
Algorithm Design

Frank Neese

Max Planck Institut für Chemische Energiekonversion
Stiftstr. 34-36
D-45470 Mülheim an der Ruhr
Frank.Neese@cec.mpg.de

ESQC 2017, Sicily

Goals of Quantum Chemical Method Development

✓ To be able to calculate ‚things‘ (energies, properties) that could not be calculated before

or on systems that were not accessible before

✓ To develop a better (more accurate, more elegant, more compact, more transparent, …)

theory for a known property.

✓ Develop new approximations to known equations

✓ To obtain the same number faster than before

✓ To obtain an approximate number faster and in improved scaling’ than before

✓ To obtain the same number faster than before

✓ To obtain an approximate number faster and in ‚improved scaling’ than before

Scaling Laws

A quantum chemical algorithm can be characterized by it’s scaling behavior:

Scaling with respect to system size (#(Atoms), #(Basis functions),…)
Scaling with respect to basis set (Size, Angular momentum,…)

A scaling law can be written as:

T = aNb
T Time taken by algorithm

a ‚Prefactor‘

b Scaling Exponent

Optimizing an algorithm: Bring down the prefactor
Bring down the scaling

Holy grail: Linear scaling with a small prefactor

Figuring out the Scaling Law

General:

Dimensionality of target quantity x Scaling of loops required to obtain it

Example: ψ
p
(r)= c

µp
ϕ
p
(r)

µ
∑

➡ Number of occupied and virtual MOs is proportional to system size

➡ Number of AOs is proportional to system size

(µν |κτ) Number of AOs integrals proportional to N4 (O(N4))

(ia | jb)= c
µi
c
νa
c
κj
c
τb
(µν |κτ)

τ
∑

κ
∑

ν
∑

µ
∑

O(N4) O(N) O(N) O(N) O(N) O(N4)→}
O(N8)

Prefactor vs Scaling

crossover point

In developing reduced scaling algorithms one shoots for early crossover

For many applications nonlinear scaling with a small prefecture is the preferred choice

Golden Law of Development

✓ In general, the workflow of a quantum chemical algorithm contains many steps (e.g.
localization, integral transformation, equation solution, perturbative correction, …),

✓ Each step will have its own scaling law

Work on
the

Slowest
Step!

Profile your Program!
Total execution time ... 153019.575 sec

Localization of occupied MO's ... 7516.449 sec (4.9%)
Fock Matrix Formation ... 11392.614 sec (7.4%)
First Half Transformation ... 37824.285 sec (24.7%)
RI-PNO integral transformation ... 17832.376 sec (11.7%)
Initial Guess ... 5376.961 sec (3.5%)
DIIS Solver ... 8855.850 sec (5.8%)
State Vector Update ... 1.744 sec (0.0%)
Sigma-vector construction ... 8177.969 sec (5.3%)
 <0|H|D> ... 0.072 sec (0.0% of sigma)
 <0|H|S> ... 0.003 sec (0.0% of sigma)
 <D|H|D>(0-ext) ... 575.591 sec (7.0% of sigma)
 <D|H|D>(2-ext Fock) ... 1.921 sec (0.0% of sigma)
 <D|H|D>(2-ext) ... 1512.608 sec (18.5% of sigma)
 <D|H|D>(4-ext) ... 684.157 sec (8.4% of sigma)
 <D|H|D>(4-ext-corr) ... 2880.920 sec (35.2% of sigma)
 CCSD doubles correction ... 33.534 sec (0.4% of sigma)
 <S|H|S> ... 78.695 sec (1.0% of sigma)
 <S|H|D>(1-ext) ... 79.135 sec (1.0% of sigma)
 <D|H|S>(1-ext) ... 5.117 sec (0.1% of sigma)
 <S|H|D>(3-ext) ... 28.949 sec (0.4% of sigma)
 CCSD singles correction ... 0.108 sec (0.0% of sigma)
 Fock-dressing ... 1541.152 sec (18.8% of sigma)
 Singles amplitudes ... 15.255 sec (0.2% of sigma)
 (ik|jl)-dressing ... 441.823 sec (5.4% of sigma)
 (ij|ab),(ia|jb)-dressing ... 213.171 sec (2.6% of sigma)
 Pair energies ... 1.235 sec (0.0% of sigma)
Total Time for the density ... 632.934 sec (0.4% of ALL)
Total Time for computing (T) ... 32529.433 sec (21.3% of ALL)

How much can you
gain from optimizing

these steps?

This is worth your
while!

2880.920 sec (35.2% of sigma)

Prelude:

A little information on Computers

The ‚Gauss-curve‘ of method development

original
curve

optimistic
curve

Single CPU Clockspeed

Copyright © 2011, Elsevier Inc. All rights Reserved.

