COUPLED CLUSTER THEORY
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ALPHABET SOUP OF QUANTUM CHEMISTRY

WHAT METHOD SHOULD WE CHOOSE?

T. D. Crawford, S. S. Wesolowski, E. F. Valeev, R. A. King, M. L. Leininger, and H. F. Schaefer, “The Past, Present, and Future of
Quantum Chemistry,” in Chemistry for the 21st Century, E. Keinan and I. Schecter, eds., Wiley-VCH, Weinheim, pp. 219-246 (2001).




HARTREE-FOCK THEORY

In Hartree-Fock theory, the
many-electron wave function is
written as a single Slater
determinant.

Advantages:
Obeys Pauli antisymmetry
Inexpensive to compute

Frequently semi-quantitatively l q)()> =
correct

Disadvantages:

* Fails to correlate the motions
of opposite-spin electrons

Cannot provide “chemical

accuracy”
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HARTREE-FOCK THEORY

A Hartree-Fock Slater determinant yields an antisymmetric wave function:

ol(X) | (dalXi) | os(X) [ L. onix))
d1(x2)  da(x2) ¢P3(x2) ... on(x2)

W) ~ | Do) = p1(xs)  da(xs)  ds(xs) ... ¢w(xs)

1
vV N

e TR S T e T

where

Op(X) = Pp(r)a o Pp(X) = Pp(r)p

is a one-electron spin-orbital and N is the number of electrons/orbitals.

» The orbitals are obtained by variational optimization of the Hartree-Fock
energy subject to the constraint that the orbitals remain orthonormal.

« We will abbreviate the notation for a Slater determinant using only the
diagonal entries of the matrix:

Do) = |d1(x1)P2(X2)P3(X3) - - - ON (XN ))




HARTREE-FOCK DENSITY

The one- and two-electron densities are given as:

p(x1) :/dXQ/pr).../dXN\\IJ\Q
p(X1,X2) :/dX3.../de|\If|2

The one-electron density is the probability of finding an electron at a given
point rq in space (assuming unit normalization), whereas the two-electron

density (or “pair density”) is the probability of finding two electrons
simultaneously with coordinates x4 and xa.

In Hartree-Fock theory, the pair density for opposite-spin electrons is
exactly separable into a product of one-electron densities:

puF (X1,X2) = p(X1)p(x2)

Thus, their position probabilities are uncorrelated.

However, the Hartree-Fock pair density for same-spin electrons is
correlated because of wave function antisymmetry — the “Fermi hole.”
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THE COULOMB HOLE

 This figure?* plots the
difference between the exact

and Hartree-Fock wave
nucleus

functions for the ground | electron 2

state of the helium atom (1S),
again as a function of the

NN

coordinates of electron 1 (i.e. <~

for a fixed position of
electron 2).

This perspective makes the
appearance of the Coulomb
hole more pronounced.

tYes, another “borrowed” from Prof. Jirgen Gauss




CORRELATION ERRORS IN HARTREE-FOCK THEORY

* The first ionization energy of the helium atom ground state provides a
good example of the importance of correlation energy.

The Hartree-Fock energy of the helium atom ground state is:?

(Do(He 'S)|H|Dy(He 19)) ~ —2.861 679 995 612 Ej,

The "exact” (non-relativistic, Born-Oppenheimer) energy of the helium
atom ground state is:P

(U (He 19)|H| T (He 15)) =~ —2.903 724 377 034 E,

The "exact” (non-relativistic, Born-Oppenheimer) energy of the helium
cation is:P 2

=—2 &
5 h

(U (He' 28)|H|U(He™ 28)) =

aK. Szalewicz and H. J. Monkhorst, J. Chem. Phys., 76, 5785-5788 (1981).
bH. Nakashima and H. Nakatsuji, Phys. Rev. Lett., 101, 240406 (2008).




CORRELATION ERRORS IN HARTREE-FOCK THEORY

» The Hartree-Fock model predicts that the first ionization potential of the
helium atom ground state is:

Pym = E(Hel £8) 1 I(He 19) = 08617 ), = 2262. kJ /ol

* This compares poorly to the exact value:

Bl = EMe “5) - B(He  ST=—09037 F; — 2372 k] /miol

« A 2001 study by Korobov and Yelkhovskya determined that the effects of
(non-Born-Oppenheimer) nuclear recoil, relativity, and quantum
electrodynamics account for only ~0.4 kJ/mol of the total ionization energy.

 Thus bulk of the error is due to the lack of electron correlation in the
Hartree-Fock prediction.

aV., Korobov and A. Yelkhovsky, Phys. Rev. Lett., 87, 193001 (2001).




