COUPLED CLUSTER THEORY
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ALPHABET SOUP OF QUANTUM CHEMISTRY

WHAT METHOD SHOULD WE CHOOSE?

T. D. Crawford, S. S. Wesolowski, E. F. Valeey, R. A. King, M. L. Leininger, and H. F. Schaefer, “The Past, Present, and Future of
Quantum Chemistry,” in Chemistry for the 21st Century, E. Keinan and I. Schecter, eds., Wiley-VCH, Weinheim, pp. 219-246 (2001).




HARTREE-FOCK THEORY

In Hartree-Fock theory, the
many-electron wave function is
written as a single Slater
determinant.

Advantages:
Obeys Pauli antisymmetry
Inexpensive to compute

Frequently semi-quantitatively I q)0> emE
correct

Disadvantages:

* Fails to correlate the motions
of opposite-spin electrons

Cannot provide “chemical
accuracy”
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HARTREE-FOCK THEORY

« A Hartree-Fock Slater determinant yields an antisymmetric wave function:

o1 | (ol ) | da(xall [ 1. [ on(EKy)
P1(x2) Pa(x2) P3(x2) ... on(x2)

\\If)z|<1>0>:\/_]\7! ¢1(.X3) ¢2(.X3) ¢3(.X3) ¢N§X3)
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where

Op(x) =Pp(r)a o @p(x) =1p(r)p

is a one-electron spin-orbital and N is the number of electrons/orbitals.

 The orbitals are obtained by variational optimization of the Hartree-Fock
energy subject to the constraint that the orbitals remain orthonormal.

« We will abbreviate the notation for a Slater determinant using only the
diagonal entries of the matrix:

|Po) = |1 (X1)P2(X2)P3(X3) ... dN(XN))




HARTREE-FOCK DENSITY

The one- and two-electron densities are given as:

p(x1) :/dXQ/dXS.../de\\m?

PIXT Xz | = /dX?,.../dXN\\I!\Q

The one-electron density is the probability of finding an electron at a given
point rq in space (assuming unit normalization), whereas the two-electron

density (or “pair density”) is the probability of finding two electrons
simultaneously with coordinates x4 and xa.

In Hartree-Fock theory, the pair density for opposite-spin electrons is
exactly separable into a product of one-electron densities:

pHF (X1,X2) = p(x1)p(x2)

Thus, their position probabilities are uncorrelated.

However, the Hartree-Fock pair density for same-spin electrons is
correlated because of wave function antisymmetry — the “Fermi hole.”
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electron 2).
deviation in the wave

We observe a “small”
function as electron 1

approaches electron 2.

« This is a purely correlation

effect.

tAlso "borrowed” from Prof. Jirgen Gauss




THE COULOMB HOLE

 This figure?* plots the
difference between the exact
and Hartree-Fock wave
functions for the ground e nucleus electron 2
state of the helium atom ('S), »
again as a function of the
coordinates of electron 1 (i.e.
for a fixed position of
electron 2).
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This perspective makes the
appearance of the Coulomb
hole more pronounced.

tYes, another “borrowed” from Prof. Jiirgen Gauss




CORRELATION ERRORS IN HARTREE-FOCK THEORY

The first ionization energy of the helium atom ground state provides a
good example of the importance of correlation energy.

The Hartree-Fock energy of the helium atom ground state is:2

(Do(He 1S)|H|Dy(He 'S)) ~ —2.861 679 995 612 E),

The “exact” (non-relativistic, Born-Oppenheimer) energy of the helium
atom ground state is:P

(U(He 19)|H|¥(He 19)) ~ —2.903 724 377 034 E,

The “exact” (non-relativistic, Born-Oppenheimer) energy of the helium
cation is:P 72

(U(He™ 28)|H|¥(He™ 289)) = = 25

aK. Szalewicz and H. J. Monkhorst, J. Chem. Phys., 76, 5785-5788 (1981).
bH. Nakashima and H. Nakatsuji, Phys. Rev. Lett., 101, 240406 (2008).




CORRELATION ERRORS IN HARTREE-FOCK THEORY

 The Hartree-Fock model predicts that the first ionization potential of the
helium atom ground state is:

Pyp = E(HeT £5)— E(He 19) = 0.8617 B, = 2262. kJ/inol

 This compares poorly to the exact value:

[Poad SlE(He™ 25] + F{Hel'SY =10.9037 ) = 2372 kI ol

¢ A 2001 study by Korobov and Yelkhovsky2 determined that the effects of
(non-Born-Oppenheimer) nuclear recoil, relativity, and quantum
electrodynamics account for only ~0.4 kJ/mol of the total ionization energy.

* Thus bulk of the error is due to the lack of electron correlation in the
Hartree-Fock prediction.

aV. Korobov and A. Yelkhovsky, Phys. Rev. Lett., 87, 193001 (2001).




