
80. Coupled-Cluster Methods in
Quantum Chemistry

We here provide a short introduction to diagrams, which will be used in exercise 80.2.
Diagrams provide an easy and visual way to derive algebraic expressions of matrix ele-
ments in second quantization. Different types of diagrams exist (Feynman, Goldstone,
etc.). We will here use a diagrammatic representation suitable for coupled-cluster theory,
the antisymmetrized Brandow diagrams. We start by a short recapitulation of the theory
the diagrams are based upon, before proceeding to the Brandow diagrams.

Background theory
We will be working in the particle-hole formalism with the HF state |ΨHF⟩ ≡ |0⟩ as
vacuum, rather than the true vacuum state |vac⟩. The quasi particles (QPs) consist of
particles and holes, where particles correspond to electrons in virtual orbitals and holes
correspond to the absence of electrons in occupied HF orbitals. In this picture, the HF
state is a vacuum in the sense of having no particles and no holes. The elementary
operator for the creation of an electron in a virtual orbital a†

a corresponds to a creation
of a particle b†

a, and annihilation of an electron in an occupied orbital ai to a creation
of a hole b†

i . Similarly, annihilation of an electron in a virtual orbital aa and creation of
an electron in an occupied orbital a†

i correspond to annihilation of particles and holes, ba

and bi, respectively. It then follows that

bp|0⟩ = ⟨0|b†
p = 0, (80.1)

for all QPs p ∈ {i, a}. All operators in second quantization involve a string of elementary
operators. At the same time, we can express any state that corresponds to some Slater
determinant as a string of creation operators . . . b†

rb
†
qb

†
p acting on |0⟩.

Therefore, we can rewrite integrals involving two states and an operator string O into
a vacuum expectation value (VEV) as ⟨0|btbubv . . . O . . . b

†
rb

†
qb

†
p|0⟩. The VEV vanishes due

to Eq. (80.1) if all creation operators are to the left of the annihilation operators. They
are then said to be in normal order, for example, ⟨0|b†

ab
†
i bbbc|0⟩ = 0. Usually, such strings

contain an even number of elementary operators (which we assume in the following) but
are not in normal order to begin with. They can, however, be recast into normal-ordered
form which then makes the evaluation of the VEV very simple. For this rearrangement,
we could use the anti-commutator relations directly, i.e., by permuting two operators in
a string by bpb

†
q = −b†

qbp + δpq, until all operators are in normal order. For example, we
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can recast the string Y = bpbqb
†
rb

†
s into its normal-ordered form:

Y = b†
rb

†
sbpbq − δqrb

†
sbp + δprb

†
sbq + δqsb

†
rbp − δpsb

†
rbq + δqrδps − δprδqs. (80.2)

The important point to note is that for the VEV, ⟨0|Y |0⟩, only the last two terms con-
tribute, as all other terms contain strings of creation and annihilation operators in normal
order. In our example, the VEV is thus simply given by ⟨0|Y |0⟩ = δqrδps − δprδqs. Re-
casting strings into normal-ordered form in this way is, however, quite tedious. A simpler
way to obtain that same expression is by use of Wick’s theorem. A full introduction to
Wick’s theorem is given in chapter 9, but we still give a brief recapitulation here since
it is central to the understanding of the diagrams. We start by recalling the concept of
contractions. A contraction between two elementary operators cp and dq is defined as

cpdq = cpdq − {cpdq} =
{

0 if cpdq already in normal order
δpq if cpdq not in normal order

,

where the curly brackets indicate normal ordering, under which permutation of two oper-
ators gives a sign change. If the operators are already in normal order, the contrac-
tion trivially vanishes. Otherwise, it follows from the anticommutator-relations that
bpb

†
q = bpb

†
q − {bpb

†
q} = bpb

†
q + b†

qbp = δpq. Note the subtle difference in wording: For
X = bpb

†
q

normal ordering of X : {X} = {bpb
†
q} = −b†

qbp

normal-ordered form of X : X = −b†
qbp + δpq = {X}+ δpq

Wick’s theorem now states that we can obtain the normal-ordered form of any operator
string Y by summing the string in normal ordering, {Y }, with all single, double, etc.
contractions of Y also in normal ordering

Y = {Y }+
∑

single
{ Y }+

∑

double
{ Y }+ . . . (80.3)

Comparing Wick’s theorem to our result in Eq. (80.2), we see that the first term corre-
sponds to the normal ordering of the string Y ,