IMPORTANCE OF ELECTRON CORRELATION

While correlation energies are typically <1% of the total energy, errors in the
correlation energy can be magnified when computing energy differences:

COEH) - CEPY+-O0(4P)

C (Ep) O (Ep) CO (Ep) D. (kJ/mol)

37693 774+ L -74.819 032 | iL 112790997 729.9

0151537 T [ 0248975 | i 0535591 3517 3

37.845307° |1 | 75088210 | i 113827588 1087.2

a Even more data “"borrowed” from Prof. Jirgen Gauss.




COMPUTING ELECTRON CORRELATION ENERGIES

What approaches are there to including electron correlation effects in our

quantum chemical models?
» Density-Functional Theory (DFT)
« LSDA, BLYP, B3LYP, CAM-B3LYP, PBE, SAOP, M0O6-L, ...
Configuration Interaction (Cl)
« CISD, MR-CI, RAS-CI, ...
Many-Body/Mgller-Plesset Perturbation Theory (MBPT/MPn)
« MP2, SDQ-MP4, CASPT2, GVV-PT2, ...
Coupled Cluster Theory
«  CC2 CCSD ECSDIT), €C3. CCSPT 1

Almost all commonly used techniques in the chemical physics literature are based
on these four approaches, and each has its own advantages and disadvantages.

T. D. Crawford, S. S. Wesolowski, E. F. Valeey, R. A. King, M. L. Leininger, and H. F. Schaefer, “The Past, Present, and Future of
Quantum Chemistry,” in Chemistry for the 21st Century, E. Keinan and I. Schecter, eds., Wiley-VCH, Weinheim, pp. 219-246 (2001).




INTRODUCING CORRELATION EFFECTS

« Consider a four-electron Slater determinant:
Do = |¢i(x1)0;(X2)Pr(X3)P1(X4))

From this point forward, we’ll use i, j, k, I, ... to denote orbitals that are
occupied in the Hartree-Fock wave function, a, b, c, d, ... to denote
unoccupied/virtual orbitals, and p, g, r, s, ... to denote general orbitals.

* Any function of N variables may be written as a linear combination of
unique N-tuple products of the ¢, (X) on the same space as the full set of

functions:
f(x1,%2) = Y cpqp(x1)dq(x2)
p>q
* However, we must treat the electrons as indistinguishable, so instead we
could write a pairwise “cluster function” that correlates the motion of any
pair of electrons associated with two particular occupied orbitals, e.g., i

and j:
fzg Xm,Xn Zt ¢a, Xm ¢b(X’n)

a>b




INTRODUCING CORRELATION EFFECTS

¢ Inserting this cluster function into our Hartree-Fock wave function yields
an improved function:

U = | [¢s(x1)0;(X2) + fij(x1,%2)] ¢1(x3)P1(x4))

where the determinant notation implies proper antisymmetry and
normalization of the individual terms. Expanding the expression gives:

U =0+ Y  t77|¢a(x1)p(X2)Pr(X3)Pr(x4))

a>b
We could also have chosen to correlate electrons appearing in any other

pair of occupied orbitals, e.g., k and :

= |i(Xx1)9;(X2) [0k (Xx3)P1(X4) + fri(X3,%4)])

which would give a similar expression:

U =g+ Y 157]0i(x1) 05 (x2)ha(x3)Pp(X4))

a>b




INTRODUCING CORRELATION EFFECTS

* Perhaps a better approach would be to introduce all possible pairwise
combinations of occupied orbitals in our four-electron system:

O —llo,0;0r @) T de®r — [ Be0i0) T a0 Op) T |0 fied]) +
Oifaor) Tl et L en = [Tkl iml0ie)

where the electron coordinates are now implied, and the negative signs
arise naturally from the definition of the determinant whenever we have to
permute columns to bring two occupied orbitals together.

* We could also go beyond pairs and introduce three-electron cluster
functions:

O =080+ [ iy Ordr) i d3901) -+ Fiud D)+ o1 fiudi)—
Oiifor -t B L L g LR fa E L Eo et
Firpon) = Lo dp bt () g, £pp)

* If we include all possible N-electron cluster functions, we would obtain the
exact wave function within the space spanned by the ¢p( ).




INTRODUCING CORRELATION EFFECTS

* Alternatively, we could assume that clusters of three or more electrons are
less important than pairs, and that we should define single-orbital
“clusters” to account for the fact that the orbitals should adjust for the

presence of the new terms:

U = |;0;0601) + |[:0;06P1) + @i fiP1d1) + |0:05 [udr) + |0:0;01 1)+
Lo fibpol - [ fios fedib [ f0,0u 00 b fi fadp b lo, f.0p fi)+

fii o) — | firdi01) + | fud;o8)

 Clearly we need a new notation...

005 fu i) + T o) (T [ i di®e Fo) 3 (Fetbslffi) & [0ififeli) b

Di fik®1) — |Di f10k)+

Ci@i -+ o fe —HFafin Hl b+ e i e o+

Fij fe®u) + [ fij@nfo) + i fef) — | find500) — | fiw®5 1) — | ik 500+
Lo E i o T i T e R
felon) — G afe) = (al5u0e) risoser oo a1 i e




CLUSTER OPERATORS

* The 27th term on the right-hand side of our complicated expression can
be written more explicitly as:

Foelil — >: >1 Lt | Po P PrPe)

pxb s d
This is a linear combination of determinants in which orbitals i, j, and |
have been replaced by orbitals a, b, and c, respectively.