Growth in clock rate of microprocessors. Between 1978 and 1986, the clock rate improved less than 15% per
year while performance improved by 25% per year. During the �renaissance period� of 52% performance improvement per year between
1986 and 2003, clock rates shot up almost 40% per year. Since then, the clock rate has been nearly flat, growing at less than 1% per year,
while single processor performance improved at less than 22% per year.

So far consistent with Moore‘s law (processor
performance doubles every 12-24 months)

Optimistic estimates claim that Moore‘s law
can be fulfilled until ~2020-2030

Physical limits of miniturization will ultimately
be reached

Performance: Moore’s Law

“From this historical perspective,

it’s startling that the whole IT industry has bet its future that

programmers will finally successfully switch to explicitly parallel

programming”

(Patterson, Hennessy: The Hardware/Software Interface, 2009)

Paradigm Change:

Requires explicit parallelization by the programmer!

Consequence’s of Moore’s Law

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

Sp
ee

du
p

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Number of Processors

Amdahl’s Law

Parallel Portion
 50%
 75%
 90%
 95%

Speedup:

P: Parallel portion of code

N: Number of Processors

Amdahl’s Law of Diminishing returns

Computer Architecture and Algorithm Design

Disk
CPUCACHEMAIN

MEMORY

~1ms

I/O bus Mem. bus Cacheline

~100 ns ~1 ns

~1 ns

✓ Disk access is very slow

✓ Memory to CPU transfer is slow }
Algorithms need to carefully

balance I/O and memory
operations, not just minimize FLOP

count

Development Guidelines for Quantum
Chemistry

„Getting Exactly the same number faster“

Take it with a grain of salt!

The Do’s and Don’t’s of Programming: Overview

‣ Avoid short, nested Loops

‣ Avoid Multidimensional Arrays

‣ Access arrays in „Unit Stride“

‣ Avoid indirect addressing

‣ Make use of matrix multiplications and BLAS

‣ Make use of LAPACK

‣ Move redundant work out of the inner loops

‣ Minimize disk I/O, do it in larger chunks and do it as far ‚outside‘ as possible

‣ Watch out of Load Balancing in parallel programming

Some rules for scientific programming that are relevant for obtaining high performance:

Instruction Pipelines and Logic

Ideal: The CPU has preloaded a ‚pipeline‘ of instructions and the data required to perform
the next operations is in the CACHE

CPUCACHE Cacheline

LD x
MOV x y
ADD y z
…x,y,z,…

A logical instruction whose outcome can not be predicted at compile time brings the CPU
and CACHE out of the ‚groove‘

if (x<y)
 z=x+y
else
 n=n+1
 xp= sin(2*yp)
end

GOOD: x,y,z are in the CACHE,
performance is optimal

BAD: xp, yp and n are not in the
CACHE. The pipeline must be
cleared and a slow memory
operation (MOP) is performed to
get this data

} careful optimization
avoids logical

decisions in time
critical parts of the

program

Unit Stride Access

The CACHE has a finite size that is rather small. If one loads an array into the CACHE that
is larger than the CACHE size, one should avoid ‚jumping‘ around in the array but rather
only access consecutive positions in the array (unit stride access)

x=0
for (i=0;i<2048;i++) x=x+y[i]

Example: Say, the CACHE holds 1024 array elements and we want to add up the
elements of an array y that contains 2048 elements.

Good:

Bad: x=0
for (i=0;i<2048;i++) x=x+y[yorder[i]]

Two problems:
- yorder[i] may be anything in the range 0..2047 for any i and hence we may have to reload y into

the CACHE multiple times
- We use ‚indirect addressing‘. There is no way for the compiler to know the value of yorder[i] and

hence after each addition we have to look again which element of y we need next.

- The compiler can optimize well: load the first 1024 elements of y and the next 1024 elements.
Performs optimally without any ‚CACHE misses‘

for (i=0;i<2048;i++) x=x+y[i]-y[N-i-1]or

Libraries: The only ones you really need
Relying on third party software that may or may not be maintained in long term or may or
may not be portable between platforms can be dangerous! There are three you likely
cannot avoid:
1. BLAS (Basic Linear Algebra System)

a) Level 1: Vector/Vector operations
b) Level 2: Matrix/Vector operations
c) Level 3: Matrix/Matrix operations

2. LAPACK (Linear Algebra Package)

Linear algebra routines (Diagonalization, Linear equation systems, Cholesky
decomposition, singular value decomposition, …)

