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Coester and Kiimmel adopted the name “exp-S method”, after the form of
the wave function (2) and the symbol S for the cluster operation. Cizek and
Paldus introduced the term “Coupled-Pair Many Electron Theory” (CPMET),
and extended CPMET, from their emphasis on T ~ T, explicit equations for
which were first obtained by Cizek [3a]. We prefer the denotation Coupled-
Clutter Method (CCM) since it suggests most vividly the central features of
admissibtlity of general-sized clusters and coupling of them in a nonlinear

fashion. It 1s worth pointing out that Eq. (28) rcpresents not a unitary but rather
a similarity transformation. This is unlike the situation in work like that of
Westhaus {8], as it voids the termination of the commutator serics but preserves
the Hermiticity of the transformed Hamiltonian.

H.J. Monkhorst, “Calculation of properties with the coupled-cluster method”,
Int. J. Quantum Chem. Symp., 11, 421-432 (1977).




THE COUPLED CLUSTER EQUATIONS

 So far, we have derived several key expressions for coupled cluster theory:
CC Wave Function: Weo) = 6T|<I)O>
CC Energy: E = (®gle T HeT|0)
CC Amplitudes: = <(I)§L]b.'.'.' ]e_T]:hiT]CI)O>

Similarity-transformed Hamiltonian:

TE o tE el B e s
R [H,T]JF—HH,T} T]+—H[

2! 3!

g ([[[#1].7].7].7]

* Qur next goal is to convert these equations to algebraic form in terms of
the cluster amplitudes and the one- and two-electron integrals that
comprise the electronic Hamiltonian.




NORMAL ORDERING

Evaluation of matrix elements of second-quantized operators between
determinants is easier when those operators are written in “normal order.’
In general, this means that all annihilation or creation operators that would
give zero when acting on the “vacuum state” are moved to the right in a

1

given string.

In quantum chemistry the “vacuum state” is conveniently chosen to be the

Hartree-Fock reference state, | ®,), which contains a set of N occupied
orbitals (the “Fermi vacuum”):

al]@0) =0 a,|%0) =0

Thus, our definition of normal ordering requires us to move all operators

such as a; and a, to the right of operators such as a; and a,'.

One way to achieve this ordering would be to use the anti-commutation
relations of the annihilation and creation operators:

a;;aq 4+ aqa,;f9 = 5pq a;ag - a:;a;fj ==t § a,a, = o, = 0

A better way is through Wick’s theorem...




OPERATOR CONTRACTIONS

* We define a “contraction” between two adjacent annihilation/creation
operators as: 15

AB = AB — {AB}

where the {} around a string implies that the operators may be rearranged

at will, while still keeping up with changes in sign.

 This leads us to four possible contractions in accord with the Fermi vacuum:

e =
a;a; = a;a; {azaj ==

a; +aa — 0,

HZ:a ab {a, ab}—a aZ—I—ab =0

afay = ;0] =0

+ Contractions between operators in different orbital spaces are zero.




WICK’S THEOREM

* Wick’s theorem provides a mechanism for expressing a given string of
annihilation/creation operators as a linear combination of normal-ordered
strings:

e
ABCI XY Z ={ABC XY ZY+ D {ABC. | . XVZ}

singles

leea |
N HABCLL XY ZY
doubles

* In the case of a product of normal-ordered strings (the case we’ll most
often encounter), Wick’s theorem also helps:

{ABCT HXYZ . F={ABU . XYZ. [} ¥ 1) {ABC...XYZ...}

singles

| T
1Y fABC L XYZL L+
doubles

* A contraction takes a negative sign if an odd number of operators stand
between the two under contraction, and a positive sign otherwise.




THE NORMAL-ORDERED HAMILTONIAN

 Let's apply Wick's theorem to the second-quantized Hamiltonian:

3 1
H = Z hpqa;gaq + y Z(pq\\rs}a;agasar
Pq

pqrs

* The second-quantized string in the one-electron term becomes:

==
a;aq = {a;aq} 1y {a;r?aq} 5 {a;aq} i 5pq5p€i

where the notation p € i means that p must be an occupied orbital.

* Thus, the one-electron term becomes:

) Pwaabag =) hpofalay ) ha
pq Pq 1

e The last term, which contains no second-quantized operators, is the one-
electron contribution to the Hartree-Fock energy.