» This is conveniently expressed in second quantization by defining single-
and double-orbital “cluster operators”:

fij == Zt“b T Za a,

a>b

* Thus, the 27th term on the right-hand side of our complicated expression
becomes very compact:

| fiiOr fi) = tiiti|Po)




CLUSTER OPERATORS

* Using these cluster operators, our complicated four-electron wave function
becomes:

PeEecaNiTo=
U = 1+Zt 4 Ztt + biljte + 5 ) tij+
zjk ij

= thgtkl + —= Zt Tt et thgtk e th]tkztl Ol

z]kl zg kl 'L]kl

* We can make the expression even simpler, though, by introducing total
cluster operators by summing over combinations of occupied orbitals:

nl L /] a A 1 K T
= Z tfl, p— Z tz CLILG,Z- and T2 = 5 Z t’L] S Z Z t?’]baj;a/l-‘;aja
: e ij ijab

* More generally:




THE COUPLED CLUSTER WAVE FUNCTION

* Note well two key observations:

1. Because all the creation operators act on unoccupied orbitals and all

the annihilation operators act on occupied orbitals, they exactly anti-
commute:

¢la-—aa = —10

. Because the total cluster operators always contain even numbers of
creation and annihilation operators, they always commute, e.g.:

Tl = yTh

* Thus, our four-electron wave function becomes:

~ 1 T X

=
'Tl ‘|‘T2‘|‘2

3!

41
* These terms all appear in the power-series expansion of an exponentiall

U =eltt2p, = ¢! @,

1 1

* This is a concise expression for the coupled cluster wave function.




COUPLED CLUSTER METHODS

* A hierarchy of coupled cluster methods may be defined based on the
truncation of the T operator:

Method f Scaling/Cost

ccs O(NY)

CCD i G(N®)

CCSD T =1+ 1, i O(N®)

CCSDT T=T+1,+1, g O(N®)

CCSDTQ e e A O(N')

* Later we will examine other coupled cluster methods that approximate
higher order correlation effects using perturbational approaches.




FORMAL COUPLED CLUSTER THEORY

We have a general structure of the coupled cluster wave function, but we
need a recipe for determining the wave function amplitudes. Start from
the Schrodinger equation:

H|U) = E|T)

Insert the coupled cluster Ansatz (roughly: German for “approach”):

Hel'|®y) = Eel'|®g)
“Project” this equation onto the Hartree-Fock determinant to obtain an
expression for the energy:

(Bo|HeT |Bo) = E{Dple|®g) = E

Or onto substituted (or “excited”) determinants to obtain equations for
the amplitudes:

abe Ll L Y abe ]
(@ | BT |Bg) = E(@0- [T o)
NB: the “excited” determinant notation is to avoid specifying the number of
electrons/orbitals: ==
N alla?i ... 0;0;|Po)




TRUNCATION OF THE EXPONENTIAL

e Start from our energy equation:
o gil
<(I)()‘H€ ‘(I)()> — E<(I)0|€ ‘(I)()> = i
* Insert the power-series expansion of the exponential:
2

(Bo|H (1 -+ T4 51T 1)

)@} = B

 And distribute terms:

A A

2 3

. = T] |
(Po|H| Do) + (Po|HT|Py) + <(I)0’H Do) + <<I)0’H [@g) +... = E

* Slater's rules state that matrix elements of the Hamiltonlan between
determinants that differ by more than two orbitals are zero, thus the cubic
and higher terms cannot contribute, and the energy expression is simply:

1 1 ]
(@o|H|®g) + (Po|HT |Dg) + <‘I’0|H Dg) = E

 This expression is exact: it depends only on the two electron nature of the
Hamiltonian and does not depend on the particular truncation of the
cluster operator.




THE SIMILARITY-TRANSFORMED HAMILTONIAN

* We can take a better approach to the coupled cluster equations by
multiplying the coupled-cluster Schrodinger equation by the inverse of the
exponential:

G_T[AJGT‘(I)O> = 6_TE6T’(I)0> == E‘(I)()>
Now project onto the Hartree-Fock reference to obtain the energy:

(Doler T H e |Bo) += L

And onto excited determinants to obtain the equations for the amplitudes:
abl it LT 4r T i
<(I)ij... e”" He' |®g) =0

The similarity transformation yields the Cambell-Baker-Hausdorff
expansion:




HOW IS THIS BETTER®?¢®

« The Hamiltonian contains one- and two-electron second-quantized
operators:

A 1 A A
) i Tl =
H = Z hpeal g, < : Z(pq\lrs}apaqasar =h+V
Pq pqrs
* Assuming the cluster operators commute, each commutator in the
Hausdorff expansion between H and T eliminates one general-orbital

annihilation/creation operator. For example:

b, T1| — [afa,, ala;]

L e e L
= 0,0,0,0;, — 0aQ,0,0,

Ly L

* Because the the second-quantized Hamiltonian contains at most four
annihilation/creation operators, the Hausdorff expansion will truncate after

A

the quadruply nested commutator. This result assumes that the T
operators commute, but doesn’t depend on the truncation of 7.