3. MPI (Message Passing Interface)

Low level routines for parallelization using a distributed memory paradigm

These are highly efficient, standardized and portable libraries.
(In ORCA, we nevertheless have put one software layer above them in order to have no direct calls to third party software whatsoever)

Example: The power of BLAS

Let us look at two ‚innocent‘ matrix multiplications:

C= AB C
ij
= A

ik
B
kj

k
∑

C= ABT C
ij
= A

ik
B
jk

k
∑

Which we can program as follows:

loop i = 1 … N
 loop j = 1 … N
 x=0.0;
 loop k = 1 … N
 x=x+A(i,k)*B(k,j); or x=x+A(i,k)*B(j,k)
 end loop k
 C(i,j)=x;
 end loop j
end loop i

Example: The power of BLAS (II)

For two densely filled essentially random, square matrices A and B with N=2750

C= AB

C= ABT

C= ATB

:

:

:

directly programmed BLAS (dgemm)

99

11

Why that?

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

A =

!
✓ The matrices are arrange row-wise in contiguous memory

places. Hence A(i,k) is accessing the matrix in unit stride while
A(k,i) is not!

✓ Huge (factor 10!) performance penalty!
✓ Even worse would be to have rows scattered somewhere in

the main memory (e.g. Numerical Recipes matrix routines in C)

104

USE BLAS LEVEL 3
(DGEMM) WHENEVER YOU

CAN!)

1.7

1.7

1.7

Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz

Example: The power of LAPACK

Diagonalization

Example: 3000x3000 matrix

Intel(R) Core(TM) i7-4810MQ CPU @ 2.80GHz

Hand written

28.1 sec 5.3 sec

2.4 sec 0.2 sec

315.0 sec 21.7 sec Singular value decomposition

Cholesky decomposition

Intel-MKL

~5x

~12x

~25xdgesvd

dsyevr

dpotrf

Example: Loop Unrolling

Time critical routines should not contain logic and should not contain nested loops. The
process of eliminating short loops in favor of hand optimized, explicit code is called ‚Loop
unrolling‘

Example: Calculation of integrals using the McMurchie/Davidson method

In the MD method, molecular integrals can be very elegantly calculated using
an expansion of the Gaussian product in a Gaussian Hermite basis

Cartesian Gaussian on center A: Gabc;α
A = (x −X

A
)a(y−Y

A
)b (z −Z

A
)c exp(−αr

A
2)

Repulsion integral in MD:

(G
abc;α
A G ′a ′b ′c ;β

B |G
def ;γ
C G ′d ′e ′f ;δ

D)= f
αβγδ

E
t
ABE

u
ABE

v
AB

v=0

c+ ′c

∑
u=0

b+ ′b

∑
t=0

a+ ′a

∑ (−1) ′t + ′u + ′v E ′t
CDE ′u

CDE ′v
CDR

t+ ′t ,u+ ′u ,v+ ′v
′v =0

f+ ′f

∑
′u =0

e+ ′e

∑
′t =0

d+ ′d

∑

const
Expansion of

GAGB in
Hermite basis

Expansion of
GCGD in

Hermite basis

Integrals in
Hermite basis

Example: Short Loops and Multidimensional Arrays
Pseudocode for a general MD integral routine
Calculate Array EAB

Calculate Array ECD

loop ixyz over Cartesian components of A

loop jxyz over Cartesian components of B

loop kxyz over Cartesian components of C

loop lxyz over Cartesian components of D
x=0
loop t =0..a+a’
loop u =0..b+b’
loop v =0..c+c’

loop t’ =0..d+d’
loop u’ =0..e+e’

loop v’ =0..f+f’

Calculate Array R
} recursive formulas. Nested loops of length ~lA+lB (or lc+lD)

x=x+ EAB[x][a][a’][t]*EAB[y][b][b’][u]*EAB[z][c][c’][v]
 *ECD[x][d][d’][t’]*ECD[y][e][e’][u’]*ECD[z][f][f’][v’]*(-1)t’+u’+v’
 *R[t+t’][u+u’][v+v’]

end loops t’,u’,v’
end loops t,u,v

end loops i,j,k,lxyz

ELREP[ixyz][jxyz][kxyz][lxyz]=x

10 nested loops!
For s and p functions these run basically from 0 to 1

Example: Short Loops and Multidimensional Arrays
Alternative: For low angular momenta create hand optimized routines and store integrals in
linearized arrays