{
bpbqb

†
rb

†
s

}
, the next four terms are the

singly-contracted terms, and the last two the doubly-contracted terms. As a contraction
removes two elementary operators to yield either zero or a δpq, the result from the fully
contracted terms is either zero or a product of Kronecker deltas. For the VEV, therefore,
we don’t even need the full expression of Y in normal-ordered form but instead only need
to evaluate the fully contracted terms.
In short: To evaluate an integral between two states and some string of elementary oper-
ators we want to rewrite the integrals into VEVs because they are easily evaluated. The
strings of elementary operators need to be recast into normal-ordered form and for the
VEV, only the fully contracted terms need to be considered.
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Brandow diagrams
Turning to the problem at hand, we recall that the Hamilton operator of an N -electron
system in normal ordered form is given as

H = EHF +
∑

pq

fpq

{
a†

paq

}
+ 1

4
∑

pqrs

⟨pq||rs⟩{a†
pa

†
qasar} (80.4)

= EHF + fN +WN . (80.5)

EHF is the (scalar) Hartree-Fock energy, fN the one-electron (Fock) operator, and WN

the two-electron operator. The coupled cluster (CC) energy and amplitude equations are
derived by inserting the ansatz for the CC wave function Ψ = eT |0⟩ into the Schrödinger
equation, multiplication from the left with e−T and projection onto the reference and
I-fold excited determinants ⟨ΦI |, respectively:

⟨0|e−THeT |0⟩ = E (80.6)
⟨ΦI |e−THeT |0⟩ = 0. (80.7)

T is the cluster operator, with T = T1 + T2 + · · · + TN , where T1 =
∑

ai t
a
i a

†
aai, T2 =

1
4
∑ab

ij t
ab
ij a

†
aa

†
bajai, etc. From the BCH expansion we get

e−THeT = H + [H,T ] + 1
2! [[H,T ], T ] + . . . (80.8)

Wicks theorem now tells us that we can recast all commutators as

[H,T ] = HT − TH = {HT}+
∑

single
{HT}+ · · · − {TH} −

∑

single
{TH} − . . . (80.9)

As {HT} = {TH} and as all contractions where T is left of H vanish (the string TH is
already in normal order), we see that only terms can contribute where H is left of T and
where H and T have at least one contraction, symbolized as (HT )c (’c’ for ’connected’).
The BCH expansion then becomes

e−THeT = H + (HT )c + 1
2!((HT )cT )c + . . . (80.10)

≡ (H exp(T ))c. (80.11)

Inserting the Hamiltonian of Eq. (80.4), the definition of the cluster operator, as well as
the expansion in (80.11) into the CC amplitude and energy equations, we could, by the
use of Wicks theorem, as outlined above, arrive at algebraic expressions for Eqs. (80.6)
and (80.7) by rewriting them into VEVs and forming the fully contracted terms between
the different strings of QP creation and annihilation operators. A great number of these
terms will, however, turn out to be equivalent or zero and it is easy to make mistakes
manipulating the indices in the operator strings. With diagrams, the goal is to do these
contractions in a visual way and to only consider such contractions that will be both
non-redundant and non-zero.
In short, the procedure consists of the following four steps

1. write down the relevant equations
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2. write down the diagrams and excitation level of all involved operators

3. contract diagrams to desired excitation level and number and type of external lines

4. convert diagrams to algebraic expressions

We will outline this procedure taking CCD as an example.

Step 1
In CCD we truncate the cluster operator to T = T2. The energy and amplitude equations
are given by

E = ⟨0|(H exp(T2))c|0⟩

= ⟨0|H|0⟩+ ⟨0|(HT2)c|0⟩+ 1
2 ⟨0|(HT2)cT2)c|0⟩+ . . . (80.12)

= EHF + ⟨0|fN |0⟩+ ⟨0|WN |0⟩+ ⟨0|(fNT2)c|0⟩+ ⟨0|(WNT2)c|0⟩+ . . . (80.13)
0 = ⟨Φab

ij |(H exp(T2))c|0⟩

= ⟨Φab
ij |H|0⟩+ ⟨Φab

ij |(HT2)c|0⟩+ 1
2 ⟨Φ

ab
ij |(HT2)cT2)c|0⟩+ . . . (80.14)

= ⟨Φab
ij |fN |0⟩+ ⟨Φab

ij |WN |0⟩+ ⟨Φab
ij |(fNT2)c|0⟩+ . . . (80.15)

where for the amplitude equations we only project onto doubly excited determinants
⟨Φab

ij |.