VARIATIONAL COUPLED CLUSTER THEORY

* Our “projective” formulation of the coupled cluster equations results in a
non-variational energy expression. However, we could have taken a
different approach by minimizing a variational expression:

UH|T)  (Do|(eT)T HeT|D
Buane < £ = SUHID) _ (B0l HeT00)
(V) (Pol(e!)Te |Dg)

- The adjoint operation changes the “excitation" operator T into a “de-

excitation” operator T

2
=)
L n!

e The Tand T operators do not commute: [TT, T} # 0 Thus, the variational
expressions do not truncate naturally and must be cut off at some
selected number of terms. The unitary coupled cluster (UCC)ab and
expectation value coupled cluster (XCC)< methods are based on this
approach.

aM. R. Hoffmann and J. Simons,J. Chem. Phys., 88,993 (1988). bR. J. Bartlett, S. A. Kucharski, and J. Noga, Chem. Phys. Lett., 155,
133 (1989). ¢<R. J. Bartlett and J. Noga, Chem. Phys. Lett., 150, 29 (1988).




SIZE CONSISTENCY

¢ A quantum chemical method is “size consistent” if the sum of the energies
computed individually for two or more systems is equal to the energy
computed of the supersystem containing all non-interacting systems.

Sum of separate calculations
on each fragment

A single calculation on both
fragments: “supermolecule”

* For this property to hold, the wave function must be multiplicatively

separable: |\IJAB> -3 A‘\IJA>‘\IJB>




EXAMPLE: H2 DIMER

* For a single H, molecule in a minimal basis set (two orbitals), only two
determinants are needed due to symmetry:

{ zr =
J EHL2

| @) | @5

V)eract = [Thom = (1+ 714 |27)

« The "configuration interaction doubles” (CID) wave function, in which only
linear terms in the cluster expansion are retained, is exact in this case.




EXAMPLE: H2 DIMER

« For two non-interacting hydrogen molecules, the exact wave function must
include double excitations on both fragments simultaneously — a
quadruple excitation:

=

| D)) | D) | P

Uyab, = A{(1+3) 198) x (1+77) |9F)}

5 (1 L TA T8 +T§4TQB) BAB)

£ (1+ 72 + T2 |og?)

 CID does not include this term and thus is not size consistent.




EXAMPLE: H2 DIMER

« For two non-interacting hydrogen molecules, the exact wave function must
include double excitations on both fragments simultaneously — a
quadruple excitation:

=

t=aB
| @) | F7

= A{e@g) x 2 of) |

SECER |7

e i o

253D)
» CCD gives a multiplicatively separable wave function and thus is size
consistent.




SIZE CONSISTENCY: DOES THIS MATTER?

 Energies and size-consistency errors (in E}) for the H> dimer in an STO-3G
basis set:

Method 2 X EA E,p A

SCF 21221701 i -2.221701 i 0.000 000

MP2 2250907 i | [=2:250907 T | | 0:000000

CCD -2.268 295 i -2.268 295 i 0.000 000

-0.000 708

CID 2.268295 i -2.267 587 (-1.86 kJ/mol)

 The error will increase as the number of electrons and basis functions
Increase.




THE COUPLED CLUSTER EQUATIONS

* So far, we have derived several key expressions for coupled cluster theory:
CC Wave Function: W) = €T|(I)0>
CC Energy: E = (Dgle T HeT|®,)
CC Amplitudes: i — (cb%?-;; ]e_T]:hiT]CI)O>

Similarity-transformed Hamiltonian:

TE o tE el B e s
R [H,T]JF—HH,T} T]+—H[

2! 3!

g ([[[#1].7].7].7]

« Our next goal is to convert these equations to algebraic form in terms of
the cluster amplitudes and the one- and two-electron integrals that
comprise the electronic Hamiltonian.




NORMAL ORDERING

Evaluation of matrix elements of second-quantized operators between
determinants is easier when those operators are written in “normal order.’
In general, this means that all annihilation or creation operators that would
give zero when acting on the “vacuum state” are moved to the right in a

I

given string.

In quantum chemistry the “vacuum state” is conveniently chosen to be the

Hartree-Fock reference state, | @), which contains a set of N occupied
orbitals (the “Fermi vacuum”):

al]@0) =0 a,l%o) =0

Thus, our definition of normal ordering requires us to move all operators

such as a; and a, to the right of operators such as a; and a,'.