THE NORMAL-ORDERED HAMILTONIAN

¢ The two-electron term involves more components

|
;; gasar — {a;g :;asar} + {a;; j]asa,r} + {a]‘; gasar} = {a;; Zf]asa
|

aEle

\
+ {apa;f]asar} + {a;a(gasar} + {a;agasa

 Now evaluate the contractions:
CL = {a;ro j]a’sar} = 5p€i5p3{a:r]ar} - 5q€i5q3{a;gar} + 51967;51?7“{&2&3}
= 5q€i5qr{%as} — OpeilpsOqe;Oqr T OpeiOprige;Oqgs

* Insert thls back mto the expression for V and change the summations:

7 Z pQH"'"S p q CsGr = 17 Z pQHTS {ap q F r} e Z<ZQHTZ>{CLECLT}

pqrs pq’rs qm’

I i > (pillri){ala,} + 211- > (igllis){ata,} — ;11- > (pillis){afa,}

pri qst pSt

g Z<ij|‘ji> T 1 Z(ijmﬁ Two-electron contribution
4 — 4~
to the Hartree-Fock energy




THE NORMAL-ORDERED HAMILTONIAN

e The four terms involving only two annihilation/creation operators are
identical and can be combined into one:

-3 S taliridaja,h+ 3 Y wilriaba ) + 1 Y tiallisaje,} - 3 S pillisH{aja.t = 3 willai)aje,)

qri Pre qst pS Pq

e The two terms with no annihilation/creation operators are identical and
can also be combined into one:

3 Sl + 3 Sl =| 3 Sl

z]
« Bringing all the one- and two-electron terms together we have:
2 1 o e 1
H= hii+o ) (llig) > hpefalag} + ) (pillei{afag} i+ 5 D (pallrsi{afala,a,
7 1] Pq P pgrs

The Hartree-Fock energy The Fock operator

e Final form:

& 1
— <(I>o’H|<I>Q> i E qu{a;aq} = Z E <qu7’S>{a;a:§a a
pq

pqrs




THE NORMAL-ORDERED HAMILTONIAN

« We can thus define the normal-ordered Hamiltonian to be the original
second-quantized Hamiltonian minus its (Fermi) vacuum expectation value:

Hy = H — (9g|H|Do)

— N fpelaba b+ + Z (pqllrs){alala.a,
Pq pqrs
= Fy + Vy
* We may therefore think of the normal-ordered Hamiltonian as a
correlation operator in that the contributions to the Hartree-Fock energy

have been removed. This is the form of the Hamiltonian we use from this
point forward.

 This is a general result: The normal-ordered form of an operator is the

operator itself minus its vacuum/reference expectation value.

A key corollary: The vacuum/reference expectation value of a normal-
ordered operator is zero.




NORMAL-ORDERED CLUSTER OPERATORS

+ In the previous lecture, we defined the cluster operators as:

A ~ 1
5= Zt?alai and B 1 Ztab T ZCL a;

(Xe! 1jab
or, more generally:
1 2 n
abrti=t 1
5 <E> Z bid QL0 TaEd;
: ij...ab...
Recall that our definition of normal ordering relative to the Fermi vacuum

means that all al.T and a, must stand to the right of all ¢! and a.. This is
already the case with the excitation operators so we may trivially write:

Zt {al aba a; }

zgab

Again: the { } means that we may rearrange the operators at will, as long

as we keep up with the sign.




SIMPLIFYING THINGS (A BIT)

« We can now modify the Hausdorff expansion to use only normal-ordered
operators:

A

P el e BT A
e {HN,T} 5 HHN,T} T} aBE s [HHNT} ¥i

e A

 This leads to another important property of the commutator expansion:

Only those terms from the Wick’s theorem evaluation of the commutators
in the Hausdorff expansion in which the Hamiltonian contracts at least
once with every cluster operator on its right can make a non-zero
contribution.