Step 2
In diagrams, conceptually, operators are represented by a symbol and a number of lines
attached to that operator symbol, namely one line per operator in the string. The symbols
for the operators are chosen as horizontal lines: the components of the Hamiltonian are
represented by dotted lines and the cluster operators by solid lines. The distinction
between particles and holes is made via direction (arrows) on the lines. Furthermore,
the distinction between QP creation and annihilation is made by placing the lines above
and below the operator symbol, respectively. More specifically, the lines are connected
to vertices: for a k-electron operator, there are k vertices in its diagram, each with one
incoming and one outgoing line. The rules to remember are:

a) lines from above represent particle/hole creation operators

b) lines from below particle/hole annihilation operators

c) arrows pointing upwards represent particles

d) arrows pointing downwards represent holes

e) each vertex can only have one incoming and one outgoing line (one arrow pointing
towards it and one pointing away from it)

f) two diagrams are equivalent by pair-wise interchange(s) of two incoming or two
outgoing lines between vertices that belong to the same operator



1047

g) excitation level: 1
2 (# of lines from above−# lines from below)

We are now ready to write down all diagrams for the Hamiltonian and the T2 cluster
operator, where the latter can be expressed as

T2 = 1
4
∑
ij

∑
ab

tab
ij a

†
aa

†
bajai

=

+ 2 ,

with the algebraic expression in the top row, the diagram in the middle row, and the
excitation level in the bottom row. EHF is simply a scalar, with excitation level 0, and
has no diagrammatic representation. Turning to the one-electron part of the Hamiltonian,
it can be expressed as

f̂N =
∑
ab

fab{a†
aab} +

∑
ij

fij{a†
iaj} +

∑
ai

fia{a†
iaa} +

∑
ai

fai{a†
aai}

= + + +

0 0 −1 +1 .

The Fock operator is represented by a dotted line with one vertex to the left, and with
a cross to the right to specify that it is not an actual vertex. As can be seen, there is
a clear link between the algebraic expressions and the diagrams. The excitation levels
can also be easily rationalized: the first two with excitation level 0 are rotations among
virtual or occupied orbitals, respectively, the third excitation level -1 diagram is a single
de-excitation, and the fourth excitation level 1 diagram is a single excitation
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In the same way, the two-electron operator is expressed as

ŴN = 1
4 [ ⟨ab||cd⟩{a†

aa
†
badac} + ⟨ij||kl⟩{a†

ia
†
jalak} + 4⟨ia||bj⟩{a†

ia
†
aajab}

+ 2⟨ai||bc⟩{a†
aa

†
iacab} + 2⟨ij||ka⟩{a†

ia
†
jaaak} + 2⟨ab||ci⟩{a†

aa
†
baiac}

+ 2⟨ia||jk⟩{a†
ia

†
aakaj} + ⟨ab||ij⟩{a†

aa
†
bajai} + ⟨ij||ab⟩{a†

ia
†
jabaa} ]

= + +

0 0 0

+ + +

−1 −1 +1

+ + +

+ 1 + 2 − 2

where Einstein summation is assumed for the algebraic expressions. Splitting the sum
over the general indices p, q, r, s in Eq. (80.4) into occupied i, j, k, l and virtual a, b, c, d
indices gives 16 terms. By exploiting the anti-symmetry as well as the rules to permute
operators inside the brackets for normal ordering (sign change), we arrive at the nine
terms with corresponding factors as given above. We can also understand the factors
from the perspective of equivalent diagrams according to rule f): for instance, diagram 3
can be drawn in four different ways

= = = (80.16)

and therefore gives a factor of four.
Similarly, diagrams four to seven have two equivalent diagrammatic representations, as
they all have an equivalent mirror image giving a factor of two. Diagrams one, two, eight
and nine are unique. You do not have to remember these factors, rather, all factors, i.e.,
coming from the operator definitions, the expansion in Eq. (80.11), as well as factors,
permutations and signs in equivalent diagrams are included when following the rules given
under step 4.