IMPORTANCE OF ELECTRON CORRELATION

While correlation energies are typically <1% of the total energy, errors in the
correlation energy can be magnified when computing energy differences:

cods L eEp L OGP

C (En) O (Epn) CO (Ep) D (kJ/mol)

37493 77411 741819239 1 1112790997 | 729.9

0151537 | | 10.248978 | i -0585591 357.3

37.845307- i | 75068010 | i 113327588 | 1087.2

aEven more data “borrowed” from Prof. Jirgen Gauss.




COMPUTING ELECTRON CORRELATION ENERGIES

What approaches are there to including electron correlation effects in our
quantum chemical models?

» Density-Functional Theory (DFT)
« LSDA, BLYP, B3LYP, CAM-B3LYP, PBE, SAOP, M06-L, ...
Configuration Interaction (Cl)
« CISD, MR-CI, RAS-CI, ...
Many-Body/Mgller-Plesset Perturbation Theory (MBPT/MPn)
« MP2, SDQ-MP4, CASPT2, GVV-PT2, ...
Coupled Cluster Theory
«  CC2 CCSD, CCSD(T), €€3, CCSDT

Almost all commonly used techniques in the chemical physics literature are based
on these four approaches, and each has its own advantages and disadvantages.

T. D. Crawford, S. S. Wesolowski, E. F. Valeey, R. A. King, M. L. Leininger, and H. F. Schaefer, “The Past, Present, and Future of
Quantum Chemistry,” in Chemistry for the 21st Century, E. Keinan and |. Schecter, eds., Wiley-VCH, Weinheim, pp. 219-246 (2001).




INTRODUCING CORRELATION EFFECTS

« Consider a four-electron Slater determinant:
Do = |Pi(x1)P;(X2)Pr(x3)P1(X4))

From this point forward, we'll use i, j, k, I, ... to denote orbitals that are
occupied in the Hartree-Fock wave function, a, b, c, d, ... to denote
unoccupied/virtual orbitals, and p, g, r, s, ... to denote general orbitals.

« Any function of N variables may be written as a linear combination of
unique N-tuple products of the ¢, (X) on the same space as the full set of

functions:
P&, Ko = | Copp(X1 )00 (X3)
p>q
* However, we must treat the electrons as indistinguishable, so instead we
could write a pairwise “cluster function” that correlates the motion of any
pair of electrons associated with two particular occupied orbitals, e.g., i

and j:
fij (X s Xn) = Z t%bqba (Xm)Pb(Xn)

a>b




INTRODUCING CORRELATION EFFECTS

« Inserting this cluster function into our Hartree-Fock wave function yields
an improved function:

U = | [¢i(x1)0;(x2) + fij(X1,X2)] dr(x3)P1(X4))

where the determinant notation implies proper antisymmetry and
normalization of the individual terms. Expanding the expression gives:

U =g+ Y 7|¢a(x1)dp(x2)dr (X3)Pr(x4))

a>b
We could also have chosen to correlate electrons appearing in any other

pair of occupied orbitals, e.g., k and I:

= |¢i(x1)9;(x2) [Pr(x3)Pi(x4) + fri(x3,%4)])

which would give a similar expression:

U= &g+ Y t7]6i(x1) s (%X2) ba (x3) b (xa))

a>b




INTRODUCING CORRELATION EFFECTS

* Perhaps a better approach would be to introduce all possible pairwise
combinations of occupied orbitals in our four-electron system:

O =000 1 |[i;001) — | Fie0i0r) F 10 0] T (00—
Qi iee) 00 e it e 5 el il e

where the electron coordinates are now implied, and the negative signs
arise naturally from the definition of the determinant whenever we have to
permute columns to bring two occupied orbitals together.

* We could also go beyond pairs and introduce three-electron cluster
functions:

O =0 0:0:00 + | fii0nd) —|[firds 1) +1Fudi0n) +|difiutr)+
\afardie ) Lt By L U o fop o L h ot
| fisnedr) = | fisiPr) =+ | Fini i) | di fikt)

* If we include all possible N-electron cluster functions, we would obtain the
exact wave function within the space spanned by the bp(x).




INTRODUCING CORRELATION EFFECTS

« Alternatively, we could assume that clusters of three or more electrons are
less important than pairs, and that we should define single-orbital
“clusters” to account for the fact that the orbitals should adjust for the
presence of the new terms:

U = |psp;0601) + | [i0;0101) + @i fi0601) + |0:0; frdr) + |@id; 0 f1)+
fifs 0l | fads o) b | Fibsufrly + (s fo frdp)y |, fodp fi) 1

G053ty | Tifafede) T [ e dior i) fa®fafi) + |0 i Te O T
fii0edr) — | fin®idr) + | fud;or) + |difindr) — (@i f510)+

G105 fer) il fer—AfieFio a1l fe o+

Jig Ter) + [ figudv) + iz fefo) — | di00) — | fin®5 f1) — | fiw [ f0)+
Gilf; 00 F [Fudifo 3 [falfiifl) T [ fifisea X0 H it =
fifadn =l firfer—{fHifiife o for) o Hiife = fer)

 Clearly we need a new notation...




