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DERIVATIVE OF THE CC ENERGY

« We may directly differentiate the coupled cluster energy expression with
respect to a parameter x as:
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A key concept: in this second-quantized expression, the role of |®,) is

strictly for bookkeeping purposes: It merely allows us to keep track of the
excitation level of the matrix element, and it carries no functional

dependence on x. All of the of the orbital dependence is contained
within the integrals and amplitudes in the Hy and T operators,

respectively. Thus, we do not differentiate @ in this case.

» Similarly, derivatives of H, and T operators do not involve differentiation

of the annihilation/creation operators:
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DERIVATIVE OF THE CC ENERGY

It may be shown that the derivative of the similarity-transformed
Hamiltonian may be written concisely as:
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Note that the derivative of a cluster operator is still a cluster operator, and
thus 7 and its derivative commute:
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The derivative of the coupled cluster energy is therefore:

OFEcc c f o
= & H —
5 (Po|H®|®p) + (ol | H, B

We may simplify this expression by expanding the commutator and
introducing a resolution of the identity on the space of Slater determinants

generated by 7.
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DERIVATIVE OF THE CC ENERGY

« To make our task easier, once again we introduce new notation, starting
with a normal-ordered excitation operator that generates excited
determinants:

7| @) = |®,) = Ztm

where 7 denotes an excited determinant and the sumimation runs only over
unique combinations so that we can avoid prefactors.

* In this notation, our cluster-operator derivative is written as:
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» In the determinant space produced by 7, we have a resolution of the

identity: -
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DERIVATIVE OF THE CC ENERGY

 Let’s insert the resolution of the identity in between the Hamiltonian and
the derivative of the cluster operator in the commutator in our energy
derivative expression:
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« A few observations:
1. The derivative of T in the first and third terms creates determinants
that are orthogonal to @, and thus those terms vanish.
2. In the fourth term, the derivative of T creates even higher excitations
from ®, on the right, and thus that term vanishes.

3. Also in the fourth term, the integral (®, | H| ®,) is zero because we've
already solved the CC equations.




DERIVATIVE OF THE CC ENERGY

The CC energy derivative now becomes:
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By our definition of the cluster operator and its derivative:
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With this, our simplified expression for the gradient is:
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If we were to evaluate the gradient using this form, we would need to
compute explicitly the derivatives of the CC wave function amplitudes - a
formidable task, because it requires solving the derivative amplitude
equations for every perturbation (e.g., for the nuclear position gradient,
3N degrees of freedom). There is a better way...




DERIVATIVE OF THE CC ENERGY

. To obtain the derivatives of the T amplitudes, we must differentiate the
equation from which they are defined, i.e., in our new notation:

0= <(I)77|E|(I)O>

+ Differentiation of this expression yields:
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« Expanding the commutator in the last term and inserting the resolution of
the identity gives:
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DERIVATIVE OF THE CC ENERGY

« The derivative of the amplitude equation becomes:

0= (&, |H®|®p) + Z@n‘ (H — Ecc) |®,)
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 This is a system of linear equations for the derivatives of the cluster
amplitudes, which we may solve by multiplying on the left by the inverse
of the matrix on the right-hand side:
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* Now insert this back into our energy derivative:
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¢ Note that, in the second term, the product of the left-hand vector and the
matrix inverse represent a de-excitation in that one starts (from the right)
with an excited determinant, but ends with the Hartree-Fock reference.

« Also note that this de-excitation is independent of the perturbation, x.




THE LAMBDA EQUATIONS

e We can thus define a new de-excitation operator:
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» The "cluster de-excitation” operator, A, may be expressed as:
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where %:; is a string of annihilation/creation operators arranged for de-

excitation, {a;a;. ..apa, }, and 4, is the corresponding amplitude.
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« We can rearrange the definition of A to give:
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« We can remove the sum over determinants to give:

(@] (1+A) (H - o) ) =0

* This is a system of perturbation independent linear equations that we
need solve only once — not 3N times!




A BETTER ENERGY DERIVATIVE

Inserting the definition of A back into the energy derivative:

OEcc
ox

= (Do H*|Do) + » (Po|A|D,) (D, |H"|D0)

Again removing the resolution of the identity:
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We have demonstrated how we can avoid the computation and storage of

the derivatives of the Tamplitudes by instead solving a system of linear
equations that do not depend on the perturbation.

