placing a 
point charge (q) in a spherical cavity inside the dielectric.

Born model

Dielectric constant      
of the solvent

a

ε

q

Sphere 
radius a



Onsager model

When a molecule with a permanent dipole μ is surrounded by a solvent, the 
electric field produced by the permanent dipole polarizes it.  

The field of the dipole polarizes the dielectric, and 
the resulting polarization gives rise to a field at the 
dipole: the reaction field R

f  is the reaction field factor 

  
!
R = f !µ

Onsager, L. Electric Moments of Molecules in Liquids. J Am Chem Soc 58, 1486–1493 (1936).

µ

ε

A possible model: 
a dipole at the center of a spherical cavity inside a 

dielectric. 



φout =
!µ* ⋅ !r
εr3

  

!
µ* =

3ε
2ε +1

!
µ External dipole 

moment

Electrostatic potential 
inside the cavity

Electrostatic potential 
outside the cavity

φin =
!µ ⋅ !r
r3

−
!
R ⋅ !r

Reaction field of the solvent
!
R = 1

a3
2(ε -1)
2ε +1

!µ = f
!µ “It measures the electric field which 

acts upon the dipole as a result of the 
electric displacement induced by its 

own presence”

Onsager model

ε
−
!
R !µ

Boundary conditions

φin( )r=a = φout( )r=a
d
dr

φin
⎛
⎝⎜

⎞
⎠⎟ r=a

= ε d
dr

φout
⎛
⎝⎜

⎞
⎠⎟ r=a

a



The Reaction field

Reaction field of 
the solvent

   

!
R = f !µ = 1

a3

2(ε -1)
2ε +1

!µ

Work done in assembling the 
dipole μ within the dielectric

Electrostatic free 
energy of solvation

   
1
2

!
R ⋅ !µ

ΔGelec = −
ε −1( )µ2
2ε +1( )a3

ε
−
!
R !µ

a



A more general strategy



Some electrostatics

1. Gauss’ law:  the integral of the 
displacement flux over a closed 
surface (Γ) equals the enclosed charge    

!
D ⋅ !nd!s

Γ
"∫ = 4π ρ dv

V
∫

2. Divergence theorem:  the integral 
of a flux over a closed surface 
equals the enclosed divergence   

!
D ⋅ !nd!s

Γ
"∫ =

!
∇ ⋅
!
D dv

V
∫

1 + 2 :

   
!
∇ ⋅
!
D(!r ) =

!
∇ ⋅ ε(!r )

!
E(!r )⎡⎣ ⎤⎦ = 4πρ(!r )

Polarization

Displacement

Electric Field   
!
P = χ

!
E  

!
E

   
!
D =

!
E + 4π

!
P = ε

!
E

In the linear response regime



A charge density ρM (the molecular solute) 
inside a cavity within a continuum dielectric 
described by its permittivity ε (the solvent)

The electrostatic potential V has to satisfy Poisson and Laplace equations inside and 
outside the cavity (together with the proper boundary conditions)

Boundary conditions

inside the 
cavity: ε=1

outside the 
cavity: ρM=0

+  −∇
2V = 4πρM

  −ε∇2V = 0
  

!
∇V ⋅ !n⎡⎣ ⎤⎦in

= ε
!
∇V ⋅ !n⎡⎣ ⎤⎦out

 Vin =Vout

The molecular 
problem

ε

ρM

n



The solution
V is the sum of the electrostatic potential 

VM generated by the charge distribution ρM 
and of the reaction potential 

VR generated by the polarization of the dielectric:

Which form for the reaction potential VR ?

   V (!r ) =VM (!r )+VR (!r )

The reaction potential is defined by 
introducing an 

apparent surface charge (ASC) 
density on the cavity

VR(
!r )⇒Vσ (

!r ) = σ ASC (!s )
!r − !sΓ∫ d 2s

ε

ρM

n



Partial Differential Equations
The Boundary Element Method

The boundary element method (BEM) is derived through the discretization of an integral 
equation that is mathematically equivalent to the original partial differential equation (PDE).

The advantages in the boundary element method arises from the fact that only the boundary (or 
boundaries) of the domain of the PDE requires sub-division. 

In the finite element method (FEM) or finite difference method (FDM) the whole domain of the 
PDE requires discretization.

FEM FDM
In applying the boundary 

element method, only a mesh 
of the surface is required.

BEM

24



Boundary element method: 
The mesh

25



The BEM strategy
The Apparent Surface Charge

2. Partition of the cavity surface into N finite 
elements (tesserae)

1. Construction of the molecular cavity

3. Discretization of the apparent surface charge σ 
into N point-like charges q

qASC !si( ) = aiσ ASC !si( )
we assume that σ is 
constant on each 
element of area ai

26



qASC !si( ) = aiσ ASC !si( )

Apparent surface charges

   
VR (!r ) =

q(!si )!r − !sii=1

NTS

∑
Reaction potential

   
VR (!r ) =

σ (!s )
!r − !sΓ∫ d 2s

   
Wele = q(!si )V

M (!si )
i=1

NTS

∑
Electrostatic interaction

   
Wele = ρM (!r )VR (!r )∫ d!r

The BEM strategy
The Apparent Surface Charge

27



Which σ?

 q
!si( ) = aiσ

!si( )

Apparent surface charges

28



Solvent polarization vector is:

The original formulation: DPCM

At the boundary of two regions i and j, there is an apparent surface charge 
distribution given by

   

!
P = ε −1

4π
!
E

  
σ ij = −

!
Pi −
!
Pj( ) ⋅ !nij

Taking into account that :
εi = 1  (inside the cavity there is no dielectric) 
εj> 1 (outside the cavity there is the solvent)

   
σ DPCM = −ε −1

4πε
!
E ⋅ !n = −ε −1

4πε
!
EM +

!
Eσ( ) ⋅ !n

S. Miertuš, E. Scrocco, J. Tomasi,  Chem. Phys. 117-129, 55 (1981)
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The Conductor-like Screening Model 
(COSMO)

The conductor-like model is the DPCM limit for ε→∞
i.e. very polar solvents: 
practically, it is a good 
approximation for  ε ≥ 5

A conductor (infinite permittivity, ε =∞) instead of a dielectric: a new condition on 
the total potential

   VM (!r )+VR (!r ) = 0

Integral operator S
   
VR (!r ) →Vσ (!r ) =

σ C (!s )
| !r − !s |

d!s∫ = Ŝσ C

Conductor 
apparent charge  VM + Ŝσ C = 0   σ

C = −Ŝ −1VM

We recover the true dielectric behavior by scaling the conductor charges 
using the real (finite) dielectric constant:

σ CPCM = ε −1
ε + 0.5

σ C

A. Klamt and G. Schüürmann,  J. Chem. Soc. Perkin Trans. II 799-805, 2 (1993).
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Integral Equation Formalism: IEFPCM

inside the 
cavity: ε=1

outside the 
cavity: ρM=0

LinV = −∇2V = 4πρM

LoutV = −ε∇2V = 0

E. Cancès, B. Mennucci and J. Tomasi, J. Chem. Phys. 3032-3041 107 (1997)

Green 
Functions

Linear 
differential 
operator

31



Definizione. La funzione di Green associata all’operatore L è la soluzione
di

L

x

G(x, y) = �(x� y) . (2)

Teorema. Se la funzione G(x, y) e’ soluzione della (2), allora la funzione

u(x) =

Z +1

�1
G(x, y) f(y) dy (3)

e’ soluzione della (1).

Dimostrazione. Infatti, dato che L

x

agisce sulle variabili x ma non sulle y,

L

x

u(x) =

Z +1

�1
L

x

[G(x, y)] f(y) dy

=

Z +1

�1
�(x� y) f(y) dy = f(x) .