CLUSTER OPERATORS

* The 27th term on the right-hand side of our complicated expression can
be written more explicitly as:

figeft) = ) D it dadedude)

a3bs
This is a linear combination of determinants in which orbitals i, j, and |
have been replaced by orbitals a, b, and c, respectively.

* This is conveniently expressed in second quantization by defining single-
and double-orbital “cluster operators”:

z—ztz a,a,; and ’Lj —Ztab T
a>b

 Thus, the 27th term on the right-hand side of our complicated expression
becomes very compact:

| Fii e fr) = tisti| o)




CLUSTER OPERATORS

* Using these cluster operators, our complicated four-electron wave function
becomes:

U = 1+Zt+ Ztt+ £££+ thﬁ

1 i 1 o o Ee 1 B

ijkl ijkl ijk ijkl
* We can make the expression even simpler, though, by introducing total
cluster operators by summing over combinations of occupied orbitals:

AEZtAz:ZtaT th‘j:iZthTZCLCL

1jab

* More generally:




THE COUPLED CLUSTER WAVE FUNCTION

* Note well two key observations:
1. Because all the creation operators act on unoccupied orbitals and all

the annihilation operators act on occupied orbitals, they exactly anti-

commute: , ;
4,0 taa, = D — U

. Because the total cluster operators always contain even numbers of
creation and annihilation operators, they always commute, e.g.:

Tt = T

» Thus, our four-electron wave function becomes:

2! 3! 2! 4]

REBB Hbys TalWEY AR el s s B e e
xp:(1+T1+—T12+—T13+T2+—T22+—T14+T2T1+§T2T12>cpo

* These terms all appear in the power-series expansion of an exponential!
U =el1t20, = ! @,

* This is a concise expression for the coupled cluster wave function.




COUPLED CLUSTER METHODS

* A hierarchy of coupled cluster methods may be defined based on the
truncation of the T operator:

Method 7’\* Scaling/Cost

cCS O(N°)

CCD i O(N®)

CCSD T=i 1, O(N®)

CCSDT T=T+T,+T; g ON®)

CCSDTQ = T O6(N')

* Later we will examine other coupled cluster methods that approximate
higher order correlation effects using perturbational approaches.




FORMAL COUPLED CLUSTER THEORY

We have a general structure of the coupled cluster wave function, but we
need a recipe for determining the wave function amplitudes. Start from
the Schrodinger equation:

H|V) = E|)

Insert the coupled cluster Ansatz (roughly: German for “approach”):

Hel|®g) = Eel'|®g)
“Project” this equation onto the Hartree-Fock determinant to obtain an
expression for the energy:

(Bo|HeT'|®g) = E{PgleT |®o) = E

Or onto substituted (or “excited”) determinants to obtain equations for
the amplitudes:

ab...| fr. T i A
<(I)z'j... He™ |®g) = E<(I)ij... e” |Dg)
NB: the “excited” determinant notation is to avoid specifying the number of

electrons/orbitals: b..|
D¢ ) = ala) ... a;a;|Po)




TRUNCATION OF THE EXPONENTIAL

- Start from our energy equation:

(Bo|HeT |®g) = E{PBgleT |®0) = E
* Insert the power-series expansion of the exponential:

2 e
(@o\H(l—FT-I—?-I—?—I— J|Pg) = E

* And distribute terms:

A 7AN

2 3

= iR gz g
(Po|H | Do) + (Po|HT'|Pg) + <‘I’0’H Do) + <(I)0|H | @) +... = E

* Slater's rules state that matrix elements of the Hamiltonlan between
determinants that differ by more than two orbitals are zero, thus the cubic
and higher terms cannot contribute, and the energy expression is simply:

A A A T2
(Po|H|Po) + (Po| HT'|Po) + <(I’0|H |@g)-=-E£

* This expression is exact: it depends only on the two- electron nature of the
Hamiltonian and does not depend on the particular truncation of the
cluster operator.




THE SIMILARITY-TRANSFORMED HAMILTONIAN

* We can take a better approach to the coupled cluster equations by
multiplying the coupled-cluster Schrédinger equation by the inverse of the
exponential:

e T HeT |®p) = e TEeT |®g) = E|®o)
* Now project onto the Hartree-Fock reference to obtain the energy:

(Dole T HeT|Dy) = E

* And onto excited determinants to obtain the equations for the amplitudes:
abi A ~T Ar T i
<(I)ij... le™" He™ |Pp) =0

e The similarity transformation yields the Cambell-Baker-Hausdorff
expansion:




HOW IS THIS BETTER®g?2¢

¢ The Hamiltonian contains one- and two-electron second-quantized

operators:

A

FE= > hla v
pq

pqrs
Assuming the cluster operators commute, each commutator in the

Hausdorff expansion between H and 7T eliminates one general-orbital
annihilation/creation operator. For example:

b, 11| - [aha,,afa;]

pq’

a

— CLTCL CZTCL- —CZTCLZ-CL;; q

Ve e s riee d) a
AL e

Because the the second-quantized Hamiltonian contains at most four
annihilation/creation operators, the Hausdorff expansion will truncate after

A

the quadruply nested commutator. This result assumes that the T
operators commute, but doesn’t depend on the truncation of 7.