Calc_ssss()
 ab = a+b
 cd = c+d
 abcd = ab+cd;
 pprim = 4.0*ab*cd*sqrt(abcd);
 SR = Kab*Kcd/pprim;
 PQX = (PX-QX);
 PQY = (PY-QY);
 PQZ = (PZ-QZ);
 RPQ2 = PQX*PQX+PQY*PQY+PQZ*PQZ;
 W = ab*cd/abcd;
 RT = W*RPQ2;
 Calc_F_Function(F)
 ELREP[0]= F[0]*SR;

Calc_sssp()
 ab = a+b
 cd = c+d
 abcd = ab+cd;
 pprim = 4.0*ab*cd*sqrt(abcd);
 SR = Kab*Kcd/pprim;
 PQX = (PX-QX);
 PQY = (PY-QY);
 PQZ = (PZ-QZ);
 RPQ2 = PQX*PQX+PQY*PQY+PQZ*PQZ;
 W = ab*cd/abcd;
 RT = W*RPQ2;
 Calc_F_Function(F)
 t1 = W/cd*F[1];
 ELREP[0]= (QDZ*F[0]+PQZ*t1)*SR;
 ELREP[1]= (QDX*F[0]+PQX*t1)*SR;
 ELREP[2]= (QDY*F[0]+PQY*t1)*SR;

NO logic, NO short loops ➢ The compiler can optimize this code most efficiently
 ➢ Efficient modern integral libraries (e.g. libint) make use of
 machine generated, highly unrolled code

Numerical Example

(ss|ss)

(pp|pp)

(dd|dd)

unoptimized
code

unrolled
code libint

„to a large extend the efficiency of a computer code is a result of the care taken

during the implementation stage and not due to the particular method selected

for implementation.“ — Roland Lindh

(107 times)

(106 times)

(104 times)

(ff|ff)
(103 times)

1.8

8.3

4.1

9.1

1.2

2.6

0.4

0.5

0.7

0.4

0.1

0.2

(3x)

(21x)

(41x)

(45x)

speedup

Transformation to Spherical Harmonics
Molecular integrals are usually first calculated over Cartesian Gaussian functions and then
transformed to spherical harmonics

(G
µ

lamaG
ν

lb mb |G
κ

lc mcG
τ

ldmd)= d
p

lamad
q

lbmbd
r

lcmcd
s

ldmd (G
µ

xpypzpG
ν

xqyq zq |G
κ

xr yr zrG
τ

xs ys zs)
s
∑

r
∑

q
∑

p
∑

➡ many nested, short loops, many zero’s in the d-coefficients
➡ Reasonable compilers manage to detect this situation and

produce well optimized code

c++ -O3 -funroll-loops …

Cart2Slm(SRC,DST)
 loop i in xyz_b
 loop j in xyz_c
 loop k in xyz_d
 loop m in slm_a
 x=0
 loop l in xyz_a
 x=x+SRC[l,i,j,k]*d[m,l]
 end loop l
 TEMP(m,i,j,k]=x
 end loops i,j,k
 etc for the other three indices
 to fill target array DST
end_subroutine

Straightforward code

Unrolled, optimized code
Cart2Slm_4_f(SRC,DST)
 loop i in xyz_a
 loop j in xyz_b
 loop k in xyz_c
 DST[0+ 7*(k+dim3*(j+dim2*i))]= +0.258198889747161153*SRC[2+10*(k+dim3*(j+dim2*i))]
 -0.387298334620741647*SRC[4+10*(k+dim3*(j+dim2*i))]
 -0.387298334620741647*SRC[6+10*(k+dim3*(j+dim2*i))];
 DST[1+ 7*(k+dim3*(j+dim2*i))]= -0.158113883008418971*SRC[0+10*(k+dim3*(j+dim2*i))]
 -0.158113883008418943*SRC[5+10*(k+dim3*(j+dim2*i))]
 +0.632455532033675771*SRC[7+10*(k+dim3*(j+dim2*i))];
 …
 end loops
end_subroutine

1000 x (gg|gg)=0.12 sec

1000 x (gg|gg)=0.06 sec

Only factor ~2
➡ The compiler does a

decent job here

Design of an algorithm: FLOP count

In the early days of algorithm design, developers were carefully minimizing the number of
floating point operations (FLOPs) required to accomplish a given task

Example: Partial integral transformation (µν |κτ)→ (ia | jb)

i,j= occupied MOs (#=O), a,b, unoccupied MOs (#=V), µ,n,k,t=basis functions (#=B)

Naive: (ia | jb)= c
µi
c
νa
c
κj
c
τb
(µν |κτ)

τ
∑

κ
∑

ν
∑

µ
∑ FLOPS = B 4O2V 2

ψ
p
(r)= c

µp
ϕ
p
(r)

µ
∑

O(N8) scaling

Must be possible to do better than that

FLOP Count: Partial Integral transformation

(iν |κτ)= c
µi
(µν |κτ)

