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PERTURBATION THEORY

 Rayleigh-Schrodinger perturbation theory involves four key steps:

1.

Partition the Hamiltonian into a zeroth-order component and a
perturbation/fluctuation potential:
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. Expand the wave function and energy into orders of A:
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. Expand each perturbed wave function as a linear combination of a set

of zeroth-order wave functions:
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which are often taken to be eigenfunctions of the zeroth-order

Hamiltonian: £(0) ‘\I,§0>> — E§O) \\If§0)>

. Insert these expressions into the Schrodinger equation, collect terms

by order of 4, and set 41=1 to obtain separate equations for each
order.



MANY-BODY PERTURBATION THEORY

* In electronic-structure theory, we partition the second-quantized
Hamiltonian into a zeroth-order component extracted from the Fock

operator:
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and place the remainder into the perturbation:
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where we have assumed canonical Hartree-Fock orbitals.

« With this choice, a natural candidate for the ground-state zeroth-order
wave function is the Hartree-Fock determinant:
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and the other zeroth-order wave functions are excited determinants:
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MANY-BODY PERTURBATION THEORY

This partitioning and choice of zeroth-order functions leads to the usual
Mgller-Plesset perturbational series, where the Hartree-Fock energy is the
sum of the zeroth- and first-order energies:

B = (0| Hy|®0) = (@0 (A + HD) |@0) = E + BV

The first-order Mgaller-Plesset wave function automatically includes only
double excitations:
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where the first-order amplitudes have a concise form:
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And the second-order (MP2) energy is:
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Note that only doubles appear in the first-order wave function, whereas
singles, triples, and quadruples appear in the second-order wave function.




PERTURBATIONAL CC THEORY

The contribution of excited determinants to various orders of perturbation

theory suggests that we may decompose the cluster operators into
perturbational orders:
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where only 7, includes a non-zero first-order term.

We will adopt a common notation for the similarity-transformed
Hamiltonian to simplify our equations somewhat

H. = B_THNGZ
The order-by-order expansion of T and the partitioning of H, lead to a
corresponding expansion of H:
H=H9 +8Y +® 4 .
The lowest few orders are:
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PERTURBATIONAL CC THEORY

* In this formulation, we can construct n-th order Schrodinger equations as:
H™ Do) = EM™|d,)
and then project these onto appropriate determinants to obtain energies
and perturbed amplitudes.

» The perturbed energies arise from projection onto the Hartree-Fock state:
Foln) <¢O’ﬁ(n)‘q>0>

» The second-order energy, for example is:
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« However, the second and fourth terms on the right cannot contribute,
because the Fock operator cannot cancel the +2 and +4 excitations
produced by the cluster operators.

 Furthermore, the leading term is also zero, because only the f;_
component of F can connect with 7%, and this term is zero by Brillouin’s
theorem.




THE SECOND-ORDER ENERGY

* The simplified equation for the second-order (MP2) energy is:
E® — (@, (VNT2<1>) By)

e We may write the first-order Tz operator as:
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where we indicate the order on the diagram using a hash mark on the
interaction line.

« Then the second-order energy is similar to what we derived before for
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* Now we need an expression for the first-order doubles.




THE FIRST-ORDER WAVE FUNCTION

We may obtain an equation for the T(zl) amplitudes by projecting the first-
order Schrodinger equation onto the doubly excited Slater determinants:
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Diagrammatically:

8L BEA A iy

Evaluating these diagrams gives:
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If the orbitals are canonical:
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We may rearrange this to something familiar:
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THE SECOND-ORDER ENERGY (AGAIN)

With an expression for the first-order doubles, we may write the second-
order energy in its final form:

E(2> Ztab(l) (27llab) = 1
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This is identical to the MP2 expression we examined earlier, but was
derived entirely via the coupled cluster equations.

A notational convenience is to incorporate the energy denominator
directly into the diagram for YA"(;) as a horizontal line:
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This also leads to a modified diagram for the second-order energy:
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HIGHER EXCITATIONS

* As noted earlier, if we go beyond the CCSD approximation to include
triples via CCSDT, the cost of the computation becomes unmanageable for
chemically significant systems. Can we incorporate the effects of triples
without making an investment in the full triples equations?