1049

Step 3
Two operators are contracted by ’joining lines’. If we have the productAB of two operators
A and B and want to consider their contractions, we will draw the diagram for A on the
top and the one for B below. Meaningful (non-vanishing) contractions are then the ones
where we connect lines that are below A (QP annihilation) and above B (QP creation)
and that point in the same direction. We know from Wicks theorem, that only the
fully contracted term can contribute to a VEV. Therefore, in principle, all lines should
be connected. This is true for the CC energy equations. However, for the amplitude
equations in Eq. (80.15), there is a string of operators we have not yet accounted for.
The doubly excited determinant ⟨Φab

ij | can be expressed as ⟨0|a†
ia

†
jabaa, which would

correspond to a diagram with four lines pointing down and therefore an excitation level
of -2. We are, however, not going to draw this diagram but instead just keep in mind
that we will need four open lines pointing up in our final diagrams for the amplitude
equations, namely a†

aa
†
bajai to connect to ⟨Φab

ij | to from the remaining contractions for
the VEV. In other words, the desired excitation level of the final diagrams is +2.
We will now outline how to contract the diagrams by a few example terms from the CCD
amplitude equations, Eq. (80.15), and leave it to exercise 80.2 to work out the remaining
terms. First, we consider the the integral

⟨Φab
ij |(fNT2)c|0⟩. (80.17)

The ket side has excitation level 0 and the bra side has excitation level +2 (doubly excited
determinant). Thus, the only allowed contractions must have an overall excitation level
+2 (bringing either the ket side to +2 when working to the right, or the bra side to 0
when working to the left). Since the T2 cluster operator has excitation level +2, we get
non-vanishing terms only for the two fN diagrams with excitation level 0. We will here
consider the first of these, giving

i a j

c

b

. (80.18)

Notice that 1) we have a contraction between the cluster operator T2 and the one-electron
component fN of the Hamiltonian, denoted an internal line, over the free index c, giving
a full summation over this particle index, 2) we have four open lines from above, two
particle and two hole creations, to give excitation level +2, 3) the indices of the open
lines match the fixed indices on the bra side, thus no summation here, and 4) the first
continuous line starts with i and ends with a and the second starts with j and ends with
b. Also notice that contraction of the particle creation line from the first vertex of the
T2 operator instead of on the second vertex gives an equivalent diagram, and can thus be
disregarded. We will come back to the rules for the algebraic expressions under step 4,
but for now let us consider a few more examples.

Let us continue by considering the third term of Eq. (80.11) for the one-electron part
fN

1
2 ⟨Φ

ab
ij |((fNT2)cT2)c|0⟩. (80.19)

Since both T2 operators have excitation levels +2, giving a total of +4, we cannot reach
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the desired excitation level of +2 as the fN operator has a minimum excitation level of
-1 such that this term does not contribute.

We now turn to the two-electron component WN , starting with

⟨Φab
ij |(WNT2)c|0⟩. (80.20)

Again, T2 has excitation level +2, so we can only match it with the WN diagrams of
excitation level 0. For the first WN diagram of excitation level 0 we get

i

c

a

d

b

j

.

(80.21)

The final example we give here is the integral involving the third term of the BCH
expansion, Eq. (80.11), for the two-electron part of the Hamiltonian, namely

1
2 ⟨Φ

ab
ij |((WNT2)cT2)c|0⟩. (80.22)

Since the joint excitation level of the two T2 operators is +4, the only non-vanishing term
is with the WN diagram of excitation level -2. This term gives a total of four possible
contractions, and we give only one of them as an example here

ai

k c l d

j b

, (80.23)

with the other three left for exercise 80.2. One important thing to notice here, is that we
need at least one contraction with each of the two cluster operators to give non-vanishing
contributions.

Step 4
We have now outlined how to contract the diagrams, and are ready for the final step,
namely to translate the diagrams into algebraic expressions. This is achieved with the
following set of rules

A) assign indices. For the open lines (corresponding to the indices on the bra side), i
should be connected to a, j should be connected to b, etc.

B) sum over indices of the internal lines (lines connecting two operators, the contrac-
tions)

C) assign matrix elements: Fock matrix fout,in = ⟨out|f |in⟩, anti-symmetrized two-
electron integrals ⟨out1out2||in1in2⟩, cluster amplitudes tout1out2

in1in2 , etc., with ’ink’
and ’outk’ the incoming and outgoing lines on vertex k

D) factor: n equivalent internal lines give factor 1/n!, and m equivalent operators
connected in the same way give factor 1/m!
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E) sign: (−1)nint,h+nloop , with nint,h the number of internal hole lines and nloop as the
numer of loops. A loop is set of lines that begins and ends at a given vertex.