µ
∑ (B 4O)

(iν | jτ)= c
κj
(iν |κτ)

κ
∑ (O2B3)

(ia | jτ)= c
νa
(iν | jτ)

ν
∑ (O2VB2)

(ia | jb)= c
τb
(ia | jτ)

τ
∑ (O2V 2B)

(µa |κτ)= c
νa
(µν |κτ)

ν
∑ (B 4V)

(µa | νb)= c
τb
(µa |κτ)

τ
∑ (V 2B3)

(ia | νb)= c
µi
(µa | νb)

µ
∑ (OV 2B2)

(ia | jb)= c
νj
(ia | νb)

ν
∑ (O2V 2B)

Algorithm A: occupied indices first Algorithm B: virtual indices first

}
Four O(N5) steps

ratio of FLOP counts: #(FLOPS)
A

#(FLOPS)
B

=
O

V

(2B3−V 3)

(B2 + 3B2V −3BV 2 +V 3)
<1

Example: GFLOPS for B=500, O=50, V=450

0.07

3125 28215

312 25312

281 2531

253 253

Always transform the index first that offers the largest data reduction!

FLOP count versus Performance

In order to capitalize on the efficiency of the BLAS routines, it is sometimes advantageous
to sacrifice optimal FLOP count.

Example: Integral direct partial integral transformation for MP2

E
MP2
=− 1

4

[(ia | jb)−(ib | ja)]2

ε
a
+ ε

b
− ε

i
− ε

ji,j ,a,b
∑

(ia | jb)= c
µi
c
νa
c
κj
c
τb
(µν |κτ)

τ
∑

κ
∑

ν
∑

µ
∑

Key step: integral transformation

loop ibatch over batches of occupied MOs
 loop p=1..NBas
 loop q=1…p
 loop r=1…p
 loop s=1..r|q
 Calculate(pq|rs)
 loop i=1..Nocc (in ibatch)
 ITMP[p,q,r,i]+= Cocc[s,i]*(pq|rs) and non-redundant permutations of indices
 end i in ibatch
 end loops p,q,r,s
 loop p=1..NBas
 loop r=1..NBas
 loop i=1,…Nocc (in ibatch)
 loop j=1..i
 loop q=1..NBas
 JTMP[p,j,r,i]+= Cocc[q,j]*ITMP[p,q,r,i]
 end loop q
 end loops j,i,r,p
 loop i=1..Nocc (in ibatch)
 loop j=1..i
 loop p over AO’s
 loop b=1..NVirt
 loop r over AO’s
 ATMP(p,b)+=C[r,b]*JTMP[p,j,r,i]
 end loops r,b,p
 loop a=1..Nvirt
 loop b=1..Nvirt
 loop p over AO’s
 KIJ[a,b]+= C[p,a]*ATMP[p,b]
 end loops p,a,b
 Evaluate MP2 amplitudes and pair energy
 end loops i,j
 end loop i
end loop ibatch

Full eightfold permutation symmetry used
FLOP count optimized algorithm

have to be able to store NBas3 integrals for each
occupied MO. Hence need batches of occupied

MOs

Transformation of 2nd index

Transformation of 3rd index

Transformation of 4th index

loop p=1..NBas
 loop r= 1..p
 loop q=1..NBas
 loop s=1..NBas
 calculate K[p,r](q,s)= (pq|rs)
 end loop q,s
 Perform transformation K[p,r](i,j)=(CoccT*K[p,r]*Cocc)ij
 Write matrix K[p,r] to disk
end loops p,r
Resort Integrals K[p,r](i,j) to give K[i,j](p,r) (i<=j)
Loop i= 1..Nocc
 loop j=1..i
 Read integrals K[i,j](p,r)
 Perform transformation K[i,j](a,b)=(CvirtT*K[i,j]*Cvirt)ab
 Calculate MP2 amplitudes T[i,j](a,b)
 Calculate MP2 pair energy e(i,j)
 Sum up MP2 correlation energy
end loops i,j

BLAS optimized algorithm

We only use one out of eightfold permutational
symmetry, which means that we generate the

integrals effectively 4 times

We only use one
permutational symmetry

here too, which means we
store 4 times too many

integrals

Two BLAS level 3
multiplications in the rate

determining step

Two BLAS level 3
multiplications

Awkward: Lots of I/O

Performance Test (I)

Hexane
def2-TZVP (258 basis functions)
4 GB main memory used

FLOP optimized algorithm BLAS optimized algorithm

79.8 sec
(1 batches necessary)