VARIATIONAL COUPLED CLUSTER THEORY

 Our "“projective” formulation of the coupled cluster equations results in a
non-variational energy expression. However, we could have taken a
different approach by minimizing a variational expression:

(UIH|T)  (D|(eT)T HeT | Do)

(L) (@o|(eT)teT|@p)
 The adjoint operation changes the “excitation" operator T into a “de-

Eewact S e

excitation” operator T

A 1
o §
. — (n') tab a A_laal

- The T and 77 operators do not commute: {T >T} # 0 Thus, the variational
expressions do not truncate naturally and must be cut off at some
selected number of terms. The unitary coupled cluster (UCC)ab and
expectation value coupled cluster (XCC)c methods are based on this
approach.

aM. R. Hoffmann and J. Simons,J. Chem. Phys., 88,993 (1988). bR. J. Bartlett, S. A. Kucharski, and J. Noga, Chem. Phys. Lett., 155,
133 (1989). <R. J. Bartlett and J. Noga, Chem. Phys. Lett., 150, 29 (1988).




SIZE CONSISTENCY

¢ A quantum chemical method is “size consistent” if the sum of the energies
computed individually for two or more systems is equal to the energy
computed of the supersystem containing all non-interacting system:s.

‘A A Sum of separate calculations
’ - | ) on each fragment

L Ep

J A single calculation on both
) fragments: “supermolecule”

* For this property to hold, the wave function must be multiplicatively

separable: ]\IJAB> =3 A]\IJA>’\IJB>

EAB




EXAMPLE: H, DIMER

« For a single H; molecule in a minimal basis set (two orbitals), only two
determinants are needed due to symmetry:

e The "configuration interaction doubles” (CID) wave function, in which only
linear terms in the cluster expansion are retained, is exact in this case.




EXAMPLE: H, DIMER

« For two non-interacting hydrogen molecules, the exact wave function must
include double excitations on both fragments simultaneously — a
quadruple excitation:

T *5 g

| @) | @57 Eyp | @) | @

oyab. = A{(1+ 1) 185) x (1+7F) 10F)]
= (1 Bl T;‘TZB) [BEES

£ (1475 + TE) 103 ®)

= |¥)&ib

 CID does not include this term and thus is not size consistent.




EXAMPLE: H, DIMER

« For two non-interacting hydrogen molecules, the exact wave function must
include double excitations on both fragments simultaneously — a
quadruple excitation:

i E ISR

g, |

| D) | ¢

“IJ%E*D —

« CCD gives a multiplicatively separable wave function and thus is size
consistent.




SIZE CONSISTENCY: DOES THIS MATTER®

 Energies and size-consistency errors (in E;) for the H, dimer in an STO-3G
basis set:

Method 71X EA EAB A

SCF 2212211701 i -2.221°701 : 0.000 000

MP2 2250907 | |1 [~2:250'907 T [\ | 0:000000

CCD -2.268 295 § -2.268 295 § 0.000 000

| . -0.000708
CID -2.268 295 | -2.267 587 ' (-1.86 kJ/mol)

« The error will increase as the number of electrons and basis functions
increase.




THE COUPLED CLUSTER EQUATIONS

* So far, we have derived several key expressions for coupled cluster theory:
CC Wave Function: Uae) = eT‘(I)O>
CC Energy: B = (®gle~T HeT | ®0)
CC Amplitudes: = <(I>?Jb_'.'.' \e_T]:IeTICI)@

Similarity-transformed Hamiltonian:

A

el A N 1 AT it
B e A o i i B s o

g [[[[#1].7].7].7]

e Our next goal is to convert these equations to algebraic form in terms of
the cluster amplitudes and the one- and two-electron integrals that
comprise the electronic Hamiltonian.




NORMAL ORDERING

Evaluation of matrix elements of second-quantized operators between
determinants is easier when those operators are written in “normal order.’
In general, this means that all annihilation or creation operators that would
give zero when acting on the “vacuum state” are moved to the right in a

I

given string.

In quantum chemistry the “vacuum state” is conveniently chosen to be the
Hartree-Fock reference state, | ®,), which contains a set of N occupied
orbitals (the “Fermi vacuum”):

al]®) =0 a,|®0) =0

Thus, our definition of normal ordering requires us to move all operators

such as al.T and a, to the right of operators such as a; and a_.