Osservazione 1. La soluzione più generale della (2) si scriverà come

G(x, y) = g(x, y) +
nX

k=1

c

k

(y) 
k

(x, y) , (4)

dove g(x, y) è una soluzione particolare di (2), detta anche parte singolare1 della
funzione di Green e le  

k

(x, y) sono n soluzioni indipendenti della omogenea
associata

L

x

G(x, y) = 0 . (5)

Qui n è l’ordine di L
x

come operatore di↵erenziale (se x è uno-dimensionale).
�

Osservazione 2. Se l’operatore L
x

agisce in uno spazio di funzioni determinato
dalle condizioni al contorno, queste ultime determinano le c

k

(y) che appaiono
nella (4). �

3 Operatori del primo ordine

Vediamo cosa succede per operatori del primo ordine, con x uno-dimensionale.
In questo caso

L

x

= a(x)
d

dx

+ b(x) . (6)

Se a(x) e b(x) sono finite ed inoltre a(x) 6= 0 (per ogni x), diremo che l’operatore
è regolare; assumiamo che questo sia il caso.2

1E perciò indicata anche come G

s

(x, y).
2Più in generale, un operatore di↵erenziale L =

P
n

k=0
a

k

(x)(dk/dxk) è detto regolare se

i coe�cienti a
k

(x) sono sempre finiti, ed il coe�ciente della derivata di grado massimo a

n

(x)
è sempre diverso da zero.

3

The solution can be written as:

Linear 
differential 
operator

Definizione. La funzione di Green associata all’operatore L è la soluzione
di

L

x

G(x, y) = �(x� y) . (2)

Teorema. Se la funzione G(x, y) e’ soluzione della (2), allora la funzione

u(x) =

Z +1

�1
G(x, y) f(y) dy (3)

e’ soluzione della (1).

Dimostrazione. Infatti, dato che L

x

agisce sulle variabili x ma non sulle y,

L

x

u(x) =

Z +1

�1
L

x

[G(x, y)] f(y) dy

=

Z +1

�1
�(x� y) f(y) dy = f(x) .

Osservazione 1. La soluzione più generale della (2) si scriverà come

G(x, y) = g(x, y) +
nX

k=1

c

k

(y) 
k

(x, y) , (4)

dove g(x, y) è una soluzione particolare di (2), detta anche parte singolare1 della
funzione di Green e le  

k

(x, y) sono n soluzioni indipendenti della omogenea
associata

L

x

G(x, y) = 0 . (5)

Qui n è l’ordine di L
x

come operatore di↵erenziale (se x è uno-dimensionale).
�

Osservazione 2. Se l’operatore L
x

agisce in uno spazio di funzioni determinato
dalle condizioni al contorno, queste ultime determinano le c

k

(y) che appaiono
nella (4). �

3 Operatori del primo ordine

Vediamo cosa succede per operatori del primo ordine, con x uno-dimensionale.
In questo caso

L

x

= a(x)
d

dx

+ b(x) . (6)

Se a(x) e b(x) sono finite ed inoltre a(x) 6= 0 (per ogni x), diremo che l’operatore
è regolare; assumiamo che questo sia il caso.2

1E perciò indicata anche come G

s

(x, y).
2Più in generale, un operatore di↵erenziale L =

P
n

k=0
a

k

(x)(dk/dxk) è detto regolare se

i coe�cienti a
k

(x) sono sempre finiti, ed il coe�ciente della derivata di grado massimo a

n

(x)
è sempre diverso da zero.

3

in fact:

Definizione. La funzione di Green associata all’operatore L è la soluzione
di

L

x

G(x, y) = �(x� y) . (2)

Teorema. Se la funzione G(x, y) e’ soluzione della (2), allora la funzione

u(x) =

Z +1

�1
G(x, y) f(y) dy (3)

e’ soluzione della (1).

Dimostrazione. Infatti, dato che L

x

agisce sulle variabili x ma non sulle y,

L

x

u(x) =

Z +1

�1
L

x

[G(x, y)] f(y) dy

=

Z +1

�1
�(x� y) f(y) dy = f(x) .

Osservazione 1. La soluzione più generale della (2) si scriverà come

G(x, y) = g(x, y) +
nX

k=1

c

k

(y) 
k

(x, y) , (4)

dove g(x, y) è una soluzione particolare di (2), detta anche parte singolare1 della
funzione di Green e le  

k

(x, y) sono n soluzioni indipendenti della omogenea
associata

L

x

G(x, y) = 0 . (5)

Qui n è l’ordine di L
x

come operatore di↵erenziale (se x è uno-dimensionale).
�

Osservazione 2. Se l’operatore L
x

agisce in uno spazio di funzioni determinato
dalle condizioni al contorno, queste ultime determinano le c

k

(y) che appaiono
nella (4). �

3 Operatori del primo ordine

Vediamo cosa succede per operatori del primo ordine, con x uno-dimensionale.
In questo caso

L

x

= a(x)
d

dx

+ b(x) . (6)

Se a(x) e b(x) sono finite ed inoltre a(x) 6= 0 (per ogni x), diremo che l’operatore
è regolare; assumiamo che questo sia il caso.2

1E perciò indicata anche come G

s

(x, y).
2Più in generale, un operatore di↵erenziale L =

P
n

k=0
a

k

(x)(dk/dxk) è detto regolare se

i coe�cienti a
k

(x) sono sempre finiti, ed il coe�ciente della derivata di grado massimo a

n

(x)
è sempre diverso da zero.

3

The Green function associated to the operator Lx is (by definition)

Lxu(x) = f (x)

32



Integral Equation Formalism: IEFPCM

inside the 
cavity: ε=1

outside the 
cavity: ρM=0

LinV = −∇2V = 4πρM

LoutV = −ε∇2V = 0

Lin ⇔Gin(x, y) =
1

4π | x − y |

Lout ⇔Gout (x, y) =
1

ε x − y

Green 
Functions

33



  
Â = 2π Î − D̂out( ) ⋅ Ŝin + Ŝout ⋅ 2π Î + D̂in

*( ) R̂ = 2π Î − D̂out( )− Ŝout Ŝin−1 2π Î − D̂in( )⎡
⎣

⎤
⎦

Ŝin/out f (x) = Gin/out (x, y) f ( y)dyΓ∫
D̂in/out f (x) = ε in/out∇Gin/out (x, y) ⋅n( y)⎡⎣ ⎤⎦ f ( y)dyΓ∫

Potential operator

Normal field operator

D̂in/out
* f (x) = ε in/out∇Gin/out (x, y) ⋅n(x)⎡⎣ ⎤⎦ f ( y)dyΓ∫

Gin/out:
Green Functions

IEFPCM: a very general formulation 

It can be applied to different environments: 

we have only to change the function Gout (outside the cavity)

Âσ IEFPCM = − R̂VM

34



ε||

ε⊥

ε⊥

◗ Anisotropic dielectric:
For example: a nematic liquid crystal

Tensorial 
permittivity ε =

εxx 0 0
0 εyy 0

0 0 εzz

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

  

Gout (x, y) = 1

4π det ε⎡⎣ ⎤⎦ ε−1 x − y( )⎡
⎣

⎤
⎦ ⋅ x − y( )

◗ Ionic solutions: Linearized PB equation

  

Gout (x, y) =
exp −κ x − y( )

4πε x − y

   
−
!
∇ ⋅ ε

!
∇V (!r )( ) +κ 2V (!r ) = 4πρ(!r ) κ 2 =

8πe2I
εkT I = 1

2
zi
2ci

i
∑

ionic strength

IEFPCM: a very general formulation 

35



IEFPCM

  
2π ε +1

ε −1

⎛

⎝
⎜

⎞

⎠
⎟ Î − D̂in

⎡

⎣
⎢

⎤

⎦
⎥Ŝinσ

IEFPCM = − 2π Î − D̂in( )VM

DPCM

  
2π Î − D̂in( )VM + Sin

∂VM

∂n
= 0

  
2π ε +1

ε −1

⎛

⎝
⎜

⎞

⎠
⎟ Î − D̂in

*
⎡

⎣
⎢

⎤

⎦
⎥σ DPCM =

∂VM

∂n

COSMO

  Ŝinσ
C = −VM

The relations between the 
ASC models

36



There are basically two strategies to solve the system:

Inverting T by a direct method

By an iterative method

T(ε )qASC = −RfM

Discretization of the surface charge

fM⎡⎣ ⎤⎦ j=

!
EM (
!sj ) ⋅
!n(!sj )    

VM (
!sj )    

⎧
⎨
⎪

⎩⎪

Collects electrostatic 
potential (or field) 
produced by the solute 
on the surface elements: 

T̂ (ε )σ ASC = − R̂
!
EM ⋅ !n

VM    

⎧
⎨
⎪

⎩⎪

DPCM (R=1)

COSMO (R=1) & IEFPCM

qASC = −T(ε )−1RfM =QfM

qASC !si( ) = aiσ !si( )

37



4) The QM 
problem

QM/continuum: a step by step strategy

3) The 
numerical 
solution: 

the surface 
mesh

2) The 
electrostatic 

problem: 
the Poisson 

equation

ρQM

ε
1) The 

definition of 
the boundary: 
the molecular 

cavity



The QM/continuum approach

The Self-Consistent Reaction Field (SCRF) method



Solute electrostatic 
potential on the 
surface cavity:

VQM (
!si ) = Ψ V̂i Ψ +Vi

N = − Ψ 1
!r − !si

Ψ +
Zk!