The cost of computing the A amplitudes is roughly the same as solving for

A

T - indeed it's a little less expensive, because the T amplitude equations
are non-linear.

This is an example of the Wigner 2n+1 rule of perturbation theory in
action!




THE LAGRANGIAN APPROACH

 An alternative approach to formulating the coupled cluster energy
derivative begins by defining the coupled cluster Lagrangian, which we

write as a function of the external parameters (x), cluster amplitudes (t),
and Lagrange multipliers (A):
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* First, make the Lagrangian stationary with respect to the multipliers:
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These are the CC
amplitude equations.
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- Next, make the Lagrangian stationary with respect to the T amplitudes:
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THE LAGRANGIAN APPROACH

« One we make the Lagrangian stationary (by solving the T and A
equations), we may differentiate it with respect to an external parameter
and take advantage of the 2n+1 and 2n+2 rules:
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This is exactly the same gradient expression we obtained before using direct

differentiation of the coupled cluster energy expression, but the A operator
arises naturally as an operator representation of the Lagrange multipliers.




COUPLED CLUSTER DENSITIES

It is convenient to formulate energy gradient expressions in terms of one-
and two-electron densities. This has significant advantages for computer
implementations due to its generality and efficiency.

While such densities are straightforwardly defined for variational methods,
such as configuration interaction, they are not so obvious for non-

variational methods.
The coupled cluster Lagrangian is an ideal starting point for defining

densities, and, if the Lagrangian is stationary:

L= b = 07 (1 = [\) H|®,)
We expand the definition of H to obtain:
L = Ecc = (D (1 + A) e_TAﬁNef\(I)(ﬁ

Aside: This form suggests that we may define left- and right-hand coupled
cluster wave functions as, respectively:
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COUPLED CLUSTER DENSITIES

- Now insert the second-quantized definition of H,;:
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* From this expression, we may define the coupled cluster one- and two-
electron densities, respectively to be:
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and
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* This leads to the convenient form for the energy:
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COUPLED CLUSTER DENSITIES

* The CC energy gradient may therefore also be written in terms of these
densities:
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* Equations for the densities may be obtained using the same algebraic and
diagrammatic approaches we’ve discussed so far.

 This expression is sufficiently general that we may use it for any correlated
method — CCSD, CCSD(T), etc. — as long as we can define the appropriate
densities.




ORBITAL RELAXATION

* We're not quite finished, because we haven’t addressed the evaluation of
the derivatives of the Fock matrix elements and two-electron integrals in

the Hamiltonian:
0 g O(pq||rs)
ox ox

- At first glance, these expressions require us to evaluate derivatives of the
Hartree-Fock MO coefficients, e.g.:

oC? q
ahpq o 2 Zcﬁhuucg - Z ( Mh'uycg P ah,uz/ Cg e Cﬁhuy 0C,/>

%O

ox EL g
737 7177

* However, we can avoid this by incorporating into our Lagrangian
additional constraints for the MOs:
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* Requiring that the MOs obey the Brillouin equation and remain
orthonormal provides additional stationarity conditions through which we
can avoid computing derivatives of the orbital coefficients.




THE “FINAL” GRADIENT EXPRESSION

 After including orbital relaxation and much algebra, we arrive at the final
expression for the CC energy derivative:
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where the superscript “(x)" denotes derivatives of atomic-orbital-basis
integrals transformed into the MO basis.

* However, we want to avoid transforming such derivative integrals into the

MO basis because that would require us to carry out 3N such expensive
transformations and store the resulting tensors. Instead, we can “back-

transform” the densities and the I, into the AO basis and directly contract

them with the AO-basis derivative integrals:
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STEPS IN A CC GRADIENT CALCULATION

. Calculate the AO-basis one- and two-electron integrals.
. Solve the Hartree-Fock equations for the MO coefficients.

. Transform the one- and two-electron integrals to the MO basis.
. Solve the CC T amplitude equations.

. Solve the CC A amplitude equations.

. Build the CC one- and two-electron densities.

. Solve for the orbital relaxation parameters (the orbital Z-vector).

. Back-transform the densities to the AO basis.