For this analysis, we'll choose T =T, + T, + T, (CCSDT), which gives us a
similarity-transformed Hamiltonian:

HCCSDT = 6—T1—T2—T3]A{N€T1—I—T2-I-T3

Triple excitations first appear in the second-order wave function and the
fourth-order energy (MP4). That gives us a starting point for
approximating the effects of full triples:
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HIGHER EXCITATIONS

» The third-order doubles equation is:
0 = (7| H®|®o)
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and the only contribution we don't already have is ‘A/Nfgz).

» The contribution of fgz) to T(;) may be written as:

—(@2f] (BNTSY) |®o) = (@2 (W T5™) |@0)

« We need second-order f’éz) for this expression, which comes from:
— (@) (EnT{?) |@0) = (@2fe] (W) |@o)

* So the chain of perturbational levels we need to compute the contribution
of YA"3 to the fourth-order energy is:

ESF4) < T2(3) e TA3(2) & T2(1)




HIGHER EXCITATIONS

 The contribution of f(;) to ng) is:

abc & 2 abc AL
(@3] (EnT5?) |90} = (@35¢] (VNTSY) |®o)

» Diagrammatically:
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 Algebraically:
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» The permutation operators are defined as:

Plprar)f{pgr) = f(pari= f(gpr)—f(rp)

e The energy denominators are defined as:
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HIGHER EXCITATIONS

» The contribution of ng) to T(;) may be written as:

—(@32] (EnT5Y) 120) = (@] (VWT5®) |0)

* Or, diagrammatically as:

VY - VW - Vo

» And algebraically:
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HIGHER EXCITATIONS

e Finally, the contribution of T(;) to E}‘L) is:

B — (@ol (TW18")
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* Thus, we have a recipe for including the effects of triple-excitations via
fourth-order perturbation theory. A few important observations are:

* This approach is referred to as the CCSD+T(4) method.

* Given that we are correcting Eccgp, we already have the converged

and T, amplitudes. Thus, we can use them rather than YA“(;), which gives
the CCSD+T(CCSD) = CCSD[T] method.

It is not necessary to compute and store all the tgfc(z)

are computed in batches, which are then immediately applied to the

computation of tgb@

of these methods.

amplitudes. They

, Which is easier to store. This is key to the success




CCSD(T)

In 1989, Raghavachari et al. recognized that, in addition to £\, a particular

fifth-order energy contribution involving YA’I was important:
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They combined this term with E}‘D (both computed using converged Tl

and Tz amplitudes) to obtain the famous (T) correction:

Eccsp(ry = Eccsp + Ef;” o= Eé5T>

The computational cost of the CCSD(T) approach is a non-iterative O(n’n’

step in addition to the iterative O(n2n?) cost of CCSD.

Due to its high accuracy, but significantly reduced cost (relative to the full
CCSDT approach), CCSD(T) is widely regarded as the “gold standard” of
coupled cluster theory.




OTHER APPROXIMATE TRIPLES METHODS

CCSDT-1 Similar in structure to (T), but iterative.

cespf2——t Adds 72 terms to CCSDT-1 (iterative).

CCSDT-3 Adds Tl, T%, and, T{’ terms to CCSDT-2 (iterative).

EC3 Similar to CCSDT-1, but includes all YA] terms at zeroth-order (iterative).

CCSDR(3) Similar to CC3, but is non-iterative.

- All of these methods have O(N') cost, but vary in their prefactors and
whether they are iterative or non-iterative. None require storage of the
complete vector of T; amplitudes.




PROPERTIES FROM ANALYTIC GRADIENTS

oOF
OR,;

Force on the ith nucleus

2 : : S :
8 b ; Quadratic force constants, harmonic vibrational

aRZ aRJ frequencies
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Cubic force constants
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Quartic force constants, anharmonicities




PROPERTIES FROM ANALYTIC GRADIENTS

o)
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Dipole moment vector
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OF?