RK −
!siK

∑

The effective Hamiltonian

The solute wavefuntion depends on the solvent operator 
& the solvent operator depends on the wavefunction!

T(ε )qASC = −RVQMPCM charges

V̂R =
i
∑ qi

ASCV̂ (!si )

  
Ĥeff Ψ = ĤQM + ĤQM /clas

elec( )Ψ = EΨ



  
Es = Ψ Ĥ eff Ψ

Eigenvalue: 
Internal energy

G = Ψ Ĥ eff Ψ − 1
2

Ψ V̂R Ψ = Es −
1
2
EintElectrostatic Free 

energy functional

In a thermodynamical language: 
we have to add the work necessary to polarize the solvent which is opposite 

in sign and half in magnitude with respect to the interaction energy.

non linear effective 
Hamiltonian

The variational principle can be applied but not in the standard form:
here the functional to be minimized does NOT correspond to the eigenvalue

A variational formulation

ĤeffΨ = ĤQM + V̂R( )Ψ = EΨ



How do we introduce solvent effects?
we add a new solvent-dependent operator

Effective  
Fock (or Kohn-Sham) 

operator
F̂ eff = F̂ 0 + X̂ ASC

X̂ ASC = ∂G
∂ρ

= 1
2
∂ q(ρ)V(ρ){ }

∂ρ
solvent 

operator

qASC =QV(ρ) It changes at 
each iteration of 

the SCF cycle

X̂ ASC (ρ) = qi
ASC (ρ)V̂i

i
∑

Self consistent reaction field (SCRF)



An alternative to continuum models

Continuum solvation models

Explicit account of the 
environment

ε



All molecules are treated 
explicitly

Can we maintain a physical realism 
together with a computationally 

feasible description?

YES!
Through Molecular Mechanics (MM)

The atomistic approach



Atoms as spheres and bonds as springs, interactions between particles in terms of  
mathematical functions derived from classical mechanics. 

Energy = Bonding terms + Non-Bonded Interaction Energy 

The energy function together with the data (parameters) required to describe the 
behavior of different kinds of atoms & bonds, are called a force-field. 

Molecular Mechanics
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Atoms as point-charges

Non bonded terms: electrostatic interactions
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Lennard-Jones Potential
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Ingredients of the force field
 “atom type“ 

The concept of "atom type" substitutes that of “atom” and 
allows the Force Field to correctly reproduce molecular 

behaviors & properties and to be transferable.

The atom types are defined according to:
• Ibridization

• Atomic charge
• Connectivity

 force constants
 Lennard-Jones parameters
 partial atomic charges

Numerical 

parameters

These are atoms similar enough in the physical and chemical 
sense for them to be the same in different molecules, 

allowing them to be treated as identical in a MM calculation



- subtractive: several layers: 

   double counting on the regions is subtracted

- additive: different methods in different regions +

    interaction between the regions

QMClassical

QM/MM:
subtractive vs. additive models



total energy

QM

MM=

-+ MM

Subtractive QM/MM schemes require 

1) a MM calculation on the entire system; 

2) a QM calculation on the inner subsystem; 

3) a MM calculation on the inner subsystem.

No explicit QM–MM coupling terms are needed; the standard QM & MM procedures can be used 

without any modification.

Subtractive QM/MM



The ONIOM Method 
(Own N-layered Integrated Molecular Orbital and 

Molecular Mechanics)

Developed initially in the group of K. Morokuma.

First layer: the subsystem of interest (the QM 
part in additive QM/MM).
Use the High-level method

Second layer: the rest.
Use the Low-level method

Model system

Real system

ONIOM energy
EONIOM = Ereal

low − Emodel
low + Emodel

high



MM

total energy QM= +

QM+ interaction

The total Hamiltonian

Heff = HQM + HMM + HQM /MM
int

MM

Additive QM/MM



Nonbonding: 

- Electrostatics

- VdW

Bonding

ĤQM /MM = ĤQM /MM
elec + ĤQM /MM

vdW + ĤQM /MM
bond

The interaction term



The Link atom 
strategy

An additional atomic center L that is not part of the real system is introduced. 
It is covalently bound to the QM atom A and saturates its free valence. 

This link atom L is in most cases a hydrogen atom, but any monovalent atom 
or group might be used. 

QM calculations are performed on an electronically saturated system consisting 
of the inner subsystem and the link atom(s). 
The bond A-B is described at the MM level. 

Covalent Bonds across QM & MM Regions 



Common solution

The position of the link atom becomes a function of the positions of A & B. 

The link atom L is placed along A–B, and the distance A–L is related to the distance 
A–B by a scaling factor.  Exactly three degrees of freedom are removed. 

Link atoms

Problem 1:

Each link atom generates three artificial 
structural degrees of freedom not 

present in the real system. 

The link atoms appear only in the internal description of the QM/MM coupling 
scheme, and they are transparent to geometry-optimization or MD algorithms, 
which only handle the set of independent variables. 

The link atoms become force-free; their coordinates in the next geometry or time 
step are fully determined by the positioning rule, rather than being propagated 
according to forces acting on them.



Problem 2: 

The link atom is spatially very close to the MM 
frontier atom B: the point charge on B will tend to 
overpolarize the QM density in the case of 
electrostatic or polarized embedding. 

Link atoms

Possible solutions

1)Deletion of the one-electron integrals associated with the link atoms. 
2)Deletion of MM point charges in the link region from the Hamiltonian. 
3)Shifting/redistribution of the point charges in the link region

4)“Smearing” the charges close to the QM region by replacing them by (e.g. , 
Gaussian) charge distributions. 

2.2.3. Other Nonbonded and Bonded QM–MM Interactions

In addition to the electrostatic interactions discussed in
the previous section, there are also van der Waals and bonded
contributions to the QM–MM coupling term [Eq. (4)]. Their
treatment is considerably simpler as they are handled purely
at the MM level, irrespective of the class (subtractive or
additive) of QM/MM scheme.

The van der Waals interaction is typically described by a
Lennard–Jones potential [Eq. (1)] so that suitable parameters
are needed for the QM atoms in the inner region. They can
often be adopted from similar atom types, but it is not
uncommon that certain QM atoms are not covered by any of
the atom types and assignment rules of the force field. Even if
suitable Lennard–Jones parameters exist for a given config-
uration, QM atoms can change their character, for example,
during a reaction. This then raises the question of whether the
parameter set should be switched, say, from a “reactant
description” to a “product description” somewhere along the
reaction path. In practice, however, these complications are
very much alleviated by the short-range nature of the van der
Waals interaction. While every atom of the QM region is
involved in van der Waals interactions with all the atoms of
the MM region, only those closest to the boundary contribute
significantly. Concerns about possible errors due to non-
optimum Lennard–Jones parameters, may be minimized by
moving the QM–MM boundary further away from the
incriminated QM atoms.

Friesner and co-workers[182] have re-optimized the QM
Lennard–Jones parameters against QM data for hydrogen-
bonded pairs of small amino acid models. The Lennard–Jones
radii thus obtained are 5–10% larger than those of the
underlying force field (OPLS-AA); the Lennard–Jones well
depths were left unchanged. The resulting increased repulsion
compensates for the too strong QM–MM electrostatic
attraction which arises from overpolarization at the boundary.
Recently, a set of Lennard–Jones parameters optimized for
B3LYP/AMBER was presented by a another group.[183]

However, Cui and co-workers[184] showed that thermody-
namic quantities in the condensed phase (e.g., free energies),
calculated from QM/MM simulations, are rather insensitive
towards the QM–MM van der Waals parameters, whereas
there is some influence on the detailed structure around the
QM region.

With regard to QM–MM van der Waals coupling,
subtractive and additive schemes are identical. In an additive
scheme, only pairs consisting of one atom from the inner and
one atom from the outer subsystem are considered in EvdW

QM-MM.
This approach yields exactly the same van der Waals terms as
a subtractive scheme, where the QM–QM van der Waals pairs
are subtracted out.

