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Goals of Quantum Chemical Method Development

v To be able to calculate ,things’ (energies, properties) that could not be calculated before
or on systems that were not accessible before

v To develop a better (more accurate, more elegant, more compact, more transparent, ...)
theory for a known property.

v Develop new approximations to known equations

v" To obtain the same number faster than before

v" To obtain an approximate number faster and in ,improved scaling’ than before



Scaling Laws

A quantum chemical algorithm can be characterized by it's scaling behavior:

Scaling with respect to system size (#(Atoms), #(Basis functions),...)
Scaling with respect to basis set (Size, Angular momentum,...)

A scaling law can be written as:

T Time taken by algorithm

T — N ’ a Prefactor’

b Scaling Exponent

Optimizing an algorithm: Bring down the prefactor

Bring down the scaling

Holy gralil: Linear scaling with a small prefactor



Figuring out the Scaling Law

General:

Dimensionality of target quantity x Scaling of loops required to obtain it
Example: _
Y (r)=) ¢ o (r)
]

= Number of occupied and virtual MOs is proportional to system size

= Numlber of AOs is proportional to system size

( v ‘ KT ) Number of AOs integrals proportional to N* (O(N%))

(za | Jb) = > > > >Jcmcmcmcw(,uu\/w)
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Prefactor vs Scaling
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For many applications nonlinear scaling with a small prefecture is the preferred choice

In developing reduced scaling algorithms one shoots for early crossover



Golden Law of Development

v In general, the workflow of a quantum chemical algorithm contains many steps (€.9.
localization, integral transformation, equation solution, perturbative correction, ...),
v Each step will have its own scaling law




2rofile your Program!

Total execution time ... 153019.575 sec

Localization of occupied MO's 7516.449 sec ( 4.9%)

Fock Matrix Formation 11392.614 sec ( 7.4%) o

First Half Transformation 37824 .285 sec ( 24.7%) Tthswpﬁhyour

RI-PNO integral transformation 17832.376 sec ( 11.7%) while!

Initial Guess 5376.961 sec ( 3.5%)

DIIS Solver . 8855.850 sec ( 5.8%)

State Vector Update e 1.744 sec ( 0.0%)

Sigma-vector construction .. 8177.969 sec ( 5.3%)
<O |H|D> .. 0.072 sec ( 0.0% of sigma)
<0|H|S> . .. 0.003 sec ( 0.0% of sigma)
<D|H|D>(0-ext) . .. 575.591 sec ( 7.0% of sigma)
<D|H|D>(2-ext Fock) .. 1.921 sec ( 0.0% of sigma)
<D|H|D>(2-ext) .. 1512.608 sec ( 18.5% of sigma)
<D|H|D> (4-ext) .. 684.157 sec ( 8.4% of sigma) f*WV”“th?”YPU
<D|H|D> (4-ext-corr) 2880.920 sec ( 35.2% of sigma) 92N rom optimizing
CCSD doubles correction .. 33.534 sec ( 0.4% of sigma) these steps?
<S|H|S> . .. 78.695 sec ( 1.0% of sigma)
<S|H|D>(l-ext) .. 79.135 sec ( 1.0% of sigma)
<D|H|S>(1l-ext) “ e 5.117 sec ( 0.1% of sigma)
<S|H|D>(3-ext) . .. 28.949 sec ( 0.4% of sigma)
CCSD singles correction . .. 0.108 sec ( 0.0% of sigma)
Fock-dressing 1541.152 sec ( 18.8% of sigma)
Singles amplitudes 15.255 sec ( 0.2% of sigma)
(ik|Jl) -dressing 441.823 sec ( 5.4% of sigma)
(1j]lab), (1a|jb) -dressing 213.171 sec ( 2.6% of sigma)
Palr energies 1.235 sec ( 0.0% of sigma)

Total Time for the density 632.934 sec ( 0.4% of ALL)

Total Time for computing (T) 32529.433 sec ( 21.3% of ALL)



Prelude:

A little information on Computers



The ,Gauss-curve' of method development
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Single CPU Clockspeed
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Growth in clock rate of microprocessors. Between 1978 and 1986, the clock rate improved less than 15% per
year while performance improved by 25% per year. During the “renaissance period” of 52% performance improvement per year between
1986 and 2003, clock rates shot up almost 40% per year. Since then, the clock rate has been nearly flat, growing at less than 1% per year,

while single processor performance improved at less than 22% per year.



Transistor count

Performance: Moore’s Law

Microprocessor Transistor Counts 1971-2011 & Moore’s Law
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Consequence’s of Moore’s Law

Paradigm Change:

Requires explicit parallelization by the programmer!