* We will illustrate this property using two of the simplest terms from the
expansion:

[ )2,

IE
2

[FN,Tl] and




SIMPLIFYING THINGS (A BIT)

« First, write the linear commutator explicitly in terms of second-quantized
operators:

B, 1| = 323 ot Heha ) (alan)]
—> D foatf ({afag Hala;} — {afa; Haja})

* Next, use Wick's theorem to evaluate the each of the products:

| | B Eocei=
{ala, Hala;} = {ala,ala;} + {ala,ala;} + {ala,ala;} + {a)a, ala;}

. {ap q a z} = 5p’i{aqaa} A 5(]&{&[)&72} 3 5 6pz’5qa

{aja; Ha}ag} = {ala;ala

We can recognize that the uncontracted terms in both products are
identical because we may rearrange the operators within the {}. Thus,
they exactly cancel in the commutator, leaving only terms in which ﬁN has
at least one contraction with 7 on its right.




SIMPLIFYING THINGS (A BIT)

¢ The quadratic commutator may be expanded into three terms:
A - b e foat e
HFN,Tl] Tl} = 5 (FNTf Lo P TfFN)

= - S5 huttth ({ahagHalo: Habo,) — 2fate; Habo, Hafas} + {afa, Hafa; Hafa )} )

pg1ial—4b

1
2

« Wick’s theorem for each product gives:
|
{a;aq}{alai}{agaj} — {aTa ) a Gl e {a;Jr al
FE

|
+ {ala,ala;ala, }+{a;2aqaaa@ a, }+{ap LOhaata;}

aba -} + {c'zggaqaaazaba }

T

| | - n
+{pqazaba}+{a]taqala@ a}+{;qaza§£a}

—Q{agai}{a }{aba b =-2 ({a aza a aba 1 +{ala; C|LTCL aba Y +{ala;a c’z—‘aba }
R
+{ala,afa,ala;}

{ata;Hala; Haba,} = {ala,ala ala,

« The only contributions that don’t cancel are terms 7 and 8 from the first
product!




SIMPLIFYING THINGS (A BIT)

« The uncontracted terms are clearly identical:

{a’p q agd zaza’j} = Q{a:rzaia;;a’qaltaj} @ {CLECLZ- ] p q} =0

* We can see that the singly contracted terms are also identical when we
convert the summations to the same patterns, e.g.:

— YYYqutatb ( ala, aba 3+ {aTa ala, aba, e aszLaqaba, })

1 S‘ S‘ S‘ qutatb (5 {aqalagaj} 4 5pj{aqa2aiaz} = 25pj{a2aiaqa;£})

1 a
= _2_ § : § :ti t? (E :fiq{aqalazaj} T E :qu{aqa’:;aiaz} 7 2 E :qu{ajzaiaqa;g}>
q q q

1. |gb

= = Z Z t“tb (Z qu{aqagalai} + Z qu{aqalaiag} — 2 Z qu{alaiaqa;;}>
q q q

=l




SIMPLIFYING THINGS (A BIT)

e The doubly contracted terms in which the Fock operator shares both of its
indices with only one of the two T operators are also zero:

LSS ot ((dfgalbala) + (4ol

ng.--lia jb

=) Y Y tit; Z Jfpa (5pz5qa{%a b+ dpiogp{ada; } — Zépjéqb{alai})

1@ | 7b prq

= = S‘ Ytatb (fm{az];aj} +nlala} - ijb{alai})

Tt 30

= o 3" S seth (fnlabas} + Fnlafe} — 2flalas))

it

=




SIMPLIFYING THINGS (A BIT)

« The only non-zero contributions arise from the double contractions in

which the Fock operator shares an index with each of the two T, operators
to its right, leading to a rather compact final result:

% HFN,TJ ,jﬂ == _Y;‘Yqutatb ( TﬁT aba }—I—{aTa CLT& b3 })
3 22 2ot (stelosal) = bdtola)

Zijatatb{a ab}
ta| b

Only those terms from the Wick’s theorem evaluation of the commutators in
the Hausdorff expansion in which the Hamiltonian contracts at least once
with every cluster operator on its right can make a non-zero contribution.

