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COMPUTATIONAL COST

« Now that we have algebraic and diagrammatic representations of the
many terms of the CC equations, we may examine their computational
cost in detail. The most expensive term in the CCSD equations is the
particle-particle ladder:
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However, if you look closely at the T, amplitude equations we saw earlier,

you'll find terms that appear to be even more expensive, e.g.:
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Such terms, which involve products of T operators, may be factorized into
less expensive terms:
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PERTURBATION THEORY

* Rayleigh-Schroédinger perturbation theory involves four key steps:

1.

Partition the Hamiltonian into a zeroth-order component and a
perturbation/fluctuation potential:
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. Expand the wave function and energy into orders of A:
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. Expand each perturbed wave function as a linear combination of a set

of zeroth-order wave functions:
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which are often taken to be eigenfunctions of the zeroth-order

Hamiltonian: £(0) ‘\P§0>> — E§O) \\If§0)>

. Insert these expressions into the Schrodinger equation, collect terms

by order of 4, and set 41=1 to obtain separate equations for each
order.



MANY-BODY PERTURBATION THEORY

* In electronic-structure theory, we partition the second-quantized
Hamiltonian into a zeroth-order component extracted from the Fock

operator:
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and place the remainder into the perturbation:
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where we have assumed canonical Hartree-Fock orbitals.

» With this choice, a natural candidate for the ground-state zeroth-order
wave function is the Hartree-Fock determinant:
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and the other zeroth-order wave functions are excited determinants:
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MANY-BODY PERTURBATION THEORY

This partitioning and choice of zeroth-order functions leads to the usual
Mgller-Plesset perturbational series, where the Hartree-Fock energy is the
sum of the zeroth- and first-order energies:
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The first-order Mgaller-Plesset wave function automatically includes only
double excitations:
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where the first-order amplitudes have a concise form:
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And the second-order (MP2) energy is:
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Note that only doubles appear in the first-order wave function, whereas
singles, triples, and quadruples appear in the second-order wave function.




PERTURBATIONAL CC THEORY

The contribution of excited determinants to various orders of perturbation

theory suggests that we may decompose the cluster operators into
perturbational orders:
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where only 7, includes a non-zero first-order term.

We will adopt a common notation for the similarity-transformed
Hamiltonian to simplify our equations somewhat

H. = B_THNGZ
The order-by-order expansion of T and the partitioning of H, lead to a
corresponding expansion of H:
H=H9 +8Y +® 4 .
The lowest few orders are:
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PERTURBATIONAL CC THEORY

* In this formulation, we can construct n-th order Schrédinger equations as:
H™ Do) = EM™|d,)
and then project these onto appropriate determinants to obtain energies
and perturbed amplitudes.

* The perturbed energies arise from projection onto the Hartree-Fock state:
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e The second-order energy, for example is:
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* However, the second and fourth terms on the right cannot contribute,
because the Fock operator cannot cancel the +2 and +4 excitations
produced by the cluster operators.

» Furthermore, the leading term is also zero, because only the f;_
component of F can connect with 7%, and this term is zero by Brillouin’s
theorem.




THE SECOND-ORDER ENERGY

* The simplified equation for the second-order (MP2) energy is:
E® — (@, (VNT2<1>) By)

e We may write the first-order Tz operator as:
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where we indicate the order on the diagram using a hash mark on the
interaction line.

* Then the second-order energy is similar to what we derived before for
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* Now we need an expression for the first-order doubles.




THE FIRST-ORDER WAVE FUNCTION

We may obtain an equation for the YA“(;) amplitudes by projecting the first-
order Schrodinger equation onto the doubly excited Slater determinants:
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Diagrammatically:

el A VA R AT

Evaluating these diagrams gives:
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If the orbitals are canonical:
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We may rearrange this to something familiar:
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THE SECOND-ORDER ENERGY (AGAIN)

With an expression for the first-order doubles, we may write the second-
order energy in its final form:
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This is identical to the MP2 expression we examined earlier, but was
derived entirely via the coupled cluster equations.

A notational convenience is to incorporate the energy denominator

directly into the diagram for T(zl) as a horizontal line:
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This also leads to a modified diagram for the second-order energy:
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HIGHER EXCITATIONS

 As noted earlier, if we go beyond the CCSD approximation to include
triples via CCSDT, the cost of the computation becomes unmanageable for
chemically significant systems. Can we incorporate the effects of triples
without making an investment in the full triples equations?

For this analysis, we'll choose T = T, + T, + T, (CCSDT), which gives us a
similarity-transformed Hamiltonian:

HCCSDT = 6—T1—T2—T3]A{N€T1—I—T2-I-T3

Triple excitations first appear in the second-order wave function and the
fourth-order energy (MP4). That gives us a starting point for
approximating the effects of full triples:
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HIGHER EXCITATIONS

* The third-order doubles equation is:
0 = (7| H®|®o)
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and only contribution we don't already have is \A/NT?.

» The contribution of fgz) to T(;) may be written as:
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« We need second-order ng) for this expression, which comes from:
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* So the chain of perturbational levels we need to compute the contribution
of YA"3 to the fourth-order energy is:
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HIGHER EXCITATIONS

« The contribution of f(zl) to T(Sz) is:
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« Diagrammatically:
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+ Algebraically:
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* The permutation operators are defined as:

Plprar)f{pgr) = f(pari= f(gpr)—f(rp)

* The energy denominators are defined as:
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HIGHER EXCITATIONS

» The contribution of Tgm to f(23) may be written as:
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* Or, diagrammatically as:
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* And algebraically:
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HIGHER EXCITATIONS

. Finally, the contribution of YA“(;) to E_(If” is:
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* Thus, we have a recipe for including the effects of triple-excitations via
fourth-order perturbation theory. A few important observations are:

* This approach is referred to as the CCSD+T(4) method.

* Given that we are correcting Eccgp, we already have the converged

and T, amplitudes. Thus, we can use them rather than YA“(;), which gives
the CCSD+T(CCSD) = CCSD[T] method.

It is not necessary to compute and store all the tglfc(z)
are computed in batches, which are then immediately applied to the
computation of tgb@, which is easier to store. This is key to the success
of these methods.

amplitudes. They




CCSD(T)

In 1989, Raghavachari et al. recognized that, in addition to £\, a particular

fiftth-order energy contribution involving 7A“1 was important:
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They combined this term with E}‘D (both computed using converged Tl

and Tz amplitudes to obtain the famous (T) correction:

Eccsp(ry = Eccsp + Ef;” o= Eé5T>

The computational cost of the CCSD(T) approach is a non-iterative O(n’n’
step in addition to the iterative O(n>n?) cost of CCSD.

Due to its high accuracy, but significantly reduced cost (relative to the full
CCSDT approach), CCSD(T) is widely regarded as the “gold standard” of
coupled cluster theory.




OTHER APPROXIMATE TRIPLES METHODS

CCSDT-1 Similar in structure to (T), but iterative.

€e3pfz Adds 72 terms to CCSDT-1 (iterative).

CCSDT-3 Adds YA“I, T%, and, YA‘;’ terms to CCSDT-2 (iterative).

e Similar to CCSDT-1, but includes all Tl terms at zeroth-order (iterative).

CCSDR(3) Similar to CC3, but is non-iterative.

- All of these methods have O(N') cost, but vary in their prefactors and
whether they are iterative or non-iterative. None require storage of the
complete vector of T; amplitudes.