TOTAL TIME for half transformation: 79.4 sec
AO-integral generation : 71.5 sec
Half transformation : 5.7 sec
K-integral sorting : 0.4 sec

108 sec

Performance Test (II)

FLOP optimized algorithm BLAS optimized algorithm

Diclophenac
def2-TZVP (667 basis functions)
4 GB main memory used

1732 sec
TOTAL TIME for half transformation: 1697.0 sec
AO-integral generation : 1078.9 sec
Half transformation : 354.0 sec
K-integral sorting : 60.4 sec

(25 batches necessary)

(too) many hours

Example: Factorization in Coupled Cluster

The scaling of an algorithm can sometimes be reduced through factorization. This
happens if intermediates can be defined that only depend on a subset of the summation
indices. In this case the summations can be carried out in two steps:

O(N8) scaling

Look at one nonlinear term in the CCSD equations:

σ
ab
ij ← kl ||cd t

cd
ij t
ab
kl

cd
∑

kl
∑

➡ 4 target indices
➡ 4 summation indices
➡ … But any quantity depends on only 2 target indices at a time
➡ Must be able to re-arrange loops more cleverly

Two possibilities:

σ
ab
ij ← t

ab
kl kl ||cd t

cd
ij

cd
∑

Xkl
ij

! "###### $######kl
∑ σ

ab
ij ← t

cd
ij

cd
∑ t

ab
kl kl ||cd

kl
∑

Ycd
ab

! "###### $######
or

Example: Factorization in Coupled Cluster

Algorithm 1 Nocc2 <—— MUCH better and MUCH less Storage!
————— = ——— FLOPS <<1
Algorithm 2 Nvirt2

σ
ab
ij ← t

ab
kl kl ||cd t

cd
ij

cd
∑

Xkl
ij

! "###### $######kl
∑ : X

kl
ij = kl ||cd t

cd
ij

cd
∑ Nocc4 Storage

Nocc4Nvirt2 FLOPS

σ
ab
ij ← t

ab
klX

kl
ij

kl
∑ Nocc4Nvirt2 FLOPS

σ
ab
ij ← t

cd
ij

cd
∑ t

ab
kl kl ||cd

kl
∑

Ycd
ab

! "###### $######
: Y

cd
ab = t

ab
kl kl ||cd

kl
∑

2xNocc4Nvirt2 FLOPS
Nocc4 Storage

σ
ab
ij ← t

cd
ijY
cd
ab

cd
∑

Nvirt4 Storage
Nocc2Nvirt4 FLOPS

Nocc2Nvirt4 FLOPS

2xNocc2Nvirt4 FLOPS
Nvirt4 Storage

O(N6) scaling

O(N6) scaling

Move Work out of the Inner Loops: Split-J
Substantial performance gains can be realized by choosing intermediates wisely such that
redundant work is move out of the inner loops

Example: Integrate integral evaluation as early as possible into the target quantities.
For the Coulomb matrix, Ahmadi & Almlöf suggested:

J
µν
= P

κτ
(µν |κτ)

κτ
∑
= P

κτ
E
tuv
µν

tuv
∑

independentof κτ
! "## $##

(−1) ′t + ′u + ′v E ′t ′u ′v
κτ R

t+ ′t ,u+ ′u ,v+ ′v
′t ′u ′v
∑

κτ
∑

= E
tuv
µν

tuv
∑ R

t+ ′t ,u+ ′u ,v+ ′v
(−1) ′t + ′u + ′v P

κτ
κτ
∑ E ′t ′u ′v

κτ

≡P ′t ′u ′v independentof µν,tuv

! "######### $#########′t ′u ′v
∑

= E
tuv
µν P ′t ′u ′v Rt+ ′t ,u+ ′u ,v+ ′v

′t ′u ′v
∑

tuv
∑

Hermite basis
repulsion

Hermite basis
density

Hermite to Slm 
Transformation

When we calculate the integrals one by
one, we repeated re-calculate this
quantity N2 times although it is
independent of µ,n.Likewise:
Transformation to spherical harmonics

Performance example
def2-TZVP=667 BFs

Traditional treatment

Split-J algorithm

=Ahmadi-Almlöf

=Head-Gordon J-engine

Coulomb term (sec)
(20-builds)

Identical numerical result, same scaling, but significant speedup realized through
thoughtful structuring of the entire computational process

5796 sec

2834 sec

Example: I/O Heavy Algorithms

 Loop i=1…Nocc
 loop a=1..Nvir
 Write NULL matrix Kia into buffer IABC
 end loop a
 loop a=1..Nvir
 Read matrix Kia(b,c) = (ib|ac) from IABC
 loop b=1..Nvir
 Read matrix Kib(c,d) = (ic|bd) from IABC
 loop c=1..Nvir
 Kib(a,c)=+Kib(a,c)+Kia(b,c);
 end loop c
 Store matrix Kib in IABC
 end loop b
 end loop a
 end loop i

The I/O system is the slowest part of your computer!