The formal reservations against using standard MM
parameters to describe QM–MM interactions apply of
course also to the bonded (bond stretching, angle bending,
torsional, etc.) interactions. And again, the solution is entirely
pragmatic: usually the standard MM parameter set is retained
and is complemented as necessary with additional bonded
terms not covered by the default assignment rules of the force
field.

2.3. Covalent Bonds that Cross the QM–MM Boundary
2.3.1. Overview of Boundary Schemes

This section is concerned with the various approaches that
have been devised to treat covalent bonds cut by the QM–
MM boundary. To facilitate the discussion, we introduce first
some labeling conventions, illustrated in Figure 2, which

apply to covalent bonds that cross the QM–MM boundary.
The QM and MM atoms directly connected are designated Q1

and M1, respectively, and are sometimes called boundary,
frontier, or junction atoms. The first shell of MM atoms, that
is, those directly bonded to M1, is labeled M2. The next shell,
separated from M1 by two bonds, is labeled M3, and so on,
following the molecular graph outwards from M1. The
corresponding naming convention applies to the QM side:
atoms Q2 are one bond away from Q1; Q3 are two bonds away,
and so on. If a link-atom scheme is applied, the dangling bond
of Q1 is saturated by the link atom L. As a caveat, note that
terms such as link, capping, boundary, junction, or frontier
atom are not uniquely defined in the literature; their usage
varies between authors.

The simplest solution to the problem of cutting covalent
bonds is of course to circumvent it altogether by defining the
subsystems such that the boundary does not pass through a
covalent bond. This is trivially fulfilled for explicit-solvation
studies, where the solute is normally described at the QM
level, surrounded by MM solvent molecules. Such a favorable
situation is sometimes encountered also for biomolecular
systems; for instance, if an enzymatic reaction involves only
partners (substrates, co-factors) that are not covalently bound
to the enzyme. In many cases, however, it is unavoidable that
the QM–MM boundary cuts through a covalent bond. Then
three issues have to be dealt with: 1) The dangling bond of the
QM atom Q1 must be capped; since it would be entirely
unrealistic to simply truncate the QM region (that is, treating
the bond as being homolytically or heterolytically cleaved).
2) For electrostatic or polarized embedding, overpolarization
of the QM density by the MM charges close to the cut has to
be prevented, especially when using link atoms. 3) The
bonded MM terms involving atoms from both subsystems
have to be selected such that double-counting of interactions
is avoided. Overall, the target is to achieve a well-balanced
description of the QM–MM interactions at the border
between the two subsystems. In the literature, there are
essentially three different classes of boundary schemes:

Figure 2. Labeling of atoms at the boundary between inner and outer
regions. The partial charges illustrate a charge-shift scheme: The
original MM charge q of M1 is removed and evenly distributed onto
the M2 atoms. Additional pairs of charges are placed near the M2

atoms to restore the original M1–M2 dipoles (not shown).

QM/MM Methods
Angewandte

Chemie
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1) Mechanical embedding

Inaccurate model

The QM calculation is done in the absence of the MM part.

The vdW interactions are calculated at MM level

The electrostatic interactions between the QM and the MM 
regions are described at MM level: the QM part of the system is 
replaced with a set of classical charges. 

QM

Non bonding terms



More accurate model

The vdW interactions are calculated at MM level

The QM calculation is done in the presence of the MM part: 
the QM part "feels" the MM part as a distribution of point 
charges or a multipolar expansion (according to the selected 
force field)

The QM part is polarized by the MM part.

2) Electrostatic embedding
QM

ĤQM /MM = qiV̂QM (ri )
i
∑ + AαM

RαM
12 − BαM

RαM
6

⎧
⎨
⎩

⎫
⎬
⎭α ,M

∑

Non bonding terms



Polarizable embedding: 
a possible strategy based on induced dipoles

QM

MM

MM atoms represented with 
point charges & (isotropic) 
polarizabilities

!µi
ind =α i

!
E(ri ) =α i

!
EQM (ri )+

!
EMM (ri )( )



The induced dipoles
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calculated using the Applequist scheme.14 A potential difficulty of
this scheme arises when two induced dipoles are too close that
may lead to a polarization catastrophe.5 Thole proposed a
scheme to alleviate this deficiency by attenuating the dipole field
tensor Tpq

15,16 that varies with the distance, giving rise to the
Thole models. In AMOEBA, Ponder and Ren expanded the
Thole scheme by including the interaction between induced
dipoles and higher permanent electric moments (up to
quadrupoles),4,5 which can be derived from a distributed multi-
pole analysis.17

In the dipole interactionmodels, themagnitude of the induced
dipole moment μp at atom p is proportional to its atomic
polarizability Rp. Because atomic polarizability plays a pivotal
role in polarization calculations, accurate polarizability param-
eters are essential in the development of polarizable force field.
The atomic polarizability parameters are obtained by fitting to
either experimental or QM molecular polarizabilities or QM
electrostatic potentials. In AMBER, for example, which uti-
lizes the Applequist model and parameters, the parameter set
was derived to reproduce the experimental molecular polar-
izabilities of 41 small molecules.14 Dehez et al. derived atomic
polarizabilities to reproduce the induction energies obtained
by QM perturbation theory.6 Kaminski et al. calculated a
molecule’s response to a dipolar probe located in a number of
positions around the molecule using a density function theory;
the perturbation of the electrostatic potential was then used to
fit isotropic atomic polarizabilities.18 Elking et al. proposed to
replace atomic point charges with Gaussian charge densities,
and the atomic polarizabilities were derived in a way similar to
Kaminski’s approach.19 The calculated atomic polarizabilities
have errors ranging from 1 to 5% depending on molecular
species and methods.11

In this work, we present new isotropic atomic polarizabilities
that reproduce high quality experimental molecular polarizabi-
lities.20 The experimental molecular polarizabilities were ob-
tained by measuring the refractive index n, which is related to
polarizability through the Lorentz-Lorenz equation (eq 1)

R ¼ n2 - 1
n2 þ 2

 !
M
F

¼ 4
3
πNaR ð1Þ

whereR is themolecular polarizability, n is the refractive index,M
and F are molecular weight and molar volume, respectively, and
Na is the Avogadro constant. The experimental polarizabilities
determined by measurements of refractive index, are quite
accurate, with a typical error of 0.5%. As an additive molecular
property, it is possible to calculate the molecular polarizability by
summing up the contributions from each element, atom type, or
both.20,21 Wang et al. recently published a set of empirical
models, and the best one, which utilizes 14 atom types, achieves
AUE, RMSE (root-mean-squares error), and APE of 0.147 Å3,
0.219 Å3, and 1.24%, respectively.22

The widely used data set for the atomic polarizability para-
metrization is the one used by van Duijnen and Swart15 with a
total of only 70molecules (52 in the training set and 18 in the test
set). The data set lacks iodides and phosphoric compounds that
are commonly seen in biomolecular applications. Recently,
Bosque and Sales reported a substantially larger data set of
420 diverse molecules.20 Here taking advantage of the high-
quality 420-molecule polarization data set of Bosque and Sales,
we develop high-quality isotropic atomic polarizabilities for
the Applequist’s and three Thole’s models by fitting to the

experimental molecular polarizabilities. A genetic algorithm
(GA) was used to optimize the average percent error. The initial
validation is based on the comparison with experimental data of
the van Duijnen and Swart15 set of 70 molecules that were not
included in the fitting. Further validation is provided in the
companion paper of part II of the series.

2. DIPOLE INTERACTION MODELS

For a collection of N points, polarizable dipoles placed in a
homogeneous electric field E, the induced dipole moment at
point p (μp) is calculated by

μp ¼ Rp½Εp - ∑
N

q 6¼p
Τpqμq& ð2Þ

where Rp is the atomic polarizability and Tpq is the dipole field
tensor.

Τpq ¼ fe
r3pq

Ι-
3ft
r5pq

x2 xy xz
yx y2 yz
zx zy z2

2

664

3

775 ð3Þ

where I is a unit matrix; fe and ft are the distance-dependent
screening functions. There are several widely used forms of fe and
ft depending on the way the electron density is represented. In
Applequist’s model, fe = 1 and ft = 1.

