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ALPHABET SOUP OF QUANTUM CHEMISTRY

WHAT METHOD SHOULD WE CHOOSE?

T. D. Crawford, S. S. Wesolowski, E. F. Valeey, R. A. King, M. L. Leininger, and H. F. Schaefer, “The Past, Present, and Future of
Quantum Chemistry,” in Chemistry for the 21st Century, E. Keinan and I. Schecter, eds., Wiley-VCH, Weinheim, pp. 219-246 (2001).




HARTREE-FOCK THEORY

In Hartree-Fock theory, the
many-electron wave function is
written as a single Slater
determinant.

Advantages:
e Obeys Pauli antisymmetry
* Inexpensive to compute

* Frequently semi-quantitatively 'q)()> —
correct

Disadvantages:

* Fails to correlate the motions
of opposite-spin electrons

» Cannot provide “chemical
accuracy”
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HARTREE-FOCK THEORY

» A Hartree-Fock Slater determinant yields an antisymmetric wave function:

ol(X) | (dalXi) | os(X) [ L. onix))
d1(x2)  da(x2) ¢P3(x2) ... on(x2)

W) ~ | Do) = p1(xs)  da(xs)  ds(xs) ... ¢w(xs)
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where

Op(X) = Pp(r)a  or  Pp(X) = Pp(r)P

is a one-electron spin-orbital and N is the number of electrons/orbitals.

* The orbitals are obtained by variational optimization of the Hartree-Fock
energy subject to the constraint that the orbitals remain orthonormal.

« We will abbreviate the notation for a Slater determinant using only the
diagonal entries of the matrix:

Do) = |d1(x1)P2(X2)P3(X3) - - - ON (XN ))




HARTREE-FOCK DENSITY

The one- and two-electron densities are given as:

p(x1) :/dXQ/pr).../dXN\\IJ\Q
p(X1,X2) :/dX3.../de|\If|2

The one-electron density is the probability of finding an electron at a given
point rq in space (assuming unit normalization), whereas the two-electron

density (or “pair density”) is the probability of finding two electrons
simultaneously with coordinates x4 and xa.

In Hartree-Fock theory, the pair density for opposite-spin electrons is
exactly separable into a product of one-electron densities:

puF (X1,X2) = p(X1)p(x2)

Thus, their position probabilities are uncorrelated.

However, the Hartree-Fock pair density for same-spin electrons is
correlated because of wave function antisymmetry — the “Fermi hole.”
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THE COULOMB HOLE

* This figure?* plots the
difference between the exact

and Hartree-Fock wave
nucleus

functions for the ground | electron 2

state of the helium atom (S),
again as a function of the

NN

coordinates of electron 1 (i.e. A R

for a fixed position of
electron 2).

This perspective makes the
appearance of the Coulomb
hole more pronounced.

tYes, another “borrowed” from Prof. Jiirgen Gauss




CORRELATION ERRORS IN HARTREE-FOCK THEORY

* The first ionization energy of the helium atom ground state provides a
good example of the importance of correlation energy.

The Hartree-Fock energy of the helium atom ground state is:?

(Do(He 'S)|H|Dy(He 19)) ~ —2.861 679 995 612 Ej,

The “exact” (non-relativistic, Born-Oppenheimer) energy of the helium
atom ground state is:P

(U (He 19)|H| T (He 15)) =~ —2.903 724 377 034 E,

The "exact” (non-relativistic, Born-Oppenheimer) energy of the helium
cation is:P

(U (He' 28)|H|U(He™ 28)) =

ZQ

=—2 &
5 h

aK. Szalewicz and H. J. Monkhorst, J. Chem. Phys., 76, 5785-5788 (1981).
bH. Nakashima and H. Nakatsuji, Phys. Rev. Lett., 101, 240406 (2008).




CORRELATION ERRORS IN HARTREE-FOCK THEORY

« The Hartree-Fock model predicts that the first ionization potential of the
helium atom ground state is:

Pym = E(Hel £8) 1 I(He 19) = 08617 ), = 2262. kJ /ol

* This compares poorly to the exact value:

Bl = EMe “5) - B(He  ST=—09037 F; — 2372 k] /miol

* A 2001 study by Korobov and Yelkhovskya determined that the effects of
(non-Born-Oppenheimer) nuclear recoil, relativity, and quantum
electrodynamics account for only ~0.4 kJ/mol of the total ionization energy.

¢ Thus bulk of the error is due to the lack of electron correlation in the
Hartree-Fock prediction.

aV. Korobov and A. Yelkhovsky, Phys. Rev. Lett., 87, 193001 (2001).