➢ Use it as little as possible

➢ Move its usage as far outside in the loop structure as reasonably possible

➢ Avoid reading small chunks of data

Example: Integral symmetrization in EOM-CCSD

Loop i=1..Nocc
 Initialize buffer Kib for all b
 loop a=1..Nvir
 Read matrix Kia(b,c) from IABC
 loop b=1..Nvir
 loop c=1..Nvir
 Kib(a,c)+=Kia(b,c);
 end loop c
 end loop b
 end loop a
 Write entire buffer Kib into IABC
end loop i

6641 sec 31 sec

SAME operation count!
Factor 200 performance difference!!

Parallelization in a Nutshell

Principle idea: let a number of processors, say n, work on parts of the computational
problem in parallel and combine sub results into the final result.

Ideal Scenario: The problem breaks down perfectly and the time required to solve the
problem is 1/n.

Shared Memory Models:
- Open MP, POSIX threads
- efficient use of resources, no memory replication
- difficult to debug large programs
- Can only be used on one machine with common memory
Message Passing Models
- Communication via messages between processes
- choice between replicated and distributed memory
- distributed memory difficult to implement efficiently
- Can be used between machines
Hybrid Models:
- Threads + MPI
- Combines shared memory on one machine with message passing between machines
- adaptation into official standards is slow

F=

1 2 3

F= 1

F= 2

Parallelization

Parallelization is of vital importance in modern high-performance computing, yet a
LOT can go wrong here! We can only scratch the surface of this complex subject.

A few rules:

1. Each process should have roughly the same amount of work to do (Load
Balancing).

2. Do the parallelization as far ‚outside‘ as possible (e.g. distribute the outermost
loop).

3. Excessive communication (e.g. sending large chunks of data) between processes
should be avoided as much as possible.

4. Synchronization should not happen inside time critical loops and there should be
as little of it as possible.

5. I/O in parallel applications is difficult if several processes access the same file.

Parallelization Examples

Load balancing e.g. integral calculation. The time required to calculate a given integral
batch is a complicated function of angular momenta, contraction depth
and orbital exponents ➢ Load balancing difficult to guarantee
➢ One possible solution: random distribution of batches among

processors.
➢ Uneveness will average out in the limit of many batches

loop i=1..N,i+=1 loop i=1..N,i+=NProcs→

loop IP: 0 . . . number of parallel processes
 loop ipair: 0 . . . NPairs
 IP: broadcast N
 if (myID!=IP) ALLOCATE MEMory
 IP: broadcast Matrix of size N
 end loop over pairs
end loop over parallel processes

Communication Multiple and mixed communication of small amounts of data,
interspersed by memory allocation can lead to random deadlocks
➢ Separate memory allocation and communication
➢ Vectorize data (copy all data to a large storage vector communicate

and then unwrap)

Automatic Code Generation

Problems with Method Development

Idea Production
Program

! "############### $###############
Just technicalities!

That would be nice!

5 min

Derive
Equations

Days

Write
Code

Weeks

Debug

Months

Opti- 
mize

Years

Conclusions:

‣ The technicalities of development occupy most of our time
‣ Humans make mistakes, Debugging takes a lot of time
‣ The human brain can only deal with so much complexity. Beyond it is hopeless

➡ We need programming tools that take us directly from the Ansatz (our idea)
to efficient, production level code

➡ Automatic Code Generation

Code Generation Tools
✓ Janssen & Schaefer, ROCCSD, pioneering work 1991
✓ Tensor contraction engine in NWCHEM, various CC (Hirata, Auer & Co)
✓ Diagram based arbitrary order CC/MRCC (Kallay)
✓ Gecco Internally contracted MRCC (Köhn)
✓ Genetic algorithm based code generator, MRCC (Hanrath)
✓ Automatic code generator, FIC-MRCI (Knizia, Werner)
✓ MREOM-CC (Huntington, Nooijen)
✓ General active space EOM CC (Kong, Demel, Shamasundar, Nooijen)
✓ Bagel/Smith CASPT2 gradient, (Shiozaki)
✓ Yanai, Saitow, DMRG-CASPT2, various contracted variants
✓ ACES III programming ‚super-language‘ (Deumens, Bartlett & Co)
✓ Cyclops (Solomonik)
✓ Tiled Arrays (Valeev)
✓ …. many others

Simple & Straightforward Equation Generation

Ψ
0
|E
m
nE
p
q ...E

r
s |Ψ

0
,

Any Ansatz (single- or multi-reference) that can be formulated in terms of 2nd
quantization, quickly leads to expectation values of the form

Or, in terms of elementary spin-orbital operators:

E
p
q = a

qβ
+a
pβ
+a

qα
+a
pα
.