It has been noted that Applequist’s model may lead to infinite
polarization by the cooperative interaction between two nearby
inducible dipoles,15,16,23 resulting in “polarization catastrophe”.
Thole15,16 proposed solutions to this problem by introducing
distance-dependent screening functions, fe and ft. In the linear
screening function form, fe and ft are

v ¼ rpq=½aðRpRqÞ1=6&
if ðv >¼ 1Þ fe ¼ 1:0, ft ¼ 1:0

if ðv < 1Þ fe ¼ 4v3 - 3v4, ft ¼ v4 ð4Þ
In the exponential form, fe and ft are

v ¼ rpq=½aðRpRqÞ1=6&

fe ¼ 1-
v2

2
þ vþ 1

 !

expð- vÞ

ft ¼ 1-
1
6
v3 þ 1

2
v2 þ vþ 1

! "
expð- vÞ ð5Þ

In another exponential form adopted by Ren and Ponder,5 fe
and ft are determined by

v ¼ rpq=½aðRpRqÞ1=6&

fe ¼ 1- expð- v3Þ
ft ¼ 1- ðv3 þ 1Þexpð- v3Þ ð6Þ

where Rp and Rq are the atomic polarizabilities of atoms p and q,
respectively, a is the screening factor, and rpq is the distance
between atoms p and q.

For a molecule containing N atoms, eq 2 can be rewritten as
M = AF,15,24 where M is a 3N-dimension vector containing the
induced atomic dipole moments, F is a 3N-dimension vector
containing the electric field, and A is the 3N ' 3N atomic
polarizability tensor, and the elements of the inversion matrix of
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calculated using the Applequist scheme.14 A potential difficulty of
this scheme arises when two induced dipoles are too close that
may lead to a polarization catastrophe.5 Thole proposed a
scheme to alleviate this deficiency by attenuating the dipole field
tensor Tpq

15,16 that varies with the distance, giving rise to the
Thole models. In AMOEBA, Ponder and Ren expanded the
Thole scheme by including the interaction between induced
dipoles and higher permanent electric moments (up to
quadrupoles),4,5 which can be derived from a distributed multi-
pole analysis.17

In the dipole interactionmodels, themagnitude of the induced
dipole moment μp at atom p is proportional to its atomic
polarizability Rp. Because atomic polarizability plays a pivotal
role in polarization calculations, accurate polarizability param-
eters are essential in the development of polarizable force field.
The atomic polarizability parameters are obtained by fitting to
either experimental or QM molecular polarizabilities or QM
electrostatic potentials. In AMBER, for example, which uti-
lizes the Applequist model and parameters, the parameter set
was derived to reproduce the experimental molecular polar-
izabilities of 41 small molecules.14 Dehez et al. derived atomic
polarizabilities to reproduce the induction energies obtained
by QM perturbation theory.6 Kaminski et al. calculated a
molecule’s response to a dipolar probe located in a number of
positions around the molecule using a density function theory;
the perturbation of the electrostatic potential was then used to
fit isotropic atomic polarizabilities.18 Elking et al. proposed to
replace atomic point charges with Gaussian charge densities,
and the atomic polarizabilities were derived in a way similar to
Kaminski’s approach.19 The calculated atomic polarizabilities
have errors ranging from 1 to 5% depending on molecular
species and methods.11

In this work, we present new isotropic atomic polarizabilities
that reproduce high quality experimental molecular polarizabi-
lities.20 The experimental molecular polarizabilities were ob-
tained by measuring the refractive index n, which is related to
polarizability through the Lorentz-Lorenz equation (eq 1)

R ¼ n2 - 1
n2 þ 2

 !
M
F

¼ 4
3
πNaR ð1Þ

whereR is themolecular polarizability, n is the refractive index,M
and F are molecular weight and molar volume, respectively, and
Na is the Avogadro constant. The experimental polarizabilities
determined by measurements of refractive index, are quite
accurate, with a typical error of 0.5%. As an additive molecular
property, it is possible to calculate the molecular polarizability by
summing up the contributions from each element, atom type, or
both.20,21 Wang et al. recently published a set of empirical
models, and the best one, which utilizes 14 atom types, achieves
AUE, RMSE (root-mean-squares error), and APE of 0.147 Å3,
0.219 Å3, and 1.24%, respectively.22

The widely used data set for the atomic polarizability para-
metrization is the one used by van Duijnen and Swart15 with a
total of only 70molecules (52 in the training set and 18 in the test
set). The data set lacks iodides and phosphoric compounds that
are commonly seen in biomolecular applications. Recently,
Bosque and Sales reported a substantially larger data set of
420 diverse molecules.20 Here taking advantage of the high-
quality 420-molecule polarization data set of Bosque and Sales,
we develop high-quality isotropic atomic polarizabilities for
the Applequist’s and three Thole’s models by fitting to the

experimental molecular polarizabilities. A genetic algorithm
(GA) was used to optimize the average percent error. The initial
validation is based on the comparison with experimental data of
the van Duijnen and Swart15 set of 70 molecules that were not
included in the fitting. Further validation is provided in the
companion paper of part II of the series.

2. DIPOLE INTERACTION MODELS

For a collection of N points, polarizable dipoles placed in a
homogeneous electric field E, the induced dipole moment at
point p (μp) is calculated by

μp ¼ Rp½Εp - ∑
N

q 6¼p
Τpqμq& ð2Þ

where Rp is the atomic polarizability and Tpq is the dipole field
tensor.

Τpq ¼ fe
r3pq

Ι-
3ft
r5pq
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zx zy z2
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775 ð3Þ

where I is a unit matrix; fe and ft are the distance-dependent
screening functions. There are several widely used forms of fe and
ft depending on the way the electron density is represented. In
Applequist’s model, fe = 1 and ft = 1.

It has been noted that Applequist’s model may lead to infinite
polarization by the cooperative interaction between two nearby
inducible dipoles,15,16,23 resulting in “polarization catastrophe”.
Thole15,16 proposed solutions to this problem by introducing
distance-dependent screening functions, fe and ft. In the linear
screening function form, fe and ft are

v ¼ rpq=½aðRpRqÞ1=6&
if ðv >¼ 1Þ fe ¼ 1:0, ft ¼ 1:0

if ðv < 1Þ fe ¼ 4v3 - 3v4, ft ¼ v4 ð4Þ
In the exponential form, fe and ft are

v ¼ rpq=½aðRpRqÞ1=6&

fe ¼ 1-
v2

2
þ vþ 1

 !

expð- vÞ

ft ¼ 1-
1
6
v3 þ 1

2
v2 þ vþ 1

! "
expð- vÞ ð5Þ

In another exponential form adopted by Ren and Ponder,5 fe
and ft are determined by

v ¼ rpq=½aðRpRqÞ1=6&

fe ¼ 1- expð- v3Þ
ft ¼ 1- ðv3 þ 1Þexpð- v3Þ ð6Þ

where Rp and Rq are the atomic polarizabilities of atoms p and q,
respectively, a is the screening factor, and rpq is the distance
between atoms p and q.

For a molecule containing N atoms, eq 2 can be rewritten as
M = AF,15,24 where M is a 3N-dimension vector containing the
induced atomic dipole moments, F is a 3N-dimension vector
containing the electric field, and A is the 3N ' 3N atomic
polarizability tensor, and the elements of the inversion matrix of
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Polarizabilities

Molecular polarizability reproduced neglecting dipole-dipole interactions.
No explicit intramolecular polarization (implicitly included in the 

parameterization). 

The additive model

The interactive model
Molecular polarizability reproduced considering all dipole-dipole interactions. 

Explicit intramolecular polarization.

The atomic polarizabilities are determined so to reproduce experimental or 
calculated molecular polarizabilities.



The induced dipoles: 
the interactive model

This may lead to infinite polarization by the cooperative interaction between two 
nearby inducible dipoles, resulting in “polarization catastrophe”.

The short-range 1-2 and 1-3 interactions are excluded to reduce the potential of 
“polarization catastrophe”. 

Applequist’s model:
standard dipole interaction tensor

This avoids problems due to “polarization catastrophe”.