IMPORTANCE OF ELECTRON CORRELATION

While correlation energies are typically <1% of the total energy, errors in the
correlation energy can be magnified when computing energy differences:

COEH) - CEPY+-O0(4P)

C (Ep) O (Ep) CO (Ep) D, (kJ/mol)

376493 774+ | 741819232 | iL 112790997 729.9

0. 751537 | | 0.248978 | il -0535591 35173

37.845307° |\ | -75l068P210 | i 1113827588 | 1087.2

a Even more data “borrowed” from Prof. Jirgen Gauss.




COMPUTING ELECTRON CORRELATION ENERGIES

What approaches are there to including electron correlation effects in our
quantum chemical models?

* Density-Functional Theory (DFT)
« LSDA, BLYP, B3LYP, CAM-B3LYP, PBE, SAOP, M0O6-L, ...
Configuration Interaction (ClI)
« CISD, MR-CI, RAS-CI, ...
Many-Body/Mgller-Plesset Perturbation Theory (MBPT/MPn)
« MP2, SDQ-MP4, CASPT2, GVV-PT2, ...
Coupled Cluster Theory
«  CCCCSD,-CCSDIT), €C3, CCSDT -

Almost all commonly used techniques in the chemical physics literature are based
on these four approaches, and each has its own advantages and disadvantages.

T. D. Crawford, S. S. Wesolowski, E. F. Valeey, R. A. King, M. L. Leininger, and H. F. Schaefer, “The Past, Present, and Future of
Quantum Chemistry,” in Chemistry for the 21st Century, E. Keinan and |. Schecter, eds., Wiley-VCH, Weinheim, pp. 219-246 (2001).




INTRODUCING CORRELATION EFFECTS

 Consider a four-electron Slater determinant:
Do = |¢i(x1)0;(X2)Pr(X3)P1(X4))

From this point forward, we'll use i, j, k, I, ... to denote orbitals that are
occupied in the Hartree-Fock wave function, a, b, c, d, ... to denote
unoccupied/virtual orbitals, and p, g, r, s, ... to denote general orbitals.

* Any function of N variables may be written as a linear combination of
unique N-tuple products of the ¢,(X) on the same space as the full set of

functions:
F(x1,%2) = ) Cpap(x1)dg(x2)
p>q
However, we must treat the electrons as indistinguishable, so instead we
could write a pairwise “cluster function” that correlates the motion of any
pair of electrons associated with two particular occupied orbitals, e.g., i

and j:
fzg Xm,Xn Zt ¢a, Xm ¢b(X’n)

a>b




INTRODUCING CORRELATION EFFECTS

* Inserting this cluster function into our Hartree-Fock wave function yields
an improved function:

U = | [¢s(x1)0;(X2) + fij(x1,%2)] ¢1(x3)P1(x4))

where the determinant notation implies proper antisymmetry and
normalization of the individual terms. Expanding the expression gives:

U =0+ Y  t77|¢a(x1)p(X2)Pr(X3)Pr(x4))

a>b
We could also have chosen to correlate electrons appearing in any other

pair of occupied orbitals, e.g., k and [

= |i(Xx1)9;(X2) [0k (Xx3)P1(X4) + fri(X3,%4)])

which would give a similar expression:

U =g+ Y 157]0i(x1) 05 (x2)ha(x3)Pp(X4))

a>b




INTRODUCING CORRELATION EFFECTS

* Perhaps a better approach would be to introduce all possible pairwise
combinations of occupied orbitals in our four-electron system:

O —llo,0;0r @) T de®r — [ Be0i0) T a0 Op) T |0 fied]) +
Oifaor) Tl et L en = [Tkl iml0ie)

where the electron coordinates are now implied, and the negative signs
arise naturally from the definition of the determinant whenever we have to
permute columns to bring two occupied orbitals together.

» We could also go beyond pairs and introduce three-electron cluster
functions:

O =080+ [ iy Ordr) i d3901) -+ Fiud D)+ o1 fiudi)—
Oiifor -t B L L g LR fa E L Eo et
Firpon) = Lo dp bt () g, £pp)

* If we include all possible N-electron cluster functions, we would obtain the
exact wave function within the space spanned by the ¢p( i




INTRODUCING CORRELATION EFFECTS

* Alternatively, we could assume that clusters of three or more electrons are
less important than pairs, and that we should define single-orbital
“clusters” to account for the fact that the orbitals should adjust for the

presence of the new terms:

U = |;0;0601) + |[:0;06P1) + @i fiP1d1) + |0:05 [udr) + |0:0;01 1)+
Lo fibpol - [ fios fedib [ f0,0u 00 b fi fadp b lo, f.0p fi)+

fii o) — | firdi01) + | fud;o8)

* Clearly we need a new notation...