One way to achieve this ordering would be to use the anti-commutation
relations of the annihilation and creation operators:

a;gaq = aqa,;f9 = a;ag 4 a:;a;g =1 G T 0, =4

A better way is through Wick's theorem...




OPERATOR CONTRACTIONS

« We define a “contraction” between two adjacent annihilation/creation
operators as: —

AB = AB — {AB}

where the {} around a string implies that the operators may be rearranged

at will, while still keeping up with changes in sign.

e This leads us to four possible contractions in accord with the Fermi vacuum:

e =
a;a; = a;a; {azaj ==

a; +aa — 0,

HZ:a ab {a, ab}—a aZ—I—ab =0

afay = ;0] =0

 Contractions between operators in different orbital spaces are zero.




WICK’S THEOREM

» Wick’s theorem provides a mechanism for expressing a given string of
annihilation/creation operators as a linear combination of normal-ordered
strings:

e
ABCI XY Z ={ABC XY ZY+ D {ABC. | . XVZ}

singles

leea |
N HABCLL XY ZY
doubles

* In the case of a product of normal-ordered strings (the case we'll most
often encounter), Wick’s theorem also helps:

{ABCT HXYZ . F={ABU . XYZ. [} ¥ 1) {ABC...XYZ...}

singles

| T
1Y fABC L XYZL L+
doubles

A contraction takes a negative sign if an odd number of operators stand
between the two under contraction, and a positive sign otherwise.




THE NORMAL-ORDERED HAMILTONIAN

* Let’s apply Wick's theorem to the second-quantized Hamiltonian:

3 1
H = Z hpqa;gaq + y Z(pq\\rs}a;agasar
Pq

pqrs

» The second-quantized string in the one-electron term becomes:

==
a;aq = {a;aq} 1y {a;r?aq} 5 {a;aq} i 5pq5p€i

where the notation p € i means that p must be an occupied orbital.

e Thus, the one-electron term becomes:

) Pwaabag =) hpofalay ) ha
pq Pq 1

* The last term, which contains no second-quantized operators, is the one-
electron contribution to the Hartree-Fock energy.




THE NORMAL-ORDERED HAMILTONIAN

* The two-electron term involves more components

|
;; gasar — {a;g :;asar} + {a;; j]asa,r} + {a]‘; gasar} = {a;; Zf]asa
|

aEle

\
+ {apa;f]asar} + {a;a(gasar} + {a;agasa

 Now evaluate the contractions:
CL = {a;ro j]a’sar} = 5p€i5p3{a:r]ar} - 5q€i5q3{a;gar} + 51967;51?7“{&2&3}
= 5q€i5qr{%as} — OpeilpsOqe;Oqr T OpeiOprige;Oqgs

* Insert thls back mto the expression for V and change the summations:

7 Z pQH"'"S p q CsGr = 17 Z pQHTS {ap q F r} e Z<ZQHTZ>{CLECLT}

pqrs pq’rs qm’

I i > (pillri){ala,} + 211- > (igllis){ata,} — ;11- > (pillis){afa,}

pri qst pSt

- Z<ij|‘ji> T . Z(ijmﬁ Two-electron contribution
4 — 4~
to the Hartree-Fock energy




THE NORMAL-ORDERED HAMILTONIAN

* The four terms involving only two annihilation/creation operators are
identical and can be combined into one:

-3 S taliridaja,h+ 3 Y wilriaba ) + 1 Y tiallisaje,} - 3 S pillisH{aja.t = 3 willai)aje,)

qri Pre qst pS Pq

» The two terms with no annihilation/creation operators are identical and
can also be combined into one:

3 Sl + 3 Sl =| 3 Sl

z]
* Bringing all the one- and two-electron terms together we have:
: 1 o e 1
H= hii+o ) (llig) > hpefalag} + ) (pillei{afag} i+ 5 D (pallrsi{afala,a,
7 1] Pq P pqrs

The Hartree-Fock energy The Fock operator

* Final form:

& 1
— <(I>o’H|<I>Q> i E qu{a;aq} = Z E <qu7’S>{a;a:§a a
pq

pqrs




THE NORMAL-ORDERED HAMILTONIAN

» We can thus define the normal-ordered Hamiltonian to be the original
second-quantized Hamiltonian minus its (Fermi) vacuum expectation value:

Hy = H — (9g|H|Do)

— N fpelaba b+ + Z (pqllrs){alala.a,
Pq pqrs
= Fy + Vv
¢ We may therefore think of the normal-ordered Hamiltonian as a
correlation operator in that the contributions to the Hartree-Fock energy

have been removed. This is the form of the Hamiltonian we use from this
point forward.

* This is a general result: The normal-ordered form of an operator is the
operator itself minus its vacuum/reference expectation value.

A key corollary: The vacuum/reference expectation value of a normal-
ordered operator is zero.