Electric polarizability tensor
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First hyperpolarizability tensor

0'r
OF4

Second hyperpolarizability tensor




PROPERTIES FROM ANALYTIC GRADIENTS
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Dipole moment derivatives, infrared intensities
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0°F . Electric polarizability derivatives, Raman scattering

OF 2 @RZ intensities
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. Electrical anharmonicity, vibrational overtone intensities




PROPERTIES FROM ANALYTIC GRADIENTS

2
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Magnetic dipole moment vector

0’5
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Magnetizability tensor
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Spin density on nucleus A
amA

0°E
8B8mA

NMR shielding tensor on nucleus A




DERIVATIVE OF THE CC ENERGY

» We may directly differentiate the coupled cluster energy expression with
respect to a parameter x as:

OFEcc OH
5 @0!— Do)

A key concept: in this second-quantized expression, the role of |®,) is

strictly for bookkeeping purposes: It merely allows us to keep track of the
excitation level of the matrix element, and it carries no functional

dependence on x. All of the of the orbital dependence is contained
within the integrals and amplitudes in the Hy and T operators,

respectively. Thus, we do not differentiate @ in this formulation.

» Similarly, derivatives of H, and T operators do not involve differentiation
of the annihilation/creation operators:

8H 8f 1 d{pq||rs
N Z Pq ZZ <a! >{CL;;CLTCLCL}
pqrs
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THE LAGRANGIAN APPROACH

* However, rather than directly differentiating the energy, a more elegant
approach begins by defining the coupled cluster Lagrangian, which we

write as a function of the external parameters (x), cluster amplitudes (t),
and Lagrange multipliers (A):
L(x,t,A) = (Do|H|Do) + Y  Ap(®p|H|Po)
m

« Here we've introduced a new notation for excited determinants and an
associated general normal-ordered operator that generates them:

7A"'7‘(I)O> = ‘(I)n>

« The second term in the Lagrangian provides the constraint that T satisfies

the amplitude equations we derived earlier, viz.
0= <(I)77|H’(I)O>

By defining a de-excitation operator, A, we may write the Lagrangian as:

L(x,t,A) = (@] (1+A) H|Do)  where A=,
7




THE LAMBDA EQUATIONS

- The equations governing T and A may then be determined by requiring
that the Lagrangian be stationary with respect to variations in each:

* First, make the Lagrangian stationary with respect to the multipliers:

Lt )
O\,

These are the usual CC

=0= <(I)77’H‘(I)O>

amplitude equations.

- Next, make the Lagrangian stationary with respect to the 7' amplitudes:

8£(X, t,\) These are the CC
(97577 Lambda equations.
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THE LAGRANGIAN APPROACH

¢ One we make the Lagrangian stationary, we may differentiate it with
respect to an external parameter and take advantage of the 2n+1 rule for
the amplitudes and the 2n+2 rule for the multipliers:
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Thus, the Lagrangian formation allows us to obtain the derivative of the CC

energy without calculating the derivatives of the T amplitudes with respect
to each perturbation parameter.




COUPLED CLUSTER DENSITIES

It is convenient to formulate energy gradient expressions in terms of one-
and two-electron densities. This has significant advantages for computer
implementations due to its generality and efficiency.

While such densities are straightforwardly defined for variational methods,
such as configuration interaction, they are not so obvious for non-

variational methods.
The coupled cluster Lagrangian is an ideal starting point for defining

densities, and, if the Lagrangian is stationary:

£ = Boo = (@] (1+A) H|@o)

We expand the definition of H to obtain:

A
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Aside: This form suggests that we may define left- and right-hand coupled
cluster wave functions as, respectively:

A
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COUPLED CLUSTER DENSITIES

- Now insert the second-quantized definition of H,;:

L=Eqcc= Z fpa(Po] (1 — A) e_T{a;aq}eTM)O}

pPq

= Z (pql|rs)(Po (1 +A) e T{alala,a,}eT | D)
pqrs

* From this expression, we may define the coupled cluster one- and two-
electron densities, respectively to be:

Dpg = (@0l (1+ &) e "{a}a, }eT|@0)

and
Lpgrs = (Po] (1 iy /A\) _T{a’; gasar}eT{cI)@

 This leads to the convenient form for the energy:

boc = prq )i Z pQH”'“S pqrs
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COUPLED CLUSTER DENSITIES

» The CC energy gradient may therefore also be written in terms of these
densities:

aﬁcc GECC

0x ox

« Equations for the densities may be obtained using the same algebraic and
diagrammatic approaches we’ve discussed so far.