Thole model:
 smeared dipole interaction tensor



Thole proposed distance-dependent screening functions, fe and ft 
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calculated using the Applequist scheme.14 A potential difficulty of
this scheme arises when two induced dipoles are too close that
may lead to a polarization catastrophe.5 Thole proposed a
scheme to alleviate this deficiency by attenuating the dipole field
tensor Tpq

15,16 that varies with the distance, giving rise to the
Thole models. In AMOEBA, Ponder and Ren expanded the
Thole scheme by including the interaction between induced
dipoles and higher permanent electric moments (up to
quadrupoles),4,5 which can be derived from a distributed multi-
pole analysis.17

In the dipole interactionmodels, themagnitude of the induced
dipole moment μp at atom p is proportional to its atomic
polarizability Rp. Because atomic polarizability plays a pivotal
role in polarization calculations, accurate polarizability param-
eters are essential in the development of polarizable force field.
The atomic polarizability parameters are obtained by fitting to
either experimental or QM molecular polarizabilities or QM
electrostatic potentials. In AMBER, for example, which uti-
lizes the Applequist model and parameters, the parameter set
was derived to reproduce the experimental molecular polar-
izabilities of 41 small molecules.14 Dehez et al. derived atomic
polarizabilities to reproduce the induction energies obtained
by QM perturbation theory.6 Kaminski et al. calculated a
molecule’s response to a dipolar probe located in a number of
positions around the molecule using a density function theory;
the perturbation of the electrostatic potential was then used to
fit isotropic atomic polarizabilities.18 Elking et al. proposed to
replace atomic point charges with Gaussian charge densities,
and the atomic polarizabilities were derived in a way similar to
Kaminski’s approach.19 The calculated atomic polarizabilities
have errors ranging from 1 to 5% depending on molecular
species and methods.11

In this work, we present new isotropic atomic polarizabilities
that reproduce high quality experimental molecular polarizabi-
lities.20 The experimental molecular polarizabilities were ob-
tained by measuring the refractive index n, which is related to
polarizability through the Lorentz-Lorenz equation (eq 1)

R ¼ n2 - 1
n2 þ 2

 !
M
F

¼ 4
3
πNaR ð1Þ

whereR is themolecular polarizability, n is the refractive index,M
and F are molecular weight and molar volume, respectively, and
Na is the Avogadro constant. The experimental polarizabilities
determined by measurements of refractive index, are quite
accurate, with a typical error of 0.5%. As an additive molecular
property, it is possible to calculate the molecular polarizability by
summing up the contributions from each element, atom type, or
both.20,21 Wang et al. recently published a set of empirical
models, and the best one, which utilizes 14 atom types, achieves
AUE, RMSE (root-mean-squares error), and APE of 0.147 Å3,
0.219 Å3, and 1.24%, respectively.22

The widely used data set for the atomic polarizability para-
metrization is the one used by van Duijnen and Swart15 with a
total of only 70molecules (52 in the training set and 18 in the test
set). The data set lacks iodides and phosphoric compounds that
are commonly seen in biomolecular applications. Recently,
Bosque and Sales reported a substantially larger data set of
420 diverse molecules.20 Here taking advantage of the high-
quality 420-molecule polarization data set of Bosque and Sales,
we develop high-quality isotropic atomic polarizabilities for
the Applequist’s and three Thole’s models by fitting to the

experimental molecular polarizabilities. A genetic algorithm
(GA) was used to optimize the average percent error. The initial
validation is based on the comparison with experimental data of
the van Duijnen and Swart15 set of 70 molecules that were not
included in the fitting. Further validation is provided in the
companion paper of part II of the series.

2. DIPOLE INTERACTION MODELS

For a collection of N points, polarizable dipoles placed in a
homogeneous electric field E, the induced dipole moment at
point p (μp) is calculated by

μp ¼ Rp½Εp - ∑
N

q 6¼p
Τpqμq& ð2Þ

where Rp is the atomic polarizability and Tpq is the dipole field
tensor.

Τpq ¼ fe
r3pq

Ι-
3ft
r5pq

x2 xy xz
yx y2 yz
zx zy z2

2

664
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775 ð3Þ

where I is a unit matrix; fe and ft are the distance-dependent
screening functions. There are several widely used forms of fe and
ft depending on the way the electron density is represented. In
Applequist’s model, fe = 1 and ft = 1.

It has been noted that Applequist’s model may lead to infinite
polarization by the cooperative interaction between two nearby
inducible dipoles,15,16,23 resulting in “polarization catastrophe”.
Thole15,16 proposed solutions to this problem by introducing
distance-dependent screening functions, fe and ft. In the linear
screening function form, fe and ft are

v ¼ rpq=½aðRpRqÞ1=6&
if ðv >¼ 1Þ fe ¼ 1:0, ft ¼ 1:0

if ðv < 1Þ fe ¼ 4v3 - 3v4, ft ¼ v4 ð4Þ
In the exponential form, fe and ft are

v ¼ rpq=½aðRpRqÞ1=6&

fe ¼ 1-
v2

2
þ vþ 1

 !

expð- vÞ

ft ¼ 1-
1
6
v3 þ 1

2
v2 þ vþ 1

! "
expð- vÞ ð5Þ

In another exponential form adopted by Ren and Ponder,5 fe
and ft are determined by

v ¼ rpq=½aðRpRqÞ1=6&

fe ¼ 1- expð- v3Þ
ft ¼ 1- ðv3 þ 1Þexpð- v3Þ ð6Þ

where Rp and Rq are the atomic polarizabilities of atoms p and q,
respectively, a is the screening factor, and rpq is the distance
between atoms p and q.

For a molecule containing N atoms, eq 2 can be rewritten as
M = AF,15,24 where M is a 3N-dimension vector containing the
induced atomic dipole moments, F is a 3N-dimension vector
containing the electric field, and A is the 3N ' 3N atomic
polarizability tensor, and the elements of the inversion matrix of

αp and αq are the atomic polarizabilities of atoms p and q with 

distance rpq.  a (the screening length) is a parameter
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calculated using the Applequist scheme.14 A potential difficulty of
this scheme arises when two induced dipoles are too close that
may lead to a polarization catastrophe.5 Thole proposed a
scheme to alleviate this deficiency by attenuating the dipole field
tensor Tpq

15,16 that varies with the distance, giving rise to the
Thole models. In AMOEBA, Ponder and Ren expanded the
Thole scheme by including the interaction between induced
dipoles and higher permanent electric moments (up to
quadrupoles),4,5 which can be derived from a distributed multi-
pole analysis.17

In the dipole interactionmodels, themagnitude of the induced
dipole moment μp at atom p is proportional to its atomic
polarizability Rp. Because atomic polarizability plays a pivotal
role in polarization calculations, accurate polarizability param-
eters are essential in the development of polarizable force field.
The atomic polarizability parameters are obtained by fitting to
either experimental or QM molecular polarizabilities or QM
electrostatic potentials. In AMBER, for example, which uti-
lizes the Applequist model and parameters, the parameter set
was derived to reproduce the experimental molecular polar-
izabilities of 41 small molecules.14 Dehez et al. derived atomic
polarizabilities to reproduce the induction energies obtained
by QM perturbation theory.6 Kaminski et al. calculated a
molecule’s response to a dipolar probe located in a number of
positions around the molecule using a density function theory;
the perturbation of the electrostatic potential was then used to
fit isotropic atomic polarizabilities.18 Elking et al. proposed to
replace atomic point charges with Gaussian charge densities,
and the atomic polarizabilities were derived in a way similar to
Kaminski’s approach.19 The calculated atomic polarizabilities
have errors ranging from 1 to 5% depending on molecular
species and methods.11

In this work, we present new isotropic atomic polarizabilities
that reproduce high quality experimental molecular polarizabi-
lities.20 The experimental molecular polarizabilities were ob-
tained by measuring the refractive index n, which is related to
polarizability through the Lorentz-Lorenz equation (eq 1)

R ¼ n2 - 1
n2 þ 2

 !
M
F

¼ 4
3
πNaR ð1Þ

whereR is themolecular polarizability, n is the refractive index,M
and F are molecular weight and molar volume, respectively, and
Na is the Avogadro constant. The experimental polarizabilities
determined by measurements of refractive index, are quite
accurate, with a typical error of 0.5%. As an additive molecular
property, it is possible to calculate the molecular polarizability by
summing up the contributions from each element, atom type, or
both.20,21 Wang et al. recently published a set of empirical
models, and the best one, which utilizes 14 atom types, achieves
AUE, RMSE (root-mean-squares error), and APE of 0.147 Å3,
0.219 Å3, and 1.24%, respectively.22

The widely used data set for the atomic polarizability para-
metrization is the one used by van Duijnen and Swart15 with a
total of only 70molecules (52 in the training set and 18 in the test
set). The data set lacks iodides and phosphoric compounds that
are commonly seen in biomolecular applications. Recently,
Bosque and Sales reported a substantially larger data set of
420 diverse molecules.20 Here taking advantage of the high-
quality 420-molecule polarization data set of Bosque and Sales,
we develop high-quality isotropic atomic polarizabilities for
the Applequist’s and three Thole’s models by fitting to the

experimental molecular polarizabilities. A genetic algorithm
(GA) was used to optimize the average percent error. The initial
validation is based on the comparison with experimental data of
the van Duijnen and Swart15 set of 70 molecules that were not
included in the fitting. Further validation is provided in the
companion paper of part II of the series.