. Contract the densities with the derivative integrals in the AO basis.




EXCITED STATES

 The CC equations we've
examined so far describe the

electronic ground state very | T 0.2
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well, but they do not provide
access to excited states.
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EQUATION-OF-MOTION CC THEORY

* We can parametrize excited states in coupled cluster theory using a linear
wave function Ansatz acting on the CC ground state:

S
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where R is yet another cluster operator
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Inserting this into the Schrodinger equation, we obtain:

Hi B’ [@g) = B RES|[®0)

Since R is an excitation operator, it commutes with 7, so:
L gij
Hyel R|®) = Eoce® R|®0)

Now we multiply by the inverse of the exponential like we did in the
ground-state CC equations:

e Hye RiGy —e T Eae Ri®g)
Thus, we arrive at an eigenvalue equation for the excited-state energies:
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EQUATION-OF-MOTION CC THEORY

We can modify the eigenvalue equation to yield the excitation energies

directly by subtracting the ground state energy. First, apply R to the
ground-state CC Schrodinger equation:

RH|®) = REcc|®o)
Subtract this from the excited-state Schrodinger equation:
HR|®y) — RH|Py) = Eox R|®o) — REcc|Po)

Combine terms:

(HR - RFI) ®o) = AE., R|®,)
- Insert the resolution of the identity between R and H:
HR|®y) — R|®o) (Do H| Do) Z R|®,)(®, |} Qo) = AER| Do)

* Rearrange:
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* And our final expression is:
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MATRIX REPRESENTATION

* We may project the eigenvalue equation onto excited determinants:

<(I)77’HNR’(I)O> = AEeX<(I)n‘E|CI)O>

- Inserting the resolution of the identity between R and H gives (after
simplification):

D (0| Hy|®)) (]| R|Po) = AFex (®y|R| Do)
77/
 This is a matrix-based eigenvalue equation from which we may obtain

algebraic expressions for subsequent computer implementation, e.g. using
a Davidson diagonalization algorithm.




BIORTHONORMALITY

- If we do not truncate R, then the eigenvalues of H are identical to those of
the original Hamiltonian, but the similarity transformation removes
Hermiticity, yielding distinct left- and right-hand eigenvalue equations:

(®g|LHy = (®g|LAE
* Here we have introduced a new de-excitation cluster operator (analogous

to A) for the left-hand state: I EO = f/l o iQ e

/
¢,
L AEL
iy o,

* Note that the left- and right-hand states are orthonormal to each other,
but not amongst themselves:

(Do| LRI |®o) = ;5 (Po|L°LI|®g) # 0y (Po|RIRI| Do) # by




EOM-CC ANALYTIC GRADIENTS

* The most straightforward approach to EOM-CC derivatives is via the
Lagrangian formulation (skipping orbital response):

Lrom-cc = {Ro| LANR|®o) + AEey (Qo|LR|Do) + Y  Zp(Py|H|Do)
Ui

Differentiate with respect to each set of parameters:

- Stationarity of the Lagrangian with respect to the LorR amplitudes
gives the EOM-CC eigenvalue equations.

Stationarity with respect to the Z, parameters gives the ground-state

coupled cluster equations: OLEOM-CC
A
Stationarity with respect the T amplitudes gives the “Zeta" equations:

=0 = <(I)77|H|(I)O>

OLEOM.-CC
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The Z equations are analogous to the A for ground-state gradients.

=0 = (®o|L H, 7] R|®o) + (Po|Z H, 7] |®o)




PERFORMANCE

Approximate

EOM-CCSD FCI i
Excitation Level

9.109 8.549 1.96

13.580 i 13.525 i 1.03

17.315 | 17.217 1.13

3.261 § 3.230 § 1.03

14.454 i 14.127 i 1.24

« The approximate excitation level is a measure of the number electrons
excited relative to the ground state.

aJ. F. Stanton, J. Chem. Phys., 98, 7029 (1993). Excitation energies in eV.




PERFORMANCE

NH; Excitation Energy (eV)

EOM-CCSD 5716

EOM-CCSDT 5.707

EOM-CCSDTQ 5.722

CISD 9.187

CISDT 9.3

CISDTQ 5.820

aM. Kallay and J. Gauss, J. Chem. Phys., 121, 9257 (2004).
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