 This expression is sufficiently general that we may use it for any correlated
method — CCSD, CCSD(T), etc. — as long as we can define the appropriate
densities.




ORBITAL RELAXATION

¢ We're not quite finished, because we haven’t addressed the evaluation of
the derivatives of the Fock matrix elements and two-electron integrals in

the Hamiltonian:
0 g O(pq||rs)
ox ox

» At first glance, these expressions require us to evaluate derivatives of the
Hartree-Fock MO coefficients, e.g.:

h gC?T 4 q
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» However, we can avoid this by incorporating into our Lagrangian
additional constraints for the MOs:

ox

A
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* Requiring that the MOs obey the Brillouin equation and remain
orthonormal provides additional stationarity conditions through which we
can avoid computing derivatives of the orbital coefficients.




THE “FINAL” GRADIENT EXPRESSION

 After including orbital relaxation and much algebra, we arrive at the final
expression for the CC energy derivative:

5’Ecc . v "
ZDPCI ( )_|‘ ZF pars{Pal|Ts) ( )+Zlqsz(9q)

pq7"8

where the superscript “(x)" denotes derivatives of atomic-orbital-basis
integrals transformed into the MO basis.

» However, we want to avoid transforming such derivative integrals into the
MO basis because that would require us to carry out 3N such expensive
transformations and store the resulting tensors. Instead, we can “back-

transform” the densities and the I, into the AO basis and directly contract
them with the AO-basis derivative integrals:

3Ecc Z DW SE Z S /W H)\U Z wa

pq7°8




STEPS IN A CC GRADIENT CALCULATION

. Calculate the AO-basis one- and two-electron integrals.
. Solve the Hartree-Fock equations for the MO coefficients.

. Transform the one- and two-electron integrals to the MO basis.
. Solve the CC T amplitude equations.

. Solve the CC A amplitude equations.

. Build the CC one- and two-electron densities.

. Solve for the orbital relaxation parameters (the orbital Z-vector).

. Back-transform the densities to the AO basis.

. Contract the densities with the derivative integrals in the AO basis.




EXCITED STATES

 The CC equations we've
examined so far describe the
electronic ground state very T T 02
well, but they do not provide
access to excited states.

2
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Thus, we need to extend CC
theory to excited states to
obtain:
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EQUATION-OF-MOTION CC THEORY

* We can parametrize excited states in coupled cluster theory using a linear
wave function Ansatz acting on the CC ground state:

S
Uox) = Re” |@g)
where R is yet another cluster operator

R R0+R1—|-R2—|-

Inserting this into the Schrodinger equation, we obtain:

Hi B’ [@g) = B RES|[®0)

Since R is an excitation operator, it commutes with 7, so:
L gij
Hyel R|®) = Eoce® R|®0)

Now we multiply by the inverse of the exponential like we did in the
ground-state CC equations:

e Hye RiGy —e T Eae Ri®g)
Thus, we arrive at an eigenvalue equation for the excited-state energies:

HR|®y) = Eox R|®o)




EQUATION-OF-MOTION CC THEORY

We can modify the eigenvalue equation to yield the excitation energies

directly by subtracting the ground state energy. First, apply R to the
ground-state CC Schrodinger equation:

RH|®) = REcc|®o)
Subtract this from the excited-state Schrodinger equation:
HR|®y) — RH|Py) = Eox R|®o) — REcc|Po)

Combine terms:

(HR - RFI) ®o) = AE., R|®,)
- Insert the resolution of the identity between R and H:
HR|®y) — R|®o) (Do H| Do) Z R|®,)(®, |} Qo) = AER| Do)

* Rearrange:

(H — (®o|H|®o)) R|Po) = AEex k| o)

* And our final expression is:

HnR|®g) = AER|®o)




MATRIX REPRESENTATION

* We may project the eigenvalue equation onto excited determinants:

<(I)77’HNR’(I)O> = AEeX<(I)n‘E|CI)O>

- Inserting the resolution of the identity between R and H gives (after
simplification):

Z(CI>77!HN\<I>;7><<I>§71R\<I>O> = AEe, (®,|R|®0)

n/
 This is a matrix-based eigenvalue equation from which we may obtain
algebraic expressions for subsequent computer implementation, e.g. using

a Davidson diagonalization algorithm.




BIORTHONORMALITY

- If we do not truncate R, then the eigenvalues of H are identical to those of
the original Hamiltonian, but the similarity transformation removes
Hermiticity, yielding distinct left- and right-hand eigenvalue equations:

(Pg|LHNy = (Pg|LAE oy
* Here we have introduced a new de-excitation cluster operator (analogous

to A) for the left-hand state: I EO = f/l o iQ e

/
¢,
L AR
iy o,

* Note that the left- and right-hand states are orthonormal to each other,
but not amongst themselves:

(Do| LRI |®o) = ;5 (Po|L°LI|®g) # 0y (Po|RIRI| Do) # by




EOM-CC ANALYTIC GRADIENTS

* The most straightforward approach to EOM-CC derivatives is via the
Lagrangian formulation (skipping orbital response):

Lrom-cc = {Ro| LANR|®o) + AEey (Qo|LR|Do) + Y  Zp(Py|H|Do)
n

» Differentiate with respect to each set of parameters:

- Stationarity of the Lagrangian with respect to the LorR amplitudes
gives the EOM-CC eigenvalue equations.

Stationarity with respect to the Z, parameters gives the ground-state

coupled cluster equations: OLEOM-CC
A
Stationarity with respect the T amplitudes gives the “Zeta" equations:

=0 = <(I)77|H|(I)O>

OLEOM.-CC
ot

The Z equations are analogous to the A for ground-state gradients.

=0 = (®o|L H, 7] R|®o) + (Po|Z H, 7] |®o)




PERFORMANCE

Approximate

EOM-CCSD FCI Eea
Excitation Level

9.109 8.549 1.96

13.580 i 13.525 i 1.03

17.315 i 17.217 i 1.13

3.261 § 3.230 § 1.03

14.454 i 14.127 i 1.24

» The approximate excitation level is a measure of the number electrons
excited relative to the ground state.

aJ. F. Stanton, J. Chem. Phys., 98, 7029 (1993). Excitation energies in eV.




PERFORMANCE

NH; Excitation Energy (eV)

EOM-CCSD 5716

EOM-CCSDT 5.707

EOM-CCSDTQ 5.722

CISD 9.187

CISDT 9.937

CiIsDTQ 5.820

aM. Kéllay and J. Gauss, J. Chem. Phys., 121, 9257 (2004).




TIME-DEPENDENT COUPLED CLUSTER THEORY

* If the Hamiltonian contains a time-dependent contribution (e.g., an
external, oscillating electric field), then we must begin from the time-
dependent Schrodinger equation (in atomic units):

AT = i 5|0

» Choosing a coupled-cluster parametrization of the wave function yields
distinct, time-dependent left- and right-hand states, for which we employ a

phase-isolated form using a real function €(?):

Al @] (1 Bl A(t)) @) —ie(D) Woe) = el 0]Pg)eie)

* This leads to distinct right- and left-hand Schrodinger equations:

H@T(t)‘q)()> te(t) | Z%6T<t)’q)o> 1€(t)

A - ; | d 3 3 .
(o] (1 -k A(t)) T (et Iy _7;%((1)0‘ (1 + A(t)) o 1I(E] ()