2. DIPOLE INTERACTION MODELS

For a collection of N points, polarizable dipoles placed in a
homogeneous electric field E, the induced dipole moment at
point p (μp) is calculated by

μp ¼ Rp½Εp - ∑
N

q 6¼p
Τpqμq& ð2Þ

where Rp is the atomic polarizability and Tpq is the dipole field
tensor.

Τpq ¼ fe
r3pq

Ι-
3ft
r5pq

x2 xy xz
yx y2 yz
zx zy z2
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775 ð3Þ

where I is a unit matrix; fe and ft are the distance-dependent
screening functions. There are several widely used forms of fe and
ft depending on the way the electron density is represented. In
Applequist’s model, fe = 1 and ft = 1.

It has been noted that Applequist’s model may lead to infinite
polarization by the cooperative interaction between two nearby
inducible dipoles,15,16,23 resulting in “polarization catastrophe”.
Thole15,16 proposed solutions to this problem by introducing
distance-dependent screening functions, fe and ft. In the linear
screening function form, fe and ft are

v ¼ rpq=½aðRpRqÞ1=6&
if ðv >¼ 1Þ fe ¼ 1:0, ft ¼ 1:0

if ðv < 1Þ fe ¼ 4v3 - 3v4, ft ¼ v4 ð4Þ
In the exponential form, fe and ft are

v ¼ rpq=½aðRpRqÞ1=6&

fe ¼ 1-
v2

2
þ vþ 1

 !

expð- vÞ

ft ¼ 1-
1
6
v3 þ 1

2
v2 þ vþ 1

! "
expð- vÞ ð5Þ

In another exponential form adopted by Ren and Ponder,5 fe
and ft are determined by

v ¼ rpq=½aðRpRqÞ1=6&

fe ¼ 1- expð- v3Þ
ft ¼ 1- ðv3 þ 1Þexpð- v3Þ ð6Þ

where Rp and Rq are the atomic polarizabilities of atoms p and q,
respectively, a is the screening factor, and rpq is the distance
between atoms p and q.

For a molecule containing N atoms, eq 2 can be rewritten as
M = AF,15,24 where M is a 3N-dimension vector containing the
induced atomic dipole moments, F is a 3N-dimension vector
containing the electric field, and A is the 3N ' 3N atomic
polarizability tensor, and the elements of the inversion matrix of

In the linear form:
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calculated using the Applequist scheme.14 A potential difficulty of
this scheme arises when two induced dipoles are too close that
may lead to a polarization catastrophe.5 Thole proposed a
scheme to alleviate this deficiency by attenuating the dipole field
tensor Tpq

15,16 that varies with the distance, giving rise to the
Thole models. In AMOEBA, Ponder and Ren expanded the
Thole scheme by including the interaction between induced
dipoles and higher permanent electric moments (up to
quadrupoles),4,5 which can be derived from a distributed multi-
pole analysis.17

In the dipole interactionmodels, themagnitude of the induced
dipole moment μp at atom p is proportional to its atomic
polarizability Rp. Because atomic polarizability plays a pivotal
role in polarization calculations, accurate polarizability param-
eters are essential in the development of polarizable force field.
The atomic polarizability parameters are obtained by fitting to
either experimental or QM molecular polarizabilities or QM
electrostatic potentials. In AMBER, for example, which uti-
lizes the Applequist model and parameters, the parameter set
was derived to reproduce the experimental molecular polar-
izabilities of 41 small molecules.14 Dehez et al. derived atomic
polarizabilities to reproduce the induction energies obtained
by QM perturbation theory.6 Kaminski et al. calculated a
molecule’s response to a dipolar probe located in a number of
positions around the molecule using a density function theory;
the perturbation of the electrostatic potential was then used to
fit isotropic atomic polarizabilities.18 Elking et al. proposed to
replace atomic point charges with Gaussian charge densities,
and the atomic polarizabilities were derived in a way similar to
Kaminski’s approach.19 The calculated atomic polarizabilities
have errors ranging from 1 to 5% depending on molecular
species and methods.11

In this work, we present new isotropic atomic polarizabilities
that reproduce high quality experimental molecular polarizabi-
lities.20 The experimental molecular polarizabilities were ob-
tained by measuring the refractive index n, which is related to
polarizability through the Lorentz-Lorenz equation (eq 1)

R ¼ n2 - 1
n2 þ 2

 !
M
F

¼ 4
3
πNaR ð1Þ

whereR is themolecular polarizability, n is the refractive index,M
and F are molecular weight and molar volume, respectively, and
Na is the Avogadro constant. The experimental polarizabilities
determined by measurements of refractive index, are quite
accurate, with a typical error of 0.5%. As an additive molecular
property, it is possible to calculate the molecular polarizability by
summing up the contributions from each element, atom type, or
both.20,21 Wang et al. recently published a set of empirical
models, and the best one, which utilizes 14 atom types, achieves
AUE, RMSE (root-mean-squares error), and APE of 0.147 Å3,
0.219 Å3, and 1.24%, respectively.22

The widely used data set for the atomic polarizability para-
metrization is the one used by van Duijnen and Swart15 with a
total of only 70molecules (52 in the training set and 18 in the test
set). The data set lacks iodides and phosphoric compounds that
are commonly seen in biomolecular applications. Recently,
Bosque and Sales reported a substantially larger data set of
420 diverse molecules.20 Here taking advantage of the high-
quality 420-molecule polarization data set of Bosque and Sales,
we develop high-quality isotropic atomic polarizabilities for
the Applequist’s and three Thole’s models by fitting to the

experimental molecular polarizabilities. A genetic algorithm
(GA) was used to optimize the average percent error. The initial
validation is based on the comparison with experimental data of
the van Duijnen and Swart15 set of 70 molecules that were not
included in the fitting. Further validation is provided in the
companion paper of part II of the series.

2. DIPOLE INTERACTION MODELS

For a collection of N points, polarizable dipoles placed in a
homogeneous electric field E, the induced dipole moment at
point p (μp) is calculated by

μp ¼ Rp½Εp - ∑
N

q 6¼p
Τpqμq& ð2Þ

where Rp is the atomic polarizability and Tpq is the dipole field
tensor.

Τpq ¼ fe
r3pq

Ι-
3ft
r5pq

x2 xy xz
yx y2 yz
zx zy z2
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where I is a unit matrix; fe and ft are the distance-dependent
screening functions. There are several widely used forms of fe and
ft depending on the way the electron density is represented. In
Applequist’s model, fe = 1 and ft = 1.

It has been noted that Applequist’s model may lead to infinite
polarization by the cooperative interaction between two nearby
inducible dipoles,15,16,23 resulting in “polarization catastrophe”.
Thole15,16 proposed solutions to this problem by introducing
distance-dependent screening functions, fe and ft. In the linear
screening function form, fe and ft are

v ¼ rpq=½aðRpRqÞ1=6&
if ðv >¼ 1Þ fe ¼ 1:0, ft ¼ 1:0

if ðv < 1Þ fe ¼ 4v3 - 3v4, ft ¼ v4 ð4Þ
In the exponential form, fe and ft are

v ¼ rpq=½aðRpRqÞ1=6&

fe ¼ 1-
v2

2
þ vþ 1

 !

expð- vÞ

ft ¼ 1-
1
6
v3 þ 1

2
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expð- vÞ ð5Þ

In another exponential form adopted by Ren and Ponder,5 fe
and ft are determined by

v ¼ rpq=½aðRpRqÞ1=6&

fe ¼ 1- expð- v3Þ
ft ¼ 1- ðv3 þ 1Þexpð- v3Þ ð6Þ

where Rp and Rq are the atomic polarizabilities of atoms p and q,
respectively, a is the screening factor, and rpq is the distance
between atoms p and q.