NORMAL-ORDERED CLUSTER OPERATORS

* In the previous lecture, we defined the cluster operators as:

’ 3 1
Tii= Zt?alai and B 7 Zta’b T ZCL a,

(Xe! 1jab
or, more generally:

1 2 n
b..|
i <E> Z t?jmagaz...ajai

¢]...abl
Recall that our definition of normal ordering relative to the Fermi vacuum

means that all a; and a, must stand to the right of all ¢! and a.. This is
already the case with the excitation operators so we may trivially write:

Zt {al aba a@; §

5 = zgab
1
o [
(ﬁ) Z t'j... {agay - .. a;a;}
. 17 1-00%
Again: the { } means that we may rearrange the operators at will, as long
as we keep up with the sign.




SIMPLIFYING THINGS (A BIT)

* We can now modify the Hausdorff expansion to use only normal-ordered
operators:

A

P el e BT A
e {HN,T} 5 HHN,T} T} aBE s [HHNT} ¥i

e A

» This leads to another important property of the commutator expansion:

Only those terms from the Wick’s theorem evaluation of the commutators
in the Hausdorff expansion in which the Hamiltonian contracts at least
once with every cluster operator on its right can make a non-zero
contribution.

* We will illustrate this property using two of the simplest terms from the
expansion:

[ )2,

IE
2

[FN,Tl] and




SIMPLIFYING THINGS (A BIT)

* First, write the linear commutator explicitly in terms of second-quantized
operators:

B, 1| = 323 ot Heha ) (alan)]
—> D foatf ({afag Hala;} — {afa; Haja})

* Next, use Wick’s theorem to evaluate the each of the products:

| | B Eocei=
{ala, Hala;} = {ala,ala;} + {ala,ala;} + {ala,ala;} + {a)a, ala;}

. {ap q a z} = 5p’i{aqaa} A 5(]&{&[)&72} 3 5 6pz’5qa

{aja; Ha}ag} = {ala;ala

We can recognize that the uncontracted terms in both products are
identical because we may rearrange the operators within the {}. Thus,
they exactly cancel in the commutator, leaving only terms in which ﬁN has
at least one contraction with 7 on its right.




SIMPLIFYING THINGS (A BIT)

* The quadratic commutator may be expanded into three terms:
N e ey pie e e
HFN,Tl] Tl} = 5 (FNTf Lo P TfFN)

= - S5 huttth ({ahagHalo: Habo,) — 2fate; Habo, Hafas} + {afa, Hafa; Hafa )} )

pg1ial—4b

1
2

* Wick’s theorem for each product gives:
|
{a;aq}{alai}{agaj} — {aTa ) a Gl e {a;Jr al
FE

|
+ {ala,ala;ala, }+{a;2aqaaa@ a, }+{ap LOhaata;}

aba -} + {c'zggaqaaazaba }

T

| | - n
+{pqazaba}+{a]taqala@ a}+{;qaza§£a}

—Q{agai}{a }{aba b =-2 ({a aza a aba 1 +{ala; C|LTCL aba Y +{ala;a c’z—‘aba }
R
+{ala,afa,ala;}

{ata;Hala; Haba,} = {ala,ala ala,

* The only contributions that dont cancel are terms 7 and 8 from the first
product!




SIMPLIFYING THINGS (A BIT)

* The uncontracted terms are clearly identical:

{a’p q agd zaza’j} = Q{a:rzaia;;a’qaltaj} @ {CLECLZ- ] p q} =0

* We can see that the singly contracted terms are also identical when we
convert the summations to the same patterns, e.g.:

— YYYqutatb ( ala, aba 3+ {aTa ala, aba, e aszLaqaba, })

1 S‘ S‘ S‘ qutatb (5 {aqalagaj} 4 5pj{aqa2aiaz} = 25pj{a2aiaqa;£})

1 a
= _2_ § : § :ti t? (E :fiq{aqalazaj} T E :qu{aqa’:;aiaz} 7 2 E :qu{ajzaiaqa;g}>
q q q

1. |gb

= = Z Z t“tb (Z qu{aqagalai} + Z qu{aqalaiag} — 2 Z qu{alaiaqa;;}>
q q q

=l




SIMPLIFYING THINGS (A BIT)

* The doubly contracted terms in which the Fock operator shares both of its
indices with only one of the two T operators are also zero:

LSS ot ((dfgalbala) + (4ol

ng.--lia jb

=) Y Y tit; Z Jfpa (5pz5qa{%a b+ dpiogp{ada; } — Zépjéqb{alai})

1@ | 7b prq

= = S‘ Ytatb (fm{az];aj} +nlala} - ijb{alai})

Tt 30

= o 3" S seth (fnlabas} + Fnlafe} — 2flalas))

it

=




SIMPLIFYING THINGS (A BIT)

The only non-zero contributions arise from the double contractions in
which the Fock operator shares an index with each of the two T, operators
to its right, leading to a rather compact final result:

% HFN,TJ ,jﬂ == _Y;‘Yqutatb ( TﬁT aba }—I—{aTa CLT& b3 })
3 22 2ot (stelosal) = bdtola)

Zijatatb{a ab}
ta| b

Only those terms from the Wick’s theorem evaluation of the commutators in
the Hausdorff expansion in which the Hamiltonian contracts at least once
with every cluster operator on its right can make a non-zero contribution.