F) P (pq) = 1 − P̂pq: for unique external lines (p, q of the same type but at different
operators)

with P̂pq the permutation operator exchanging the two indices p and q. Using these
rules, we can convert the diagrams of Eqs. (80.18), (80.21) and (80.23) into the algebraic
expressions

P (ab)
∑

c

fbct
ac
ij , (80.24)

where we have to include P (ab), since we have two unique external particle lines in
Eq. (80.18),

1
2
∑

cd

⟨ab||cd⟩tcd
ij , (80.25)

where the factor 1/2 is included since we have two equivalent internal lines in Eq. (80.21),
and finally

1
2P (ij)P (ab)

∑

cd

∑

kl

⟨kl||cd⟩tac
ik t

bd
jl , (80.26)

where we include both P (ij) and P (ab) since both the external particle and hole lines are
unique, as they are connected to different T2 operators, and where the factor 1/2 arises
since we have two equivalent operators (the T2’s) connected in the same way.
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Exercise 80.1 : Essentials of CC theory
(Review of the material)
a) What is the choice of the cluster operator in the CCSD ansatz and which excited
determinants are considered and not considered in the wave function?
b) Discuss the differences between CCSD, CISD, and FCI wave functions and explain the
terms “disconnected” and “connected” excitations.
c) Why are the CC amplitudes determined via projection techniques and not via the
variation principle?
d) Describe the various steps and approximations required to obtain the so-called CCSD(T)
approach. Discuss also the computational requirements of CCSD(T) and estimate for var-
ious cases (different numbers of electrons and basis functions) how much more expensive
a CCSD(T) calculation is in comparison to CCSD.
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Exercise 80.2 : CC equations and diagrams
(medium difficulty)
Work out (in a systematic manner!) all diagrams for the CCD (for the more advanced,
CCSD) amplitude equations and give the corresponding algebraic expression.
Hint: for CCSD there are 3 diagrams for the energy, 14 diagrams for the singles equations
and 31 diagrams for the doubles equations.

Solution 80.2
The CCD case

• The equations to be considered are

E = ⟨0| (H exp(T2))c |0⟩; 0 = ⟨Φab
ij | (H exp(T2))c |0⟩, (80.27)

with

(H exp(T ))c = H + (H T )c + 1
2!
(
H T 2)

c
+ 1

3!
(
H T 3)

c
+ . . . (80.28)

• Consider the excitation levels of the diagrams to be evaluated:

– Energy expression:
the total excitation level (projection on references) needs to be zero

– Amplitude equation:
the total excitation level (projection on doubles) needs to be two

• Consider the number of open lines in the diagrams to be evaluated

– Energy expression:
no open lines, closed diagrams

– Amplitude equation:
four open lines, two pointing upwards and two coming from above

• Get complete list of diagrams for T2 and H together with their excitation rank (see
below)
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The CCSD case

• The equations to be considered are

E = ⟨0| (H exp(T1 + T2))c |0⟩
0 = ⟨Φa

i | (H exp(T1 + T2))c |0⟩
0 = ⟨Φab

ij | (H exp(T1 + T2))c |0⟩

with

(H exp(T ))c = H + (H T )c + 1
2!
(
H T 2)

c
+ 1

3!
(
H T 3)

c
+ . . . (80.29)

• Consider the excitation levels of the diagrams to be evaluated:

– Energy expression:
the total excitation level (projection on references) needs to be zero

– Singles equation:
the total excitation level (projection on singles) needs to be one

– Doubles equation:
the total excitation level (projection on doubles) needs to be two

• Consider the number of open lines in the diagrams to be evaluated

– Energy expression:
no open lines, closed diagrams

– Singles equation:
two open lines, one pointing upwards and one coming from above

– Singles equation:
four open lines, two pointing upwards and two coming from above

• Get complete list of diagrams for T1, T2 and H together with their excitation rank,
as shown in the following. Note that we add comments concerning contractions
such as, e.g. (2, 1, 1), meaning two contractions to first T , and one to second and
third. Sometimes, in the following, we also provide information about the arrow
direction of the contraction: ’u’ means upwards and ’d’ downwards.
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Exercise 80.3 : CC theory and spin contamination
(advanced, more difficult)
CC theory in its standard formulation provides only spin eigenfunctions in the case of
closed-shell systems, while open-shell treatments suffer from spin contamination. This
observation can be explained by analyzing the commutator [S2, T ].
a) Show that [S2, T ] = 0 implies that the CC wave function is a spin eigenfunction
provided that the reference determinant is a spin eigenfunction.
b) What are the commutator with S2 for a simple excitation operator such as a†

aσaiσ

(notation pα denotes a spatial orbital with index p combined with an α spin function)
and for the generators of the unitary group, Ea

i =
∑

σ a
†
aσaiσ?