For a molecule containing N atoms, eq 2 can be rewritten as
M = AF,15,24 where M is a 3N-dimension vector containing the
induced atomic dipole moments, F is a 3N-dimension vector
containing the electric field, and A is the 3N ' 3N atomic
polarizability tensor, and the elements of the inversion matrix of

In the exponential form
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calculated using the Applequist scheme.14 A potential difficulty of
this scheme arises when two induced dipoles are too close that
may lead to a polarization catastrophe.5 Thole proposed a
scheme to alleviate this deficiency by attenuating the dipole field
tensor Tpq

15,16 that varies with the distance, giving rise to the
Thole models. In AMOEBA, Ponder and Ren expanded the
Thole scheme by including the interaction between induced
dipoles and higher permanent electric moments (up to
quadrupoles),4,5 which can be derived from a distributed multi-
pole analysis.17

In the dipole interactionmodels, themagnitude of the induced
dipole moment μp at atom p is proportional to its atomic
polarizability Rp. Because atomic polarizability plays a pivotal
role in polarization calculations, accurate polarizability param-
eters are essential in the development of polarizable force field.
The atomic polarizability parameters are obtained by fitting to
either experimental or QM molecular polarizabilities or QM
electrostatic potentials. In AMBER, for example, which uti-
lizes the Applequist model and parameters, the parameter set
was derived to reproduce the experimental molecular polar-
izabilities of 41 small molecules.14 Dehez et al. derived atomic
polarizabilities to reproduce the induction energies obtained
by QM perturbation theory.6 Kaminski et al. calculated a
molecule’s response to a dipolar probe located in a number of
positions around the molecule using a density function theory;
the perturbation of the electrostatic potential was then used to
fit isotropic atomic polarizabilities.18 Elking et al. proposed to
replace atomic point charges with Gaussian charge densities,
and the atomic polarizabilities were derived in a way similar to
Kaminski’s approach.19 The calculated atomic polarizabilities
have errors ranging from 1 to 5% depending on molecular
species and methods.11

In this work, we present new isotropic atomic polarizabilities
that reproduce high quality experimental molecular polarizabi-
lities.20 The experimental molecular polarizabilities were ob-
tained by measuring the refractive index n, which is related to
polarizability through the Lorentz-Lorenz equation (eq 1)

R ¼ n2 - 1
n2 þ 2

 !
M
F

¼ 4
3
πNaR ð1Þ

whereR is themolecular polarizability, n is the refractive index,M
and F are molecular weight and molar volume, respectively, and
Na is the Avogadro constant. The experimental polarizabilities
determined by measurements of refractive index, are quite
accurate, with a typical error of 0.5%. As an additive molecular
property, it is possible to calculate the molecular polarizability by
summing up the contributions from each element, atom type, or
both.20,21 Wang et al. recently published a set of empirical
models, and the best one, which utilizes 14 atom types, achieves
AUE, RMSE (root-mean-squares error), and APE of 0.147 Å3,
0.219 Å3, and 1.24%, respectively.22

The widely used data set for the atomic polarizability para-
metrization is the one used by van Duijnen and Swart15 with a
total of only 70molecules (52 in the training set and 18 in the test
set). The data set lacks iodides and phosphoric compounds that
are commonly seen in biomolecular applications. Recently,
Bosque and Sales reported a substantially larger data set of
420 diverse molecules.20 Here taking advantage of the high-
quality 420-molecule polarization data set of Bosque and Sales,
we develop high-quality isotropic atomic polarizabilities for
the Applequist’s and three Thole’s models by fitting to the

experimental molecular polarizabilities. A genetic algorithm
(GA) was used to optimize the average percent error. The initial
validation is based on the comparison with experimental data of
the van Duijnen and Swart15 set of 70 molecules that were not
included in the fitting. Further validation is provided in the
companion paper of part II of the series.

2. DIPOLE INTERACTION MODELS

For a collection of N points, polarizable dipoles placed in a
homogeneous electric field E, the induced dipole moment at
point p (μp) is calculated by

μp ¼ Rp½Εp - ∑
N

q 6¼p
Τpqμq& ð2Þ

where Rp is the atomic polarizability and Tpq is the dipole field
tensor.

Τpq ¼ fe
r3pq

Ι-
3ft
r5pq

x2 xy xz
yx y2 yz
zx zy z2

2

664

3

775 ð3Þ

where I is a unit matrix; fe and ft are the distance-dependent
screening functions. There are several widely used forms of fe and
ft depending on the way the electron density is represented. In
Applequist’s model, fe = 1 and ft = 1.

It has been noted that Applequist’s model may lead to infinite
polarization by the cooperative interaction between two nearby
inducible dipoles,15,16,23 resulting in “polarization catastrophe”.
Thole15,16 proposed solutions to this problem by introducing
distance-dependent screening functions, fe and ft. In the linear
screening function form, fe and ft are

v ¼ rpq=½aðRpRqÞ1=6&
if ðv >¼ 1Þ fe ¼ 1:0, ft ¼ 1:0

if ðv < 1Þ fe ¼ 4v3 - 3v4, ft ¼ v4 ð4Þ
In the exponential form, fe and ft are

v ¼ rpq=½aðRpRqÞ1=6&

fe ¼ 1-
v2

2
þ vþ 1

 !

expð- vÞ

ft ¼ 1-
1
6
v3 þ 1

2
v2 þ vþ 1

! "
expð- vÞ ð5Þ

In another exponential form adopted by Ren and Ponder,5 fe
and ft are determined by

v ¼ rpq=½aðRpRqÞ1=6&

fe ¼ 1- expð- v3Þ
ft ¼ 1- ðv3 þ 1Þexpð- v3Þ ð6Þ

where Rp and Rq are the atomic polarizabilities of atoms p and q,
respectively, a is the screening factor, and rpq is the distance
between atoms p and q.

For a molecule containing N atoms, eq 2 can be rewritten as
M = AF,15,24 where M is a 3N-dimension vector containing the
induced atomic dipole moments, F is a 3N-dimension vector
containing the electric field, and A is the 3N ' 3N atomic
polarizability tensor, and the elements of the inversion matrix of

Thole model



Polarizable QM/classical models

an iterative procedure is necessary

It can be solved together with the standard 
self-consistent-field problem: 

Hartree-Fock or Kohn-Sham (DFT) approach

The solute wavefunction depends on the solvent operator & 
the solvent operator depends on the wavefunction!



Self consistent reaction field (SCRF)

new solvent-dependent 
operators

Effective Fock or  
Kohn-Sham operator F̂ eff = F̂ 0 + X̂ MMpol

X̂ ASC

⎧
⎨
⎪

⎩⎪

They change 
at each SCF 

iteration

  
X̂ MMpol = qk

MMV̂k
k
∑ − µi(ρ) ⋅ Êi

i
∑

X̂ ASC = qi
ASC (ρ)V̂i

i
∑

MMPOL

Continuum model
(ASC)

At convergency, solute & solvent are 
mutually polarized



Alternative polarisable embeddings 
(not covered in this lecture)

Drude Model:
It represents the induced dipole at every polarizable atom by two charges 
of the same magnitude and opposite sign linked by a harmonic spring. The 
first charge is located at the nucleus of the atom, while the second one is 
mobile.

Fluctuating Charges: 
partial charges are generally assigned on the atomic sites in a molecule, and the 
charge redistribution in response to the external electric field or conformational 
change is governed by electronegativity equilibration method (EEM).



Effective Fragment Potential 
(EFP)

Fragment-based methods 
(not covered in this lecture)

Pruitt, S. R.; Bertoni, C.; Brorsen, K. R.; Gordon, M. S. 
Efficient and Accurate Fragmentation Methods,  
Acc. Chem. Res. 2014, 47, pp 2786–2794.

Explicit Polarization Method 
(X-Pol) 

Xie, W.; Orozco, M.; Truhlar, D. G.; Gao, J. 
X-Pol Potential: an Electronic Structure-Based Force Field for 
Molecular Dynamics Simulation of a Solvated Protein in Water. 
J. Chem. Theory Comp. 2009, 5, pp 459–467.

They can be seen as polarisable embeddings which do not require empirical 
parameterizations but derive all the terms from QM calculations on fragments.