» We can summarize this important finding using a relatively simple notation:

el = (HNGT)
C




THE CCSD ENERGY EQUATION

» We now have the tools necessary to derive an algebraic expression for the
CCSD energy, starting from our formal equation:

Foa = (Dple L H el [T = (@5 (ﬁNeT) Bp)

recognizing from our earlier analysis that we need only consider up to terms

that are quadratic in 7

ECC:<<I>0\<EIN {1 T4 % Dcy<1>0>

» The leading term vanishes because the reference expectation value of a
normal-ordered operator is zero:

(Do|Hy|P0) = 0

« The linear term contains four contributions:

(D, (ffNT) =By (FNT1 R 7l O R VNTQ) By)

 Let's deal with each of these in order using the techniques we’ve learned...




THE CCSD ENERGY EQUATION

* Given that the reference expectation value of a normal-ordered operator is
zero, only fully contracted terms from Wick's theorem can give non-zero
results:

(@ol (FwTh) |®0) =220 i (@ol{ahe; Hela o)

= YYquta Do|{a} d,dla,}|®o)
== szpqta (I)0|5p15qa|q)0>
= Zfiat?

. For the (\A/NYA’1> term, however, it is not possible to generate fully
C

contracted terms, and so it makes no contribution to the energy:

(@l (V1) |20 = 5 3° 3 (pallrs)is @ol{afafa,a, Haja;} o) =

pqgrs ia




THE CCSD ENERGY EQUATION

. Similarly, the <FNT2> cannot yield a fully contracted expression, and also

vanishes:

(o] (FnTs) 120) = 3 303 fuati(@ol{aha, Halaaa,}|20) =

Prq 1jab

. The <\A/NT2> term is the only remaining non-zero linear contribution:

(P (VNTZ) Do) =

ZZ (pql|rs)ta(®o|{alata,a,}{alala,a;}]| o)
16

pPqrs 1jab

Z Z (pql|rs)t; ‘ | ra C,L_|CLTCL;£C|LjC‘LZ-} + {O‘JTC‘LTCL,T&_CFCLZCL-C‘LZ'}—I-

giritg Beaysteta J
pquzjab

a; a S+ {ap qasaTaaaba

\\Fm\ }>

Z Z pQHTS tab 5 5 5 58() - 5pj5q1'5rb53a S5 5pj5qi5ra53b o 5pi5qj5rb53a)

pqr8z3ab

1 - =
= = > Gijllab)ee?

1jab




THE CCSD ENERGY EQUATION

« Among the six components of the energy expression involving 72, only
one can yield fuIIy contracted terms:

%<%‘(VNT1) [©o) = ZZZerst“tb ol{alala,a, Hala; Haja,}®o)

pqrs ta - 1b

— = Z Z (pql|rs) tatb

pQTSzjab

a})

e 57 Z Z quTS tatb 5pj5qi5ra58b 7 5pj5qi5rb5sa SE 5pi5qj5ra58b = 5pi5qj5rb5sa)

pQTszgab

1 = &
= o Ciillab)ege?

atbj
» We can now bring all of the non-zero terms together to obtain the final
CCSD energy expression:

Lee Zfza,ta il Z i7]|ab)ty’ + = Z ij||ab)tit]

zgab zgab




THE CCSD AMPLITUDE EQUATIONS

* The derivation of algebraic expressions for the cluster amplitudes is similar
to that of the energy equation. In the CCSD approximation, the single-and
double-excitation amplitudes are determined from, respectively:

0:<<1>g\(ﬁNeT) @) and 0= (B2 (FINeT) By)

Key concept: Although each of these expressions does not immediately
appear to involve reference expectation values, they can be converted to
this form by recognizing that the excited determinants on the left can be

written as:

(®¢] = (Bo|{ala,} and (D] = (®o|{alala,a,}

For example the leading H, contribution to the single-excitation amplitude

equations is:

al L |
(®7|FN|Po) = E :qu@)()‘{a;raa}{a;aq}@o E fpat IT; q} E fpaiqap = fai
pq




THE CCSD AMPLITUDE EQUATIONS

- Similarly, the leading Hy, contribution to the double-excitation amplitude
equations is:

(@ [Vn|®o) = iZ@CJHT«SH%I{a ajaya, Hapahasa, }@o)

= 5pb5qa5ri58j = 5pa5qb57"j58i == 5pb5qa5’r'j58i)