« We can summarize this important finding using a relatively simple notation:

el = (HNGT)
C




THE CCSD ENERGY EQUATION

« We now have the tools necessary to derive an algebraic expression for the
CCSD energy, starting from our formal equation:

Foa = (Dple L H el [T = (@5 (ﬁNeT) Bp)

recognizing from our earlier analysis that we need only consider up to terms

that are quadratic in 7

ECC:<<I>0\<EIN {1 T4 % Dcy<1>0>

« The leading term vanishes because the reference expectation value of a
normal-ordered operator is zero:

(Do|Hy|P0) = 0

e« The linear term contains four contributions:

(D, (ffNT) =By (FNT1 R 7l O R VNTQ) By)

 Let’s deal with each of these in order using the techniques we’ve learned...




THE CCSD ENERGY EQUATION

 Given that the reference expectation value of a normal-ordered operator is
zero, only fully contracted terms from Wick’s theorem can give non-zero
results:

(@ol (FwTh) |®0) =220 i (@ol{ahe; Hela o)

= YYquta Do|{a}d,ala; }|Po)
— szpqta (I)0|5p15qa|q)0>
= Zfiat?

. For the (\A/NYA’I) term, however, it is not possible to generate fully
C

contracted terms, and so it makes no contribution to the energy:

(@l (V1) |20 = 5 3° 3 (pallrs)is @ol{afafa,a, Haja;} o) =

pqgrs ia




THE CCSD ENERGY EQUATION

. Similarly, the <FNT2> cannot yield a fully contracted expression, and also

vanishes:

(o] (FnTs) 120) = 3 303 fuati(@ol{aha, Halaaa,}|20) =

Prq 1jab

. The <\A/NT2) term is the only remaining non-zero linear contribution:

(P (VNTZ) Do) =

ZZ (pql|rs)ta(®o|{alata,a,}{alala,a;}]| o)
16

pPqrs 1jab

Z Z (pql|rs)t; ‘ | ra C,L_|CLTCL;£C|LjC‘LZ-} + {O‘JTC‘LTCL,T&_CFCLZCL-C‘LZ'}—I-

giritg Beaysteta J
pquzjab

a; a S+ {ap qasaTaaaba

\\Fm\ }>

Z Z pQHTS tab 5 5 5 58() - 5pj5q1'5rb53a S5 5pj5qi5ra53b o 5pi5qj5rb53a)

pqr8z3ab

1 - =
= = > Gijllab)ee?

1jab




THE CCSD ENERGY EQUATION

« Among the six components of the energy expression involving 72, only
one can yield fuIIy contracted terms:

%<%‘(VNT1) [©o) = ZZZerst“tb ol{alala,a, Hala; Haja,}®o)

pqrs ta - 1b

— = Z Z (pql|rs) tatb

pQTSzjab

a})

e 57 Z Z quTS tatb 5pj5qi5ra58b 7 5pj5qi5rb5sa SE 5pi5qj5ra58b = 5pi5qj5rb5sa)

pQTszgab

1 = &
= o Ciillab)ege?

atbj
* We can now bring all of the non-zero terms together to obtain the final
CCSD energy expression:

Lee Zfza,ta il Z i7]|ab)ty’ + = Z ij||ab)tit]

zgab zgab




THE CCSD AMPLITUDE EQUATIONS

« The derivation of algebraic expressions for the cluster amplitudes is similar
to that of the energy equation. In the CCSD approximation, the single-and
double-excitation amplitudes are determined from, respectively:

0:<<1>g\(ﬁNeT) @) and 0= (B (FINeT) By)

Key concept: Although each of these expressions does not immediately
appear to involve reference expectation values, they can be converted to
this form by recognizing that the excited determinants on the left can be

written as:

(®¢] = (Bo|{ala,} and (D] = (®o|{alala,a,}

For example the leading H, contribution to the single-excitation amplitude

equations is:

al L |
(®7|FN|Po) = E :qu@)()‘{a;raa}{a;aq}@o E fpat IT; q} E fpaiqap = fai
pq




THE CCSD AMPLITUDE EQUATIONS

- Similarly, the leading Hy, contribution to the double-excitation amplitude
equations is:

(@ [Vn|®o) = iZ@CJHT«SH%I{a ajaya, Hapahasa, }@o)

= 5pb5qa5ri58j = 5pa5qb57"j58i == 5pb5qa5’r'j58i)




THE CCSD AMPLITUDE EQUATIONS

* And a term that | include here mainly because it looks so awesome:

@] () 180) = 3 30 3 (pallrs)tg (@ol{afalaa, } ({afafa,a, Halay)), |20)

pqrs ke

: ({A

el =y ] 1]
Taia’k}+{ajaTaba f Tasara’i k}+{a’;,ra

URRIN:

| |
ta,a,afa;} + {afa]

(0010 c04705ks 10phDaa07 05501k — 1 0paOahOned 5i0ik = 9pb0g6nd0si0ik+

0RO 071020 it 1 0pb 040 0305807k F 05 0ab0ki0dc0ah ~=10p100a 0ri0be0 41—

0600t 053056 06 04k D1 G0 d—~ Dbtk O 04104 ht 0alante Garoh s T

Ok Oha0riOsh0pd — 5pk5qb5m5sj5ac = 105800007053 0bc = Opkt 0RO 10 5:000)
=" ({abllej)ts — (abl|ci)ts) + Z (i5]|bk)tE — (if)|ak)t)

(&




THE 7, AMPLITUDE EQUATIONS

 Using a great deal of mental (and physical!) fortitude, one can apply Wick's
theorem to all of the terms from the Hausdorff expansion and obtain the
following expression for the single-excitation amplitudes:

0 =Fui+ 3 Foclf — 3 Fuith + Y (hallei)tf + 3 fret + 5 S (kalled)tg -
C k kc kc

kecd

1 2 ca cipa g Cy1Q C
5 Z<k”|m>tkl . Z Jrelity — Z<k”|m>tktz I Z<ka\|0d>tkt§i—

klc kc klc kcd

C a C a 1 (& a 1 ca
Z<leCd>tkt§ltz == Z<leCd>tktﬁ' =3 Z<leCd>tk§tz =3 Z<leCd>tmt§l

klcd klcd kled klcd




THE 7, AMPLITUDE EQUATIONS

. . ac c a a 1 -\ 4 1 c
0 = (@bllig) + 30 (Factlf — factls) = D (Figtsl — fuatih) + 5 S (hlllig)egs + 5 S (ablled)es?
c Ed

k kl

+ P(ij)P(ab) Y (kbllcs)tss + P(if) Y {ables)ts — P(ab) Y~ (kbllij)ts + %P(z‘j)P(aw D _{klledytiits;
kic 5 k kled

: cdia 1 ac e 1 abyc 1 -\ g a
+ 2 (hilledytsdeg? — P(ab)= S (killedytistid — P(ij)5 S (hilledytsbest + P(ab)s S (killig)ege?
klcd klcd klcd kl

+ B(if)> > (ablled)tsty — P(if)P(ab) Y " (kb|lic)tpts + P(ab) > factitls + P(if) Y fretitiy
cd kc kc ke

— P(ig) > (kil|ci)titi? + P(ab) > (kallcd)titd + P(if)P(ab) > “(akl|dc)titl;
klc kecd kcd

TG . a.rbc . . 1 ‘\ 1C1Q 1 ayc
+ P(ij)P(ad) Z<leZC>tz £2% + P(@J)§ Z<leC]>titk? F P(ab)§ Z<kb’|6d>tkti§l
klc klc kcd

= 1 T i 1 A i 2 aia
~ P(i)P(ab)y S (kblledytstatd + P(i7)P(ab)y S (kille)t5tte? — P(ig) 3 (hilled)is tdig?
kcd klc klcd

1 1
— P(ab) Y (kl||cd)tititsy + P(if) > (killed)tstite; + P(ab); > (Klllcd)ytgtrts
klcd klcd klcd

i @ a e 1 c1a
+ P(if) P(ab) Y (kl|lcd)tstitpd + P(ij)P(ab) > (kl||ed)tstytdty
klcd klcd

* The permutation operator maintains antisymmetry of the resulting terms:

P(pq)f(p,q) = f(p,q) — flq,p)




A FEW OBSERVATIONS

Wick’s theorem is certainly superior to application of the raw anti-
commutation relations, but it still involves substantial tedium and
numerous opportunities for error.

For most terms, the result obtained from Wick’s theorem still contains
many redundancies that can only be reduced by further algebraic
manipulation, e.g. re-indexing of summations, permutation of indices, etc.

If we were to continue this approach to higher-order excitations (i.e.,
triples, quadruples, etc.), the number of algebraic manipulations required
by Wick’s theorem becomes insurmountable if completed by hand.