Hint: The operator S2 is a two-electron operator and actually best used in the form

S2 = S+S− + S2
z − Sz. (80.30)

In second quantization the corresponding operators are given as

S+ =
∑

p

a†
pαapβ ; S− =

∑

p

a†
pβapα; Sz = 1

2
∑

p

(a†
pαapα − a†

pβapβ). (80.31)

To reduce the amount of work, consider the commutators with S−, S+, and Sz.
c) Show that in the closed-shell case the cluster operator (with the given relationships
between the amplitudes) can be rewritten in terms of Ea

i .
d) Discuss how a standard open-shell CC treatment could be modified in order to obtain
a properly spin-adapted CC wavefunction. Discuss the consequences in particular with
respect to the normal-ordered representation of products of cluster operators.

Solution 80.3
a. A CC wave function is a spin eigenfunction (i.e., eigenfunction of S2, the case of Sz

is trivial and not discussed) when the following eigenvalue equation holds

S2 exp(T )|0⟩ = s(s+ 1) exp(T )|0⟩

With the assumption that the reference determinant is a spin eigenfunction

S2|0⟩ = s(s+ 1)|0⟩

and that the commutator [
S2, T

]
= 0

vanishes∗, it follows that the CC wave function is a spin eigenfunction:

S2 exp(T )|0⟩ = exp(T )S2|0⟩ = exp(T )s(s+ 1)|0⟩ = s(s+ 1) exp(T )|0⟩
∗This implies

[
S2, exp(T )

]
= 0
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b. The spin operator S2 can be rewritten as (see standard textbooks of quantum
chemistry) as

S2 = 1
2 (S+S− + S−S+) + S2

z = S+S− + S2
z − Sz.

The second-quantized form of these erators is given as:

S+ =
∑

p

a†
pαapβ ; S− =

∑

p

a†
pβapα; Sz = 1

2
∑

p

(
a†

pαapα − a†
pβapβ

)

To be evaluated are now the commutators of these operators with

a†
aαaiα, a

†
aβaiβ , and Ea

i = a†
aαaiα + a†

aβaiβ

It suffices to compute the commutators of a†
aαaiα with S+, S− and Sz and infer

from this the other commutators. The commutators can be computed using the
anticommutator relations, but the best way is probably to use Wick’s theorem, as
discussed in Chapter 9 (hint: use normal ordering with respect to the real vacuum
and realize that only contracted contributions survive in the commutator). This
yields:

[
S+, a

†
aαaiα

]
=

∑

p

(
a†

pαapβa
†
aαaiα − a†

aαaiαa
†
pαapβ

)

=
∑

p

(
N(a†

pαapβa
†
aαaiα)−N(a†

aαaiαa
†
pαapβ)

)

= −a†
aαaiβ ,

Continuing in the same manner we find
[
S−, a

†
aαaiα

]
=

∑

p

(
a†

pβapαa
†
aαaiα − a†

aαaiαa
†
pβapα

)

=
∑

p

(
N(a†

pβapαa
†
aαaiα)−N(a†

aαaiαa
†
pβapα)

)

= a†
aβaiα

In the final commutator with Sz it suffices to consider the α part of Sz, since the β
part obviously commutes:

[
Sz, a

†
aαaiα

]
= 1

2
∑

p

(
a†

pαapαa
†
aαaiα − a†

aαaiαa
†
pαapα

)

= 1
2
∑

p

(
N(a†

pαapαa
†
aαaiα)−N(a†

aαaiαa
†
pαapα)

)

= 0.

Proceeding in analogous manner we find
[
S+, a

†
aβaiβ

]
= a†

aαaiβ

[
S−, a

†
aβaiβ

]
= −a†

aβaiα

[
Sz, a

†
aβaiβ

]
= 0,
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as well as
[S+, E

a
i ] = 0 [S−, E

a
i ] = 0 [Sz, E

a
i ] = 0.