THE CCSD AMPLITUDE EQUATIONS

e And a term that | include here mainly because it looks so awesome:

@] () 180) = 3 30 3 (pallrs)tg (@ol{afalaa, } ({afafa,a, Halay)), |20)

pqrs ke

: ({A

el =y ] 1]
Taia’k}+{ajaTaba f Tasara’i k}+{a’;,ra

URRIN:

| |
ta,a,afa;} + {afa]

(0010 c04705ks 10phDaa07 05501k — 1 0paOahOned 5i0ik = 9pb0g6nd0si0ik+

0RO 071020 it 1 0pb 040 0305807k F 05 0ab0ki0dc0ah ~=10p100a 0ri0be0 41—

0600t 053056 06 04k D1 G0 d—~ Dbtk O 04104 ht 0alante Garoh s T

Ok Oha0riOsh0pd — 5pk5qb5m5sj5ac = 105800007053 0bc = Opkt 0RO 10 5:000)
=" ({abllej)ts — (abl|ci)ts) + Z (i5]|bk)tE — (if)|ak)t)

(&




THE 7, AMPLITUDE EQUATIONS

 Using a great deal of mental (and physical!) fortitude, one can apply Wick's
theorem to all of the terms from the Hausdorff expansion and obtain the
following expression for the single-excitation amplitudes:

0 =Fui+ 3 Foclf — 3 Fuith + Y (hallei)tf + 3 fret + 5 S (kalled)tg -
C k kc kc

kecd

1 2 ca cipa g Cy1Q C
5 Z<k”|m>tkl . Z Jrelity — Z<k”|m>tktz I Z<ka\|0d>tkt§i—

klc kc klc kcd

C a C a 1 (& a 1 ca
Z<leCd>tkt§ltz == Z<leCd>tktﬁ' =3 Z<leCd>tk§tz =3 Z<leCd>tmt§l

klcd klcd kled klcd




THE 7, AMPLITUDE EQUATIONS

. . ac c a a 1 -\ 4 1 c
0 = (@bllig) + 30 (Factlf — factls) = D (Figtsl — fuatih) + 5 S (hlllig)egs + 5 S (ablled)es?
c Ed

k kl

+ P(ij)P(ab) Y (kbllcs)tss + P(if) Y {ables)ts — P(ab) Y~ (kbllij)ts + %P(z‘j)P(aw D _{klledytiits;
kic 5 k kled

: cdia 1 ac e 1 abyc 1 -\ g a
+ 2 (hilledytsdeg? — P(ab)= S (killedytistid — P(ij)5 S (hilledytsbest + P(ab)s S (killig)ege?

klcd klcd klcd kl

+ B(if)> > (ablled)tsty — P(if)P(ab) Y " (kb|lic)tpts + P(ab) > factitls + P(if) Y fretitiy
cd kc kc ke

— P(ig) > (kil|ci)titi? + P(ab) > (kallcd)titd + P(if)P(ab) > “(akl|dc)titl;
klc kecd kcd

TG . a.rbc . . 1 ‘\ 1C1Q 1 ayc
+ P(ij)P(ad) Z<leZC>tz £2% + P(@J)§ Z<leC]>titk? F P(ab)§ Z<kb’|6d>tkti§l
klc klc kcd

= 1 T i 1 A i 2 aia
~ P(i)P(ab)y S (kblledytstatd + P(i7)P(ab)y S (kille)t5tte? — P(ig) 3 (hilled)is tdig?
kcd klc klcd

1 1
— P(ab) Y (kl||cd)tititsy + P(if) > (killed)tstite; + P(ab); > (Klllcd)ytgtrts
klcd klcd klcd

i @ a e 1 c1a
+ P(if) P(ab) Y (kl|lcd)tstitpd + P(ij)P(ab) > (kl||ed)tstytdty
klcd klcd

* The permutation operator maintains antisymmetry of the resulting terms:

P(pq)f(p,q) = f(p,q) — flq,p)




A FEW OBSERVATIONS

Wick’s theorem is certainly superior to application of the raw anti-
commutation relations, but it still involves substantial tedium and
numerous opportunities for error.

For most terms, the result obtained from Wick’s theorem still contains
many redundancies that can only be reduced by further algebraic
manipulation, e.g. re-indexing of summations, permutation of indices, etc.

If we were to continue this approach to higher-order excitations (i.e.,
triples, quadruples, etc.), the number of algebraic manipulations required

by Wick’s theorem becomes insurmountable if completed by hand.

Computer algorithms exist to automate this process, and they have been
quite successful even for higher excitations.2

However, another approach exists that streamlines the process and offers
a topological perspective on the various terms in the coupled cluster
equations: diagrams!

aSee for example: S. Hirata, “Tensor contraction engine: Abstraction and automated parallel implementation of configuration-
interaction, coupled-cluster, and many-body perturbation theories,” J. Phys. Chem. A, 107, 9887 (2003).