Ψ
0
|a
m
na
p
q ...a

r
s |Ψ

0
,

If the orbital space is divided in internal (i,j,k,l), active (t,u,v,w) and virtual (a,b,c,d), the
important commutation relations apply:

E
p
q,E

r
s⎡

⎣⎢
⎤
⎦⎥ = Ep

sδ
qr
−E

r
qδ
ps
,

Thus: E
i
p Ψ

0
= 2δ

ip
Ψ
0
, Ψ

0
E
p
i = 2δ

ip
Ψ
0
,

E
a
p Ψ

0
= 0, Ψ

0
E
p
a = 0,

Equation Generation

Strategy:

✓ Use the commutation relation to change the order of operators
✓ Move lower internal labels to the right
✓ Move upper internal labels to the left
✓ Move lower external labels to the right
✓ Move upper external labels to the left

➡ Creates 0’s, Kronecker deltas and ‚pre-densities‘ (MR case)

γ
tv ...x
uw...y = Ψ

0
|E
t
uE
v
w ...E

x
y |Ψ

0
.

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

Awkward
by hand,
easy for a
computer

Issues: ✓ redundant terms are generated
✓ terms that cancel each other are generated
✓ Equivalent terms may have inequivalent labels
✓ …

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

Post- 
processing 

required

Code Generation Chain

1. Equation Generator:

✓ Takes the Ansatz and generates equations
✓ Identifies identical, redundant and cancelling terms
✓ Brings all labels into a ‚canonical form‘

2. Factorizer
✓ Identifies possible intermediates
✓ Finds the best possible intermediates and contraction order
✓ Finds common intermediates in different terms
✓ Ensures that all terms have their correct formal scaling

3. Code generator
✓ Writes code for a specific electronic structure package
✓ Recognizes patterns/contractions for which highly optimized code exists
✓ Ensures that all terms have their correct formal scaling
✓ Ensures minimal I/O and maximal use of BLAS
✓ Generates parallel code, code for specific machines, ….

Realization of a Code generation chain (AGE)

Cost model
In order to find the best possible intermediates and factorization, we need to have a
prediction how long each contraction should take.

Efficiency: Example
Naphtalene, CISD, no symmetry used

Hand code:

Generated code:

σij ← −JikCkj −

k
∑ CkjJik − JkjCik −CikJkj −CkiKkj −KikCjk + 2KikCjk + 2CikKkj

σij ←
2Cik − Cik()†⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ K

kj − 1
2
Jkj()− 1

2
Cik()† Jkj⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟− Cik()† Jkj⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

†

+

Kik − 1
2
Jik() 2Ckj − Ckj()†⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟−
1
2
Jik Ckj()†⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟− J

ik Ckj()†⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
k
∑ . 4 dgemm/k

8 dgemm/k

Complexity: Example
Fully internal contracted MRCI (or MRCC, also CASPT2/NEVPT2) works with contracted
functions in the first-order interacting space (FOIS)

Φ
ij
ta = E

ij
ta Ψ

0
= C

I
(CASSCF)E

ij
ta Φ

I
(CAS)

I
∑

✓ 10 Excitation classes -> 100 Blocks of matrix elements
✓ Not orthogonal
✓ Not linearly independent
➡ Extremely complicated matrix elements
➡ 1945 equations including up to four body density
➡ Factorized into 3674 equations
➡ Removed 1222 redundant intermediates

➡ Nearly hopeless to program by hand. Readily done with code generator as a
matter of hours (perhaps days)

Code generation: Summary
✓ Code generation enables the implementation of ‚impossibly complicated‘ methods
✓ Code generation reduces development times from years to hours/days
✓ Code generation can produce code for specific hardware, thus ensuring optimal

performance
✓ Code generation can ensure that all parts of the code have consistent quality
✓ Once the code generation chain produces correct results, it is extremely reliable (e.g. a

small bug was identified in the original CASPT2 code in 2015, CASPT2 is from 1990!)

➡ Code generation will play an important part in future quantum chemistry
➡ Generated code can be made almost as efficient as the best hand optimized code
➡ In the future we keep just a wavefunction Ansatz in the source code repository and

generate the code during compile time. Any improvement in the code generation chain
is the immediately applied to all parts of the program.