Computer algorithms exist to automate this process, and they have been
quite successful even for higher excitations.2

However, another approach exists that streamlines the process and offers
a topological perspective on the various terms in the coupled cluster
equations: diagrams!

aSee for example: S. Hirata, “Tensor contraction engine: Abstraction and automated parallel implementation of configuration-
interaction, coupled-cluster, and many-body perturbation theories,” J. Phys. Chem. A, 107, 9887 (2003).




DIAGRAMS

Holes
(Occupied Orbitals)

The Fermi Vacuum
(Empty Space)

: THE BASICS

Particles
(Virtual Orbitals)

A Singly Excited
Determinant, | ®?)




DIAGRAMS: THE BASICS

 Diagrammatic representation of the Fock operator

FN = Z fab{alab} = Z fij{aj;aj} + Z fia{a];aa} = Z fai{ala’i}
ab 19 (Xe! a?

Excitation Level: () 0 -1 + 1

* The dotted horizontal line is called the “interaction line”, and the upward-
and downward-directed lines emanate from “vertices” and represent the
annihilation/creation operators. Each vertex can connect to two directed
lines, at most.

The outward-directed line from a vertex corresponds to the left-hand orbital
index in the integral, and the inward-directed line to the right-hand index.
Directed lines above the interaction line are “quasiparticle creation

operators” (a or a;), and those below are “quasiparticle annihilation
operators” (a, or a;). The excitation level of a diagram is the difference in
the number of creation and annihilation operators divided by 2.




DIAGRAMS: THE BASICS

 Diagrammatic representation of the two-electron Hamiltonian component:

1 IE > : :
1 2 ablled){alafagact + 3 > (ilIki){alafa,ar} + > (iallbj){alala,a,}

abcd 17kl tabj

aibc 1jka abci

1 1 1
o + > t E : i Tt
— 5 E <ZCLH]]€>{CL¢ alakaj} + Z g <ab"2]>{alaba]‘ai} o Z <Z]l‘ab>{ai ajabaa}

abij 1jab

H 12 SSEESECEPT.
gt T ESEEEEN B
£3 4 jmmenEucE V.

* For two-electron operators/integrals, the ordering of indices is:

(left-out right-out | | left-in right-in)




DIAGRAMS: THE BASICS

+ Diagrammatic representation of cluster operators:

=) t#{ala;}

1

e LS el v v
1jab

Ty = = Z t“b,g{a ab

17kabc

« We choose a solid (rather than dotted) interaction line to distinguish the YA’n

from V.

« All lines are quasiparticle creation lines in this case because these are
excitation operators.




DIAGRAMS: MATRIX ELEMENTS

We usually interpret our diagrams as matrix elements of second-quantized
operators (or products of such operators) between Slater determinants.

Right-to-left in a matrix element corresponds to bottom-to-top in a given
diagram.

Examples:

(@F|Fi|@o) =

(@ [V |®5) =




DIAGRAMS: THE CC ENERGY

* We are now ready to construct diagrams representing the components of
the coupled cluster energy equation. We’'ll start with the simplest term

that is linear in 7:
(@o| (ENTL) [P0)= 1k Mo = > Fias

* To interpret this algebraically:
1. Label all directed lines with appropriate indices: i, j, k, ...; a, b, ¢, ...
2. Interpret the lines connected to the Fock operator vertex as:

Nleft-out right-in

3. Include summations for all “internal” lines (those that begin and end
at interaction lines). “External” lines start at an interaction line and
extend above of below the diagram.

4. The sign of the diagram is (— 1), where h is the number of hole lines
and | is the number of “loops” — a route along a series of directed
lines that either returns to its beginning or starts at an external line
and ends at another.




DIAGRAMS: THE CC ENERGY

- Next consider the terms linear in 7:

(Do (ﬁNTQ = <>a b Z ij||ab) t“b

zga

 To interpret this algebraically:
1. Label all directed lines with appropriate indices: i, j, k, ...; a, b, c, ...

2. Interpret the lines connected to the \A/N operator vertex as:
(left-out right-out || left-in right-in)
. Interpret the lines connected to the T, operator from left to right.

|ll

. Include summations for all “internal” lines.