005 fu i) + T o) (T [ i di®e Fo) 3 (Fetbslffi) & [0ififeli) b

Di fik®1) — |Di f10k)+

Ci@i -+ o fe —HFafin Hl b+ e i e o+

Fij fe®u) + [ fij@nfo) + i fef) — | find500) — | fiw®5 1) — | ik 500+
Lo E i o T i T e R
felon) — G afe) = (al5u0e) risoser oo a1 i e




CLUSTER OPERATORS

* The 27th term on the right-hand side of our complicated expression can
be written more explicitly as:

Foelil — >: >1 Lt | Po P PrPe)

a_+b it ¢
This is a linear combination of determinants in which orbitals i, j, and |
have been replaced by orbitals a, b, and c, respectively.

 This is conveniently expressed in second quantization by defining single-
and double-orbital “cluster operators”:

fij == Zt“b T Za a,

a>b

e Thus, the 27th term on the right-hand side of our complicated expression
becomes very compact:

| fiiOr fi) = tiiti|Po)




CLUSTER OPERATORS

* Using these cluster operators, our complicated four-electron wave function
becomes:

PeEecaNiTo=
U = 1+Zt 4 Ztt + biljte + 5 ) tij+
zjk ij

= thgtkl + —= Zt Tt et thgtk e th]tkztl Ol

z]kl zg kl 'L]kl

* We can make the expression even simpler, though, by introducing total
cluster operators by summing over combinations of occupied orbitals:

Bt r a A 1 K 1
=+ Zti S Zti ato;- and - Th= 5 Zt@'j =) Zt?]balagaja
: 9 ij ijab

* More generally:




THE COUPLED CLUSTER WAVE FUNCTION

» Note well two key observations:

1. Because all the creation operators act on unoccupied orbitals and all

the annihilation operators act on occupied orbitals, they exactly anti-
commute:

¢la-—aa = —10
. Because the total cluster operators always contain even numbers of
creation and annihilation operators, they always commute, e.g.:
17l =151
» Thus, our four-electron wave function becomes:
. | S
b — 1 e Tl .= 2'T1 o

§ =8
|T2 T

=
'Tl ‘|‘T2‘|‘2

3!

4!
* These terms all appear in the power-series expansion of an exponential!

U =eltt2p, = ¢! @,

1 1

* This is a concise expression for the coupled cluster wave function.




COUPLED CLUSTER METHODS

A hierarchy of coupled cluster methods may be defined based on the
truncation of the T operator:

Method f Scaling/Cost

CCS ONY)

CCD i O(N®)

CCSD =141, i O(N®)

CCSDT T=T+1T,+1, g O(N®)

CCSDTQ o T O(N')

 Later we will examine other coupled cluster methods that approximate
higher order correlation effects using perturbational approaches.




FORMAL COUPLED CLUSTER THEORY

We have a general structure of the coupled cluster wave function, but we

need a recipe for determining the wave function amplitudes. Start from
the Schrodinger equation:

H|U) = E|T)

Insert the coupled cluster Ansatz (roughly: German for “approach”):

Hel'|®y) = Eel'|®g)
“Project” this equation onto the Hartree-Fock determinant to obtain an
expression for the energy:

(Bo|HeT |Bo) = E{Dple|®g) = E

Or onto substituted (or “excited”) determinants to obtain equations for
the amplitudes:

ab... i1 T iy abe ]
(P31 1®p) == EP e 1Pa)
NB: the “excited” determinant notation is to avoid specifying the number of

electrons/orbitals: b
|(I)7C;Lj...> = aial T ajai|q)0>




TRUNCATION OF THE EXPONENTIAL

e Start from our energy equation:
o gil
<(I)()‘H€ ‘(I)()> — E<(I)0|€ ‘(I)()> = i
* Insert the power-series expansion of the exponential:
2

(Bo|H (1 -+ T4 51T 1)

)@} = B

e And distribute terms:

A A

2 3

. = T] |
(Po|H| Do) + (Po|HT|Py) + <(I)0’H Do) + <<I)0’H [@g) +... = E

o Slater's rules state that matrix elements of the Hamiltonlan between
determinants that differ by more than two orbitals are zero, thus the cubic
and higher terms cannot contribute, and the energy expression is simply:

1 1 ]
(@o|H|®g) + (Po|HT |Dg) + <‘I’0|H Dg) = E

 This expression is exact: it depends only on the two electron nature of the
Hamiltonian and does not depend on the particular truncation of the
cluster operator.