From the results obtained so far, it already follows that Ea
i commutes with S2, while

for the individual excitation operators the (actually non-vanishing) commutator
with S+S− needs to be evaluated as well (to be skipped)
[
S+S−, a

†
aαaiα

]
= S+

[
S−, a

†
aαaiα

]
+
[
S+, a

†
aαaiα

]
S−

= . . . =
∑

p

(
N(a†

pαapβa
†
aβaiα)−N(a†

aαaiβa
†
pβapα)

)
̸= 0

c. The task is to rewrite the closed-shell cluster operator (CCSD case) in terms of the
generators of the unitary group. We proceed by limiting summations to indices of
spatial orbitals only, and writing out explicitly all spin combinations.

• In the case of singles, we use
taα
iα = taβ

iβ .

allowing us to define
T a

i = taα
iα = taβ

iβ .

We therefore have

T1 =
∑

a

∑

i

(
taα
iα a

†
aαaiα + taβ

iβ a
†
aβaiβ

)

=
∑

a

∑

i

T a
i

(
a†

aαaiα + a†
aβaiβ

)
=
∑

a

∑

i

T a
i E

a
i

• In the case ouf doubles, we use

taαbα
iαjα = taβbβ

iβjβ ; taαbβ
iαjβ = tbβaα

jβiα = −tbβaα
iαjβ = −taαbβ

jβiα

and
taαbα
iαjα = taαbβ

iαjβ − t
bαaβ
iαjβ ; taαbβ

iαjβ = tbαaβ
jαiβ .

We now define
T ab

ij = taαbβ
iαjβ .

The T2 operator is expanded as

T2 = 1
4
∑

a,b

∑

i,j

(
taαbα
iαjα a

†
aαa

†
bαajαaiα + taβbβ

iβjβ a
†
aβa

†
bβajβaiβ + taαbβ

iαjβ a
†
aαa

†
bβajβaiα

+ taβbα
iαjβ a

†
aβa

†
bαajβaiα + taαbβ

iβjα a
†
aαa

†
bβajαaiβ + taβbα

iβjα a
†
aβa

†
bαajαaiβ

)

Rewritten in terms of T -amplitudes defined above, we obtain

T2 = 1
4
∑

a,b

∑

i,j

(
(T ab

ij − T ba
ij )a†

aαa
†
bαajαaiα + (T ab

ij − T ba
ij )a†

aβa
†
bβajβaiβ

+ T ab
ij a

†
aαa

†
bβajβaiα − T ba

ij a
†
aβa

†
bαajβaiα

+ T ab
ji a

†
aαa

†
bβajαaiβ − T ba

ji a
†
aβa

†
bαajαaiβ

)
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We now regroup terms and reorder creation/annihilation operators to obtain

T2 = 1
4
∑

a,b

∑

i,j

T ab
ij

(
a†

aαa
†
bαajαaiα + a†

aβa
†
bβajβaiβ + a†

aαa
†
bβajβaiα + a†

bαa
†
aβaiβajα

)

+ 1
4
∑

a,b

∑

i,j

T ba
ij

(
a†

bαa
†
aαajαaiα + a†

bβa
†
aβajβaiβ + a†

bαa
†
aβajβaiα + a†

aαa
†
bβaiβajα.

)

This factorizes to give

T2 = 1
4
∑

a,b

∑

i,j

T ab
ij

(
a†

aαaiα + a†
aβaiβ

)(
a†

bαajα + a†
bβajβ

)

+ 1
4
∑

a,b

∑

i,j

T ba
ij

(
a†

aαaiα + a†
bβaiβ

)(
a†

aαajα + a†
aβajβ

)
,

and can therefore be rewritten in terms of generators of the unitary group

T2 = 1
4
∑

a,b

∑

i,j

T ab
ij E

a
i E

b
j + 1

4
∑

a,b

∑

i,j

T ba
ij E

b
iE

a
j = 1

2
∑

a,b

∑

i,j

T ab
ij E

a
i E

b
j

This means that in the closed-shell case, the cluster operator can be written
in terms of the generators, and the CC wave function is the spin adapted.

d. If one rewrites the cluster operator in terms of the generators of the unitary group,
a spin-adapted open-shell CC theory is possible (see Jansen & Schaefer, Paldus and
co-workers). However, the use of the generators requires that each spatial orbitalis
included for both spin case in the same way. While a singlu occupied orbital in the
doublet case is for the alpha spin case occupied and for the beta spin case virtual,
the use of the generators would then involve this orbital in the cluster operator for
both spin cases (!) as annihilation and creation operator. A consequence is that
different components of the cluster operator do no longer commute and that the
BCH expansion does not terminate after the quartic terms. Consequently such CC
theories are significantly more complicated and can usually only be implemented
using automatic-implementation techniques.
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Exercise 80.4 : Factorization and computational cost
(medium difficulty)
Show that the cost (in terms of number of operations) for evaluating