. The sign of the diagram is (—1)"*".

. Paris of “equivalent” lines begin at the same interaction line and end
at the same interaction line. For each such pair, multiply the
expression by 1/2.




DIAGRAMS: THE CC ENERGY

- Next consider the terms quadratic in 7:

<q>0|< HNT2 |c1>0 25 {}a b Z ij||ab) t“t?

zgab

 This diagram may be interpreted using the previous rules, as appropriate,
but now we have one additional rule:
* A pair of “equivalent vertices” is given when two identical operators
connect to the Hamiltonian in exactly the same way. For n equivalent
vertices, multiply the expression by 1/nl.

 Putting all three diagrams together gives us our final expression:

s 000 00

Z Jiats +~ Z(zyHab)t“b 5 Z(zg}]ab)t“tb

zjab 1jab




DIAGRAMS: THE CC AMPLITUDE EQUATIONS

» Next we consider the amplitude equations:

0:<<I>g\(ﬁNeT) ®)  and 0= (L (ﬁNeT) Bp)

- The leading term in the T, equation is:

(@F|Fiv|@o) =

- The leading term in the T, equation is:

(D28 | V| Do) = \f \/ (ab]]ij)
a |




DIAGRAMS: THE CC AMPLITUDE EQUATIONS

- The linear T, contributions to the singles equation are:

(B9 FNTl) ®g) + CID“\(VNTl) By)

s &f




DIAGRAMS: THE CC AMPLITUDE EQUATIONS

- The linear T, contribution of V,, to the doubles equation is:

<q)ab VNTl) ’(I)()> ) e

v“v ! \MM%

* For these diagrams, we need a new rule:

Each pair of unique (i.e., connecting to different interaction lines), external

hole or particle lines introduces a permutation operator, P(pg), to ensure

antisymmetry of the final expression.

e This rule, in conjunction with our previous rules, gives:
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DIAGRAMS: THE CC AMPLITUDE EQUATIONS

e The quadratic Tl contribution of ﬁ to the singles equation is:
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* Only those diagrams in which the Hamiltonian fragment has at least one
connection/contraction with every T operator can contribute.
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* Note that the factor of 1/2 in the expression on the left is automatically
accounted for in the diagram.




DIAGRAMS: THE CC AMPLITUDE EQUATIONS

* How can we be sure that we include only the unique diagrams? Consider
the following contribution to the 7, equations:
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We know that the product of YA’% and T, yields a +4 excitation, and the

matrix element requires a total +2 excitation (the doubly excited

determinant on the left), so only the -2 diagram from the Hamiltonian will
work:
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* The Kucharski-Bartlett "sign sequence”: Assign “+" to each particle line
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and “-" to each hole line from all operators and select all unlque

combinations that take at least one connection from each T operator.




DIAGRAMS: THE CC AMPLITUDE EQUATIONS
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* Since there can be only four connections (+-+-), we choose up to four +/-
signs from each of the three cluster operators:
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* There are only five unique combinations, leading to five unique diagrams.




DIAGRAMS: THE CC AMPLITUDE EQUATIONS
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DIAGRAMS: THE CC AMPLITUDE EQUATIONS
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e Applying our rules, we have the complete algebraic interpretation:
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SIZE EXTENSIVITY

This term was developed by Bartlett in 19782 and refers to the correct
physical (linear) scaling of the energy with the number of electrons.

Configuration Interaction Coupled Cluster

E = (@o|H (1+C) o) E = (®leT HeT| o)

Begh: = (@b H (14 C) %) 0= (@0 |e T HeT|20)
The (unavoidable) appearance of the energy in the Cl amplitude equations
leads to “unlinked" diagrams such as:
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The scaling of the "closed" component of the diagram, which represents
the Cl energy, scales independently from the open component, leading to
non-linear scaling of the Cl energy with the size of the system.

Such terms cannot appear in the coupled cluster equations, and thus the
CC energy scales correctly (linearly) with the number of electrons.




COMMON DIAGRAM TERMINOLOGY

Open - contains external lines
Closed — no external lines

Connected - all parts of the diagram are
connected to one another via directed lines

Disconnected — some components of the
diagram are not connected via directed lines

Linked — contains closed components that are
connected

Unlinked — contains closed components that are
not connected