One way to achieve this ordering would be to use the anti-commutation
relations of the annihilation and creation operators:

a;gaq = ajqa;r9 = a;fjag i a;ga;f? =0 apG, +a.a, =0

A better way is through Wick's theorem...




OPERATOR CONTRACTIONS

« We define a “contraction” between two adjacent annihilation/creation
operators as: 15

AB = AB — {AB}

where the {} around a string implies that the operators may be rearranged

at will, while still keeping up with changes in sign.

* This leads us to four possible contractions in accord with the Fermi vacuum:

CIL—C|L;E_CL ab {a; ab}—a aZ—Fab —

c@b:ﬂ}:o

(]

 Contractions between operators in different orbital spaces are zero.




WICK’S THEOREM

 Wick’s theorem provides a mechanism for expressing a given string of
annihilation/creation operators as a linear combination of normal-ordered
strings: -
ABC I XY Z =H{ABC L XYIZ > {ABC. L XYz}

singles

At |
+ Y {ABC...XYZ}+...

doubles

* In the case of a product of normal-ordered strings (the case we’ll most
often encounter), Wick'’s theorem also helps:

[ABCT HXY Z.[  ={ABC . XYZ.[ 7% > ABC . XY Z

singles

— 8
+ > {ABC..XYZ...}+...
doubles

* A contraction takes a negative sign if an odd number of operators stand
between the two under contraction, and a positive sign otherwise.




THE NORMAL-ORDERED HAMILTONIAN

* Let's apply Wick’s theorem to the second quantized Hamiltonian:

H = thqa 2 Z (pql|rs) ;gasar

pqrs

» The second-quantized string in the one-electron term becomes:

FE
Taq i {a’;aq} + {a’;aq} = {a;;a’q} i 5pq5p6i

where the notation p € i means that p must be an occupied orbital.

 Thus, the one-electron term becomes:

DB B T N R B BT
pq pq (

 The last term, which contains no second-quantized operators, is the one-
electron contribution to the Hartree-Fock energy.




THE NORMAL-ORDERED HAMILTONIAN

* The two-electron term involves more components

B3
fafa,a, = {ajala,a} + (Gfald.a,} + {a}dd,a,} + (dajaa,

Eadl = ]

+ {aT Ta 20} + {a aqasar} + {a‘L Ta 0

 Now evaluate the contractions:
CL CL A, = {a ar} = 51?62'51?5{@:[]&7“} =+ 561€7l5q3{a;2a7’} =+ 51961'5197“{&2&5}
= 5q€i5qr{a;as} — OpeilpsOqejOqr + OpeiOprOqe;Oqs

* Insert thls back mto the expression for V and change the summations:

I Z quTS p q QsGr = I Z pQHTS {a’p g sar} W Z<ZQHTZ>{CL:§&T}

pqrs pqrs qm'

+ 3 S willri{aba,} + 7 S Gidllis)afa,} — 3 S (willisi{aja,)

pri qst DSt

vxt Z<Z]Hﬂ> 4 - Z<w||@]> Two-electron contribution
4 ~— 4 —
i to the Hartree-Fock energy




THE NORMAL-ORDERED HAMILTONIAN

 The four terms involving only two annihilation/creation operators are
identical and can be combined into one:

—2 Y tiallrif{ala,} + 3 S twillridaba,} + 5 3 fiallisHoba — 1 Y willisiaba,} = 3 (illai {afa

qri pri qst pSt pqi

* The two terms with no annihilation/creation operators are identical and

ilig) =| 3 S tidlli)

can also be combined into one:

y]
* Bringing all the one- and two-electron terms together we have:
- 1 = oo TS 1
H=) hit 5> (illig) + > helaba}t + ) (pillen{ala,} 5 > (pdlirsi{afala,a,
i ij pq pqi pqrs

The Hartree-Fock energy The Fock operator

e Final form:

= (@0l 120} + 3 frelaba,} + 1 3 (pullrs){afafaa,
bq

pqrs




THE NORMAL-ORDERED HAMILTONIAN

» We can thus define the normal-ordered Hamiltonian to be the original
second-quantized Hamiltonian minus its (Fermi) vacuum expectation value:

Hy = H — ($o|H| D)

i
= Z qu{a;aq} — 1 Z<pQHTS>{CL;CLZ;CLSCLT
pq pqrs
= Fy + VW

¢ We may therefore think of the normal-ordered Hamiltonian as a
correlation operator in that the contributions to the Hartree-Fock energy
have been removed. This is the form of the Hamiltonian we use from this
point forward.

* This is a general result: The normal-ordered form of an operator is the

operator itself minus its vacuum/reference expectation value.

A key corollary: The vacuum/reference expectation value of a normal-
ordered operator is zero.