TIME-DEPENDENT COUPLED CLUSTER THEORY

* For the right-hand equation, explicit differentiation with respect to time
yields (and assuming no time dependence of the reference state):

S T =
HeT |Dg)ee _zd—eT\q>0> —eT\CI)()}dze

« Multiplication on the left by o1 gives:

dT de

H’(I)()>6 —’l_‘¢0> |(I)0>%€

- Finally, since the phase factor, €', has no coordinate dependence,
multiplication by its complex conjugate gives a somewhat simpler form:

dT de
H|®y) = z—]<1>0> — |®g >dt




TIME-DEPENDENT COUPLED CLUSTER THEORY

 Carrying out the same sequence of steps for the left-hand equation,
explicit differentiation with respect to time yields:

(P (1 + /A\) ele " H =

A

dA s
— i(@g\ge{re_“ + 4

 Multiplication on the left by e~ T gives:

A

(@] (1+A) e "l = —i(@d%}e_ie +i(®| (1+4) e — (@ (1+4

* Finally, multiplication on the left by the complex conjugate of the phase
factor:
dil | W 4 A




TIME-DEPENDENT COUPLED CLUSTER THEORY

We note that the time-derivative of the cluster operators retain the same
excitation/de-excitation character as the original operators because only
the amplitudes carry the time dependence°

_Zdt”

Furthermore, as Iong as the sets of occupied and virtual orbitals are
disjoint, then the cluster operators commute within excitation/de-excitation
classes:

CE el




THE TIME DEPENDENCE OF T

Starting from the right-hand coupled cluster Schrodinger equation:

de

We may project onto the reference determinant to obtain the time
dependence of the phase factor, i.e., the quasi-energy:

A

= : d1
(Po|H |Pg) = Z<¢O|E\@o> — (D] Pg)

de __de
dils i

Similarly, projection onto excited determinants yields the time dependence
of the cluster amplitudes:

- dt
<(I)M‘H|(I)O> = ZT:

This same result may be obtained by projecting the left-hand Schrédinger equation onto the
reference determinant, though the derivation is more complicated.




THE TIME DEPENDENCE OF A

 Projecting the left-hand Schrodinger equation onto the excited
determinants yields:

L : dA : NG N\ de
(@ (1+4) H|D,) = ~i(@0] 2 |9,) + (ol (1+4) Z219,) — (@) (1+4) =19

d)\'u R dt,/ A =
e ZV:<(I)0| (1 5 A) Ty Tu|Po) <2E> /(P (1 p A) @) (Po|H|Po)

- _@'@ == Z<<I>O| (1 = ]\) 7| @)@, | H|®g) + (D (1 - f\) 7u|®0)(Po| H| Do)

dA,,
— i~ (o] (1 4 A) 7, H| )

* If we subtract the second term on the right-hand side from both sides of
the equation, we obtain the equation governing the time dependence of

the A amplitudes:

<<1>Oy(1+A)[ 7] 1®,) = .




TIME PROPAGATION IN COUPLED CLUSTER

* Now we have our governing equations for the time dependence of T and

A\

A: dt
(P M\H}(D()} = Zﬁ

dx,,

(@0l (1+A) [H,7,] [B,,) = —

« These equations may be cast into the general form:

( 7 ) y(t()) — Yo

A variety of algorithms exists for solving them through iterations (time
steps) from a set of initial conditions, including the Runge-Kutta method,
which follows the structure:

Yn+1t——Yn = Ath knz

h—1l:
where i

Kl —flE bei Nty 1 A Z Ok
j=1
and the coefficients are fixed for a given order of the algorithm.




WHY TD-CC¢

* Explicitly time-dependent methods have a number of advantages over
response (perturbation) methods:

Time- dependent methods allow straightforward connections to
experimental conditions, such as fine-tuning the shape, duration, and
intensity of external fields.

Time-dependent methods yield spectroscopic properties across a wide
range of frequencies via Fourier transformation of, e.g., the time-
dependent electric-dipole moment, rather than a relatively narrow
window of frequencies produced by response techniques.