Zab
ij = 1

4
∑

m,n

∑

e,f

⟨mn||ef⟩tef
ij t

ab
mn for all i, j, a, b combinations (80.32)

is 2n4
occN

2
virt and thus only of the order N6. N denotes here the total number of orbitals,

nocc stands for the number of occupied orbitals (indices i, j,m, n) and Nvirt denotes the
number of virtual orbitals (indices a, b, e, f).
Analyze in an analogous manner all quadratic terms in the CCD equations and show in
this way that the cost for a CCD calculation is indeed only of the order N6.
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Exercise 80.5 : The similarity-transformed Hamiltonian (Part I)
(medium difficulty)
The similarity-transformed Hamiltonian,

H̄ = e−T̂ ĤNe
T̂ , (80.33)

is central to the conventional formulations of coupled cluster (CC) theory. Here ĤN is
the normal-ordered Hamiltonian,

ĤN = F̂N + V̂N

=
∑

pq

fpq{a†
paq}+ 1

4
∑

pqrs

{a†
pa

†
qasar}, (80.34)

and the cluster operator contains excitation operators appropriate for the given level of
coupled cluster theory, e.g., for CCSD,

T̂ = T̂1 + T̂2

=
∑

ia

tai {a†
aai}+ 1

4
∑

ijab

tab
ij {a†

aa
†
bajai}. (80.35)

While the Hamiltonian contains one- (F̂N ) and two-body (V̂N ) operators, the similarity
transformation has the potential to introduce higher-body contributions.

While the power-series expansion of eT̂ truncates only at the number of electrons
(or, more precisely, at the number of occupied spin-orbitals), the commutator expansion
of H̄ [the Campbell-Baker-Hausdorff (CBH)] expansion] truncates at the fourth-order
commutator, i.e,

H̄ = Ĥ +
[
Ĥ, T̂

]
+ 1

2!

[[
Ĥ, T̂

]
, T̂
]

+ 1
3!

[[[
Ĥ, T̂

]
, T̂
]
, T̂
]

+ 1
4!

[[[[
Ĥ, T̂

]
, T̂
]
, T̂
]
, T̂
]
, (80.36)

because the Hamiltonian is a two-body operator at most, and provided that the cluster
operators commute, e.g., [

T̂1, T̂2

]
= 0. (80.37)

(This commutator holds for conventional formulations of CC theory using RHF or UHF
reference determinants/orbitals. The formulation is much more complicated for ROHF
references where spin-adapted CC wave functions are sought.)
a) Show explicitly using only the anticommutation relations,

a†
paq + aqa

†
p = δpq, a†

pa
†
q + a†

qa
†
p = 0, and apaq + aqap = 0 (80.38)

that the commutator between the Fock operator, F̂N , and the single-excitation cluster
operator, T̂1, [

F̂N , T̂1

]
=
∑

pq

∑

ia

fpqt
a
i

[
a†

paq, a
†
aai

]
, (80.39)
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reduces the number of general-orbital annihilation/creation operators (those that could
be either occupied or virtual orbitals) by one. (Note that normal ordering is not necessary
for this analysis, so you can ignore it here.)
b) Using the above result, the fact that the Hamiltonian is a two-body operator, and the
assumption that the cluter operators commute, explain why the CBH expansion of H̄
truncates at the quadruply nested commutator.



1073

Exercise 80.6 : The similarity-transformed Hamiltonian (Part II)
(medium difficulty)
While the normal-ordered Hamiltonian contains one- (F̂N ) and two-body (V̂N ) operators,
the similarity transformation has the potential to introduce higher-body contributions.
a) It is convenient in some specific CC formulations (such as CC2 and CC3) to make use
of the T̂1-similarity-transformed Hamiltonian, viz.,

H̄T̂1
= e−T̂1ĤNe

T̂ . (80.40)

Show, using either Wick’s theorem or diagrammatic techniques, that this transformation
leaves the normal-ordered Hamiltonian as a two-body operator at most.
b) Show, using either Wick’s theorem of diagrammatic techniques, that the CCSD similarity-
transformed Hamiltonian contains up to six-body terms:

H̄CCSD = e−T̂1−T̂2ĤNe
T̂1+T̂2 . (80.41)