NORMAL-ORDERED CLUSTER OPERATORS

* In the previous lecture, we defined the cluster operators as:

— Z t?ala;  and Z t“b Ta
ta

zgab
or, more generally:

1 2 n
it ab..| T
Ty = (n') Z big... ajza’b = T

L] abls
Recall that our definition of normal ordering relative to the Fermi vacuum

means that all a; and a, must stand to the right of all a| and a.. This is
already the case with the excitation operators, so we may trivially write:

7 1 ab
T2:4Zt {al aba a; b

5 = 1jab
1
(5) 3 i .ae)
b 17 Lab.

Again: the {} means that we may rearrange the operators at will, as long
as we keep up with the sign.




SIMPLIFYING THINGS (A BIT)

* We can now modify the Hausdorff expansion to use only normal-ordered
operators:

A A 5 2 A 1 A 5 A 1 X 5 A -
e THve” = Ay + [y, | + N [Ew 2], 7) + = ([ [ B 2] 2] 2] +

e A g

* This leads to another important property of the commutator expansion:

Only those terms from the Wick’s theorem evaluation of the commutators
in the Hausdorff expansion in which the Hamiltonian contracts at least
once with every cluster operator on its right can make a non-zero
contribution.

* We will illustrate this property using two of the simplest terms from the
expansion:

[ )2

1
2

|:FN,T1] and




SIMPLIFYING THINGS (A BIT)

* First, write the linear commutator explicitly in terms of second-quantized
operators:

[FN’ Tl} = Z Z qutq {a;r?aq}7 {agai}}
= Z Z qut“ {a }{alai} — {alai}{a;;aq})

* Next, use Wick’s theorem to evaluate the each of the productS'

{afa Hala;} = {afagala;} + {afagala;} + {afd,dla;} + {ald,dla;}

T {ap q a z} -c 5pz{aqa } " 5qa{apa’i} 1 52973561@

{CLZCL,L-}{CL } {aa a,; p q}

We can recognize that the uncontracted terms in both products are
identical because we may rearrange the operators within the {}. Thus,
they exactly cancel in the commutator, leaving only terms in which FN has
at least one contraction with T} on its right.




SIMPLIFYING THINGS (A BIT)

« The quadratic commutator may be expanded into three terms:
1

3 ([P 1i]. 5] =

=33 uateth ({eha, Hala Hala,} — 2ol Habo, Hala,} + {afo; Haa, Halo,})

pg——iat—gb

(FnTp — 2B Fvy + T2y

 Wick’s theorem for each product gives:
{a;aq}{aZai}{aZaj} = {aTa ) ab& P+ {ap E a Zaba, F 4+ {agaqaaazaba }

+{ap q a ’Laba}—i_{ap q a za’ba}—'_{ap q aaz

—‘T

—|—{an'_|T

aba,}—l—{a a,}-l-{a

I_I
—2{@%}{@;%}{@2%} = <{aa a; p qaba }—'_{aa a; p qaba }—'_{aa a; paqabaj}

{alai}{aga’j}{a’;aq} = {alai j p q}

¢ The only contributions that don’t cancel are terms 7 and 8 from the first
product!




SIMPLIFYING THINGS (A BIT)

¢ The uncontracted terms are clearly identical:

{ala,ala;ala;} — 2{ala;alaala;} + {ala;a}a;ala,} =0

* We can see that the singly contracted terms are also identical when we
convert the summations to the same patterns, e.g.:

_YS‘Yqutatb ( JzTaana aya; }—I—{CllTCL ala a,ba ol azaTa aba })

1Qa

5 Y Y Y qutatb (5 {aqalalag‘} i 5pj{aqa3aial} = 25pj{a2aiaqal];}>

DI (X utotole) + 5 hfoelod) - 25 ookl
1a q q q

5 Z Z tatb (Z qu{a’qa;ga:rzai} 15 Z qu{aqalaial} T2 Z qu{alaiaqa;g}>
70 q q q

=




SIMPLIFYING THINGS (A BIT)

* The doubly contracted terms in which the Fock operator shares both of its
indices with only one of the two T, operators are also zero:

o 5 S ittt ({6 il + el )~ 2alosajodio;)

Pqg ia jb

= Z Z tatb Z L <5p25qa{aba } 4+ 5p35qb{a B 25pj5qb{alaz-})

0

= Z Ztatb (fm{aZaj} - fjb{agai} -~ ijb{alai})

Lk 30

= Z S0t (finlatas} + fn{ala;} - 2f{ala;})

=0

— ()




SIMPLIFYING THINGS (A BIT)

» The only non-zero contributions arise from the double contractions in

which the Fock operator shares an index with each of the two T, operators
to its right, leading to a rather compact final result:

Tt o : | G ]
5 HFN,TJ ,Tl} = —YYYqut t; ( {afa,ala zaba }‘|’{ap@qa3;aza;£aj )

L) Yqutatb (Busdaetal) = duduiala;})

Z Z fjatatb{a ab}
ta| 4b

Only those terms from the Wick’s theorem evaluation of the commutators in
the Hausdorff expansion in which the Hamiltonian contracts at least once
with every cluster operator on its right can make a non-zero contribution.