THE SIMILARITY-TRANSFORMED HAMILTONIAN

* We can take a better approach to the coupled cluster equations by
multiplying the coupled-cluster Schréodinger equation by the inverse of the
exponential:

G_T[AJGT‘(I)O> —F 6_TE6T’(I)0> -+ E‘(I)()>
* Now project onto the Hartree-Fock reference to obtain the energy:

(Doler T H e |Bo) += L

« And onto excited determinants to obtain the equations for the amplitudes:

(@ |e=T HeT|®g) = 0

* The similarity transformation yields the Cambell-Baker-Hausdorft
expansion:




HOW IS THIS BETTER®g¢2¢

* The Hamiltonian contains one- and two-electron second-quantized
operators:

A 1 A A
) i Tl =
H = Z hpeal g, < : Z(qurs}apaqasar =h+V
Pq pqrs
Assuming the cluster operators commute, each commutator in the
Hausdorff expansion between H and T eliminates one general-orbital

annihilation/creation operator. For example:

b, T1| — [afa,, ala;]

P qgra

L e e L
= 0,0,0,0;, — 0aQ,0,0,

Ly L

Because the the second-quantized Hamiltonian contains at most four
annihilation/creation operators, the Hausdorff expansion will truncate after

A

the quadruply nested commutator. This result assumes that the T
operators commute, but doesn’t depend on the truncation of 7.




VARIATIONAL COUPLED CLUSTER THEORY

* Our “projective” formulation of the coupled cluster equations results in a
non-variational energy expression. However, we could have taken a
different approach by minimizing a variational expression:

UIH|T)  (Do|(eT) HET|D
Buane < £ = SUEY) _ (Bol(e) T2y
(V) (Pol(e!)Te! [Pg)

- The adjoint operation changes the “excitation" operator T into a “de-

excitation” operator T

2
=)
L n!

- The T and T" operators do not commute: [TT, T} 7 0 Thus, the variational
expressions do not truncate naturally and must be cut off at some
selected number of terms. The unitary coupled cluster (UCC)ab and
expectation value coupled cluster (XCC)c methods are based on this

approach.

aM. R. Hoffmann and J. Simons,J. Chem. Phys., 88,993 (1988). bR. J. Bartlett, S. A. Kucharski, and J. Noga, Chem. Phys. Lett., 155,
133 (1989). <R. J. Bartlett and J. Noga, Chem. Phys. Lett., 150, 29 (1988).




SIZE CONSISTENCY

A quantum chemical method is “size consistent” if the sum of the energies
computed individually for two or more systems is equal to the energy
computed of the supersystem containing all non-interacting systems.

Sum of separate calculations
on each fragment

A single calculation on both
fragments: “supermolecule”

* For this property to hold, the wave function must be multiplicatively

separable: |\IJAB> -3 A‘\IJA>‘\IJB>




EXAMPLE: H2 DIMER

» Consider two hydrogen molecules separated by a large distance such that
they do not interact. For a single H, molecule in a minimal basis set (two
orbitals), only two determinants are needed due to symmetry:

A
J

Ly

| D) | ¢

Vyeact = [Bhew = (1+714) |27)

« The "configuration interaction doubles” (CID) wave function, in which only
linear terms in the cluster expansion are retained, is exact in this case.




EXAMPLE: H2 DIMER

* For two non-interacting hydrogen molecules, the exact wave function must
include double excitations on both fragments simultaneously — a
quadruple excitation:

=

AT YY) +H B —
Po- 5 o o0

O)aB, = AL (1+75) 128)}
(1+T2 I ARG N

£ (1+ 78 + T2 1947

=|T)¢ip

o CID does not include this term and thus is not size consistent.




EXAMPLE: H2 DIMER

* For two non-interacting hydrogen molecules, the exact wave function must
include double excitations on both fragments simultaneously — a
quadruple excitation:

+HH A —
| @) | (Dab

W%gp =

« CCD gives a multiplicatively separable wave function and thus is size
consistent.




SIZE CONSISTENCY: DOES THIS MATTER®

 Energies and size-consistency errors (in E}) for the H> dimer in an STO-3G
basis set:

Method 2 X EA EAB A

SCF =212 21701 i -2-221° 701 i 0.000 000

MP2 2250907 | |1 [ [=2:250907 F [i [ | 01000000

CCD -2.268 295 | -2.268 295 i 0.000 000

-0.000 708

CID 2.268295 i -2.267 587 (-1.86 kJ/mol)

« The error will increase as the number of electrons and basis functions
Increase.




LOOKING AHEAD

In the upcoming lectures, we learn about:

 Two approaches to deriving explicit algebraic equations for the coupled
cluster energy and wave function amplitudes that can be coded for real
applications:

» Second-quantization methods

« Diagrammatic methods

Size extensivity

Perturbative approximations — CC2, CCSD(T), CC3
Analytic energy gradients and molecular properties

Electronic excited states