With careful propagation algorithms, time-dependent methods can
permit simulation of more intense external fields than feasible with
perturbation/response theory approaches.




TD-CC: ABSORPTION SPECTRA

At each time step, we compute the
time-dependent electric-dipole
moment, which is related to the
product of the polarizability and
the electric field:

ta(t) = (Yoo (t)|pa|Poc(t))
— Gap (Eﬁ (t))o

The dipole-strength function is
thus obtained via the imaginary
component of the Fourier
transform of the polarizability:

§(w) o< Im [Tr{cras )]
<im [ { G205

RT-CCSD/6-31G, Dirac delta pulse, Field strength = 0.01 a.u., Propagation time = 1000 a.u., Time step = 0.01 a.u.
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TD-CC: CIRCULAR DICHROISM SPECTRA

At each time step, we compute the

time-dependent magnetic-dipole
moment, which is related to the
product of the polarizability and
the time-derivative of the electric

field: !
Mal(t) = -G, (Eﬂ(t))

W 0

The rotatory-strength function is
thus obtained via the imaginary
part of the Fourier transform of

G4, Which becomes the real part

of the transform for a Dirac delta
pulse:

R(w) ox —Im |Tr { G, }]

<o n ey

Relative intensity

I
o
n

—— -Re[m(w)]
= EOM RS(IQ)
—— EOM RS(vg)

RT-CCSD/6-31G, Dirac delta pulse, Field strength = 0.01 a.u., Propagation time = 1000 a.u., Time step = 0.01 a.u.




FURTHER READING

R. J. Bartlett and M. Musial, Rev. Mod. Phys., 79, 291-352 (2007). Coupled-cluster
theory in quantum chemistry.

R. J. Bartlett, J. Phys. Chem., 93, 1697-1708 (1989). Coupled-cluster approach to
molecular structure and spectra: A step toward predictive quantum chemistry.

J. Paldus, in Theory and Applications of Computational Chemistry: The First Forty
Years, C. Dykstra, Ed., Elsevier, New York, 2005, Chap. 7, pp. 115-147. The
beginnings of coupled-cluster theory: An eyewitness account.

J. Gauss, in Encyclopedia of Computational Chemistry, P. Schleyer, N. L. Allinger, T.

Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer lll, and P. R. Schreiner, Eds., John
Wiley and Sons, Chichester, 1998, pp. 615-636. The coupled-cluster method.

T. D. Crawford and H. F. Schaefer, in Reviews in Computational Chemistry, K. B.
Lipkowitz and D. B. Boyd, Eds., VCH Publishers, New York, 2000, Vol. 14, Chap. 2,
pp. 33-136. An introduction to coupled cluster theory for computational chemists.

A. . Krylov, Ann. Rev. Phys. Chem., 59, 433-463 (2008). Equation-of-Motion Coupled
Cluster Methods for Open-Shell and Electronically Excited Species: The Hitchhiker’s
Guide to Fock Space.




FURTHER READING

F. E. Harris, H. J. Monkhorst, and D. L. Freeman, Algebraic and Diagrammatic
Methods in Many-Fermion Theory, Oxford Press, New York, 1992.

T. Helgaker, P. Jgrgensen, and J. Olsen, Molecular Electronic Structure Theory, John
Wiley and Sons, New York, 2000.

J. F. Stanton, J. Gauss, J. D. Watts, and R. J. Bartlett, J. Chem. Phys., 94, 4334-4345
(1991). A direct product decomposition approach for symmetry exploitation in many-
body methods. I. Energy calculations.

J. Gauss, J. F. Stanton, and R. J. Bartlett, J. Chem. Phys., 95, 2623- 2638 (1991).
Coupled-cluster open-shell analytic gradients: Implementation of the direct product
decomposition approach in energy gradient calculations.

J. Gauss and J. F. Stanton, J. Chem. Phys., 103, 3561-3577 (1995). Coupled-cluster
calculations of nuclear magnetic resonance chemical shifts.

J. F. Stanton, Chem. Phys. Lett., 281, 130 (1997). Why CCSD(T) works: A different
perspective.