* We can summarize this important finding using a relatively simple notation:

T (HNGT)
C




THE CCSD ENERGY EQUATION

* We now have the tools necessary to derive an algebraic expression for the
CCSD energy, starting from our formal equation:

Foa = (Bple - Hvel |Os) =@ (ﬁNeT) By

recognizing from our earlier analysis that we need only consider up to terms

that are quadratic in 7

- 4 BB
B (@] (HN [1 e 5T2D D)

&

 The leading term vanishes because the reference expectation value of a
normal-ordered operator is zero:

(Do|Hy| o) =0

e The linear term contains four contributions:

(@o] (EnT) |®0) = (o] (EnTh + VwTs + EnTs + Vs |@0)

* Let's deal with each of these in order using the techniques we’ve learned...




THE CCSD ENERGY EQUATION

* Given that the reference expectation value of a normal-ordered operator is
zero, only fully contracted terms from Wick’s theorem can give non-zero
results:

(@0l (FnT1) |®o) =203 futt (Bolfafa} ol 120)

:Zprq <(I)0Hap q a z}’q)0>
— Zprqta (I)O|5pz5qa|q)0>
:Zfiat?

. Forthe (‘A/Nf”l) term, however, it is not possible to generate fully
(&

contracted terms, and so it makes no contribution to the energy:

(D, (VNﬂ) By = Z N (pgllrs)te (Bol{alala,a, Haka; }Po) = 0

pqrs 1a




THE CCSD ENERGY EQUATION

. Similarly, the (FNT2> cannot yield a fully contracted expression, and also

vanishes:
(@] (ETs) [®0) = 2 373" foatth (@ol{aha, Halafa,a, o) =0
Pq tjab

. The <\7Nf2> term is the only remaining non-zero linear contribution:
C

(Do (VNT2> |®g) = 16 Z Z (pql|rs) tab (I>0|{ap 5 a,a, Mal a,ba a; H®Po)

pqrs ijab

pqrsz]ab

{ap Q0,00 0.0, H-t {ap 1050,.0k 0y 0,0

’m-‘“wz T-r:h})

::'__ 2{: 2{: ZKH‘TS tab 5 5 5 5sb'+'5pj5§i5rb58a —'5pj5qi5ra53b'—'5pi5qj5rb5sa)

pqrszgab

= 2 S illab)es?

t1jab




THE CCSD ENERGY EQUATION

« Among the six components of the energy expression involving 72, only

one can yield fuIIy contracted terms:

i S T
5 (@0l (WW2) 180) = 5 375 3 (pallrs)tses (ol {afafa,a, Hala, Haja; o)

pqrs ga- & 1b

1) q sArQqQ; D q S A

:_ZquMst“tb(‘ fa,a,.ala abJL}+{lL Ta,a,.aa,

pqrs ijab

i 0y 2{: 2{: ZK”{TS tatb 5pj5q16ra63b'+'5pj5qi5rb63a'+'5pi5qj6ra58b'_'5pi5qj5rb5sa)

pqrszjab

1 > s
= = Giillabyec

atby
« We can now bring all of the non-zero terms together to obtain the final
CCSD energy expression:

Eoo = met“ e Z ij]lab)ts} + 5 Z ij||ab)tst]

zgab z]ab




THE CCSD AMPLITUDE EQUATIONS

* The derivation of algebraic expressions for the cluster amplitudes is similar
to that of the energy equation. In the CCSD approximation, the single-and
double-excitation amplitudes are determined from, respectively:

0:(@5\(1&?) ®o)  and 0= (BE (ﬁNeT) By)

Key concept: Although each of these expressions does not immediately
appear to involve reference expectation values, they can be converted to
this form by recognizing that the excited determinants on the left can be

written as:

(@¢] = (Dol{ala,} and (2] = (ol{a]ajaya,}

For example the leading H), contribution to the single-excitation amplitude

equations is:

(DL EN|Do) = > fog(®ol{ala, Haba, }HPo) = prq{ai il — prqazqéap fui




THE CCSD AMPLITUDE EQUATIONS

« Similarly, the leading ﬁN contribution to the double-excitation amplitude
equations is:

(@8 |Viy|®o) = iZ@QH"‘SM‘DoHa ajaya,Hafaba,a,}|®o)

1
= Z Z(pQHT5> (5pa5qb5ri58j —+ 5pb5qa5ri5sj — 5pa5qb5rj53i = 5pb5qa5rj53i)

pqrs

= (abl|ij)




THE CCSD AMPLITUDE EQUATIONS

* And a term that | include here mainly because it looks so awesome:

@] (i) [20) = 3 3 S pallrs)tg (@ol{alafnya,} (fafaf,e,} ala,}), [20)

pqrs kc

7 Z > (pallrs)t; <{ Ty ala,d,ahala

pqrs ke

= il ]

a,a.ala,} + {ala aba aTa’Ta a,} + {aT

e | [

|
\ \ |
10;a,a, aTagasarai e a; baaapaqasaral wr T 1{a;

=250 > (allrs)tyx

pqrs kc
(5pa5qb67‘c(55j5ik = 5pb5qa5rcasj5ik: oo 5pa(5qb6rc§si6jk s 6pb5qa5rc55i5jk_
5pa5qb5rj(ssc(5ik o 5pb5qa5rjdsc(5ik o 5pa5qb6ri5306jk = 5pb5qa5ri5306jk_
5pa6qk;5ri55j5bc ok 5p65qk6m’5sj5ac = 5pb5qk(5rj(ssi5ac i 5pa5qk5rj55i5bc+
6pk5qa5ri65j 6bc = 6pk:5qb67"i55j5ac = 6pk:5qa5rj 6si6bc + 5pk6qb5rj 6si6ac)
= ({ablles)ts — (abllciyts) + >~ ((ijlIbk)te — (ifllak)})
k

(63




THE Tl AMPLITUDE EQUATIONS

 Using a great deal of mental (and physical!) fortitude, one can apply Wick's
theorem to all of the terms from the Hausdorff expansion and obtain the
following expression for the single-excitation amplitudes:

Ozfai“i‘Zfactg_kaz +Z kCLHCZ tc+szc +is Z kCLHCd tki_

kcd

1 4 CQ C
> > (Kl ciytis — Z Fretits = Y (kl|lciytit? + > (kallcd)titd—

klc kle kcd

C a C a 1 C a 1
Z<le6d>tkt?tl =e Z<leCd>tkti’ =3 Z<k”|0d>tkciltl 3 Z<kl|‘0d>tkz

kled klcd kled kled




THE Tz AMPLITUDE EQUATIONS

. . ac c a a 1 s\ 1Q 1 c
0 = (abl|ij) + EC: (fbctij L factgj) e Z (fkjtz'kl:) SE fk:z'tj/g) = 2 Z<kl”1]>tk? i 9 %}abHCdﬁigd

k kl

+ Pi7)P(ab) 3 (kbllei 166 + P(i7) S abllej)ts — P(ab) " (kblises + 5 P(i7)P(ab) S (kilfedyigies!
kc c k klcd

1 cdya 1 ac £ 1 ab,c 1 -\ ga
+ 2 T (kllledytidtes — Plab)s S (Rllled)tistd — Plis)5 Y (kllledytspest + P(ab)= > (killig)tit
klcd kled kled kl

! c . . . agc abc . cya
+ P(if)5 S (ablled)tsts — P(ig)P(ab) 3 (kbllic)its + P(ab) 3 fuetftls + P(i) Y fuettsh
cd kc kc kc

— P(i5) Y _(kll|ciytiti? + Plab) > (kalled)titil + P(if)P(ab) Y (ak||dc)tdtls
klc ked ked

1 1
S . \arbc 2 -\ ycqab aycd
+ P(ij)P(ab) %}kll\wm tix + P(i7)5 ;(klllwmtm — Plab) kzd:<kb||0d>tk:tij

= | . i 1 s = g
~ P(ij)Plab) S (kblled)tstged + P(i)Plab)s S (killeitstatt — P(j) S (Wlledytged?
ked klc kled

CcyQ sy 1 C a 1 a C
— P(ab) Y (kl||cd)tgtitd + P(if); > (klled)tstdty + P(ab) > (kll|cdytitres
klcd klcd klcd

.. (c a s5¥e 1 c1ra
+ P(ij)P(ab) Y _(Klllcd)tit/ti + P(ij)P(ab)7 > (kllcd)tititit;
klcd klcd

* The permutation operator maintains antisymmetry of the resulting terms:

P(pq)f(p,q) = f(p,q) — fla,p)




A FEW OBSERVATIONS

Wick’s theorem is certainly superior to application of the raw anti-
commutation relations, but it still involves substantial tedium and
numerous opportunities for error.

For most terms, the result obtained from Wick’s theorem still contains
many redundancies that can only be reduced by further algebraic
manipulation, e.g. re-indexing of summations, permutation of indices, etc.

If we were to continue this approach to higher-order excitations (i.e.,
triples, quadruples, etc.), the number of algebraic manipulations required

by Wick's theorem becomes insurmountable if completed by hand.

Computer algorithms exist to automate this process, and they have been
quite successful even for higher excitations.2

However, another approach exists that streamlines the process and offers
a topological perspective on the various terms in the coupled cluster
equations: diagrams!

aSee for example: S. Hirata, “Tensor contraction engine: Abstraction and automated parallel implementation of configuration-
interaction, coupled-cluster, and many-body perturbation theories,” J. Phys. Chem. A, 107, 9887 (2003).