“From this historical perspective,
it’s startling that the whole IT industry has bet its future that
programmers will finally successfully switch to explicitly parallel

programming’

(Patterson, Hennessy: The Hardware/Software Interface, 2009)



Amdahl’s Law of

Diminishing returns

Speedup
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Computer Architecture and Algorithm Design

I/0 bus MAIN Mem. bus CACHE Cacheline
N m MEMORY >
N—
~1 ns

A
~1ms ~100 ns ~1 ns
v Disk access is very slow Algorithms need to carefully
balance I/0 and memory
v Memory to CPU transfer is slow operations, not just minimize FLOP

count



Development Guidelines for Quantum
Chemistry

,@Getting Exactly the same number faster*”



Take it with a grain of salt!




The Do’s and Don’t’s of Programming: Overview

Some rules for scientific programming that are relevant for obtaining high performance:

> Avoid short, nested Loops

> Avoid Multidimensional Arrays

> Access arrays in ,,Unit Stride*”

> Avoid indirect addressing

> Make use of matrix multiplications and BLAS

> Make use of LAPACK

> Move redundant work out of the inner loops

> Minimize disk 1/0, do it in larger chunks and do it as far ,outside‘ as possible

» Watch out of Load Balancing in parallel programming



Instruction Pipelines and Logic

ldeal: The CPU has preloaded a ,pipeline’ of instructions and the data required to perform
the next operations is in the CACHE

LD x
MOV x y
ADD y z

x,y,z,---

CACHE Cacheline

A logical instruction whose outcome can not be predicted at compile time brings the CPU

and CACHE out of the ,groove'’
GOOD: x,y,z are in the CACHE, \

if (x<y) performance is optimal careful optimization
z=X+y avoids logical
else BAD: xp, yp and n are not in the } decisions in time
e i 2s ceercd and a sow memory | Otical parts of the
en dxp— sin(2*yp) operation (MOP) is perforrr?/ed to program

get this data



Unit Stride Access

The CACHE has a finite size that is rather small. If one loads an array into the CACHE that
s larger than the CACHE size, one should avoid ,jumping‘ around in the array but rather
only access consecutive positions in the array (unit stride access)

Example: Say, the CACHE holds 1024 array elements and we want to add up the
elements of an array y that contains 2048 elements.

Good: x=0
for (1=0,;i<2048;i++) x=x+y[i]

The compiler can optimize well: load the first 1024 elements of y and the next 1024 elements.
Performs optimally without any ,CACHE misses'

Bad: %x=0
for (1=0,i<2048;i++) x=x+y[yorder[i]]
or for (i=0,;i1<2048;i++) x=x+y[i]-y[N-i-1]

Two problems:

yorder[i] may be anything in the range 0..2047 for any i and hence we may have to reload y into
the CACHE multiple times

We use ,indirect addressing‘. There is no way for the compiler to know the value of yorder[i] and
hence after each addition we have to look again which element of y we need next.



Libraries: The only ones you really need

Relying on third party software that may or may not be maintained in long term or may or
may not be portable between platforms can lbe dangerous! There are three you likely

cannot avoid:
1. BLAS (Basic Linear Algebra System)

a) Level 1: Vector/Vector operations
b) Level 2: Matrix/\Vector operations
c) Level 3: Matrix/Matrix operations

2. LAPACK (Linear Algebra Package)

Linear algebra routines (Diagonalization, Linear equation systems, Cholesky
decomposition, singular value decomposition, ...)

3. MPI (Message Passing Interface)

Low level routines for parallelization using a distributed memory paradigm

These are highly efficient, standardized and portable libraries.

(In ORCA, we nevertheless have put one software layer above them in order to have no direct calls to third party software whatsoever)



—xample: The power of BLAS

Let us look at two ,innocent’ matrix multiplications:

C=AB C,=) AB,

k
T
C=AB" C = ;AikBjk

Which we can program as follows:

loop k =1 . N
x=x+A(1,k)*B(k,]j), or x=x+A(i,k)*B(]j,k)
end loop k
C(i,])=x;
end loop j
end loop 1



—xample: The power of BLAS (ll)

For two densely filled essentially random, square matrices A and B with N=2750

directly programmed BLAS (dgemm)
C=AB : 99 1.7
C = AB’ . 11 1.7
C=A'B ; 104 1.7

USE BLAS LEVEL 3
(DGEMM) WHENEVER YOU

CAN!) -

v The matrices are arrange row-wise in contiguous memory
places. Hence A(j,K) is accessing the matrix in unit stride while
A(k,i) is not!

v Huge (factor 10!) performance penalty!

v Even worse would be to have rows scattered somewhere in
the main memory (e.g. Numerical Recipes matrix routines in C)

Why that?

Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz



—xample: The power of LA

Example: 3000x3000 matrix

PACK

Hand written

Diagonalization 28.1 sec

Cholesky decomposition

2.4 sec

Singular value decomposition 315.0 sec

Intel(R) Core(TM) i7-4810MQ CPU @ 2.80GHz

Intel-MKL

dsyevr 5.3 sec

dpotrf 0.2 sec

dgesvd 21.7 sec

~5Xx

~12x

~25X



—xample: Loop Unrolling

Time critical routines should not contain logic and should not contain nested loops. The

process of eliminating short loops in favor of hand optimized, explicit code is called ,Loop
unrolling’

Example: Calculation of integrals using the McMurchie/Davidson method

In the MD method, molecular integrals can be very elegantly calculated using
an expansion of the Gaussian product in a Gaussian Hermite basis

Cartesian Gaussian on center A: Gﬁm =(x—-X,)'(y-Y, ) (2—Z ) exp(—ar j)

)

Repulsion integral in MD:

A B C D b, bbb AB 17 AB 17 AB Lol g %4 t—l— "1/ 12CD 12CD 12CD
Uu v
(Gabc aG g ’ G Gd, " 5 faméyyy E E E y‘y‘ Et, Eu, Ev, R

t+t’ utu' v+o’
t=0 u=0 v=0 t'=0 u'=0 /=0

Expansion of Expansion of Intearals in
const GAGB in GCGP in g

. . . . Hermite basis
Hermite basis Hermite basis



—xample: Short Loops and Multidimensional Arrays

Pseudocode for a general MD integral routine

Calculate Array EAB

Calculate Array ECD recursive formulas. Nested loops of length ~la+ls (or lc+Ip)

Calculate Array R
loop ixyz over Cartesian components of A
loop jxyz over Cartesian components of B

loop kxyz over Cartesian components of C

loop lxyz over Cartesian components of D
x=0
loop t =0..a+a’
loop u =0. .b+b’
loop v =0..c+c’
loop v/ =0..f+f’
loop t’ =0..d+d’
loop u’ =0..e+e’
x=x+ EAB[x] [a] [a’] [t ]*EAB[y] [b] [b’][u ]J*EAB[z] [c] [c’][v ]
*ECD[x] [d] [d"][t' ]*ECD[y] [e][e’][u’ ]*ECD[z] [£][£'][v']*(-1)% "'+
*R[t+t’ ] [utu’ ] [v+Vv' ]
end loops t’ ,u’ ,v’

10 nested loops!
For s and p functions these run basically from O to 1

end loops t,u,v
ELREP[ixyz] [Jxyz] [kxyz] [1xyz]=x

end loops i, j,k,1lxyz



—xample: Short Loops and Multidimensional Arrays

Alternative: For low angular momenta create hand optimized routines and store integrals in
linearized arrays

Calc ssss() Calc_sssp()

ab — a+b ab v
cd — c+d cd ~ o
_ ] abcd = ab+cd;
abed = abtcd; rim = 4.0*ab*cd*sqrt (abcd) ;
pprim = 4.0*ab*cd*sqgrt (abcd) ; Pb s 1 ’
SR = Kab*Kcd/pprim; SR = Kab*Ked/pprim;
POX = (PX-0QX) ; ’ QX - (PX-0X);
PQY — (PY-QY) ; PQY - (BY-QY);
PQZ — (P2-07) ; PLZ - (PZ2-QZ);
RPQ2 = PQX*PQX+PQY*PQY+PQZ*PQZ; RPQZ — POX*POX+POYFPQY+PQZTPQZ;
’ W = ab*cd/abcd;
W = ab*cd/abcd;
' RT = W*RPQ2;
RT = W*RPQ2;
. ’ Calc F Function (F)
Calc F Function (F) - = _ N .
ELREP[0]= F[0]*SR; tl = W/edrEL1l];
' ELREP[0]= (QDZ*F[0]+PQz*t1) *SR;
ELREP[1]= (QDX*F[0]+PQOX*t1) *SR;
ELREP[2]= (QDY*F[0]+PQY*tl) *SR;

NO logic, NO short loops > The compiler can optimize this code most efficiently

> Efficient modern integral libraries (e.g. libint) make use of
machine generated, highly unrolled code



Numerical Example

unoptimized unrolled -~
libint
code code
speedup
(ss|ss)
07 times) 1.8 1.2 0.7
(PPlpp) 813 2.6 0.4
(108 times)
(dd|dd) 4.1 0.4 0.1
(10 times)
(ff[f) 0.1 0.5 0.2
(103 times)

,2fo a large extend the @Cﬁciencg of a comPuter code is a result of the care taken

cluring the implementation stage and not due to the Par’cicular method selected

for implementation.“ — Roland Lindh



Transformation to Spherical Harmonics

Molecular integrals are usually first calculated over Cartesian Gaussian functions and then
transformed to spherical harmonics

R T

(Glama Glbmb ‘ Glcmc Gldmd) — S‘;‘ T;‘ dlama dlbmb dlcmc dldmd (prypszquqzq ‘ G:Cryrzr styszs )
7 v K T a L 4L 4L 4D q r S 7 v
y4 q T S

= many nested, short loops, many zero's in the d-coefficients
= Reasonable compilers manage to detect this situation and

produce well optimized code

c++ -03 -funroll-loops



Straightforward code

Cart2S1Im(SRC, DST)
loop 1 in xyz b
loop J in xyz c
loop k in xyz d
loop m in slm a
x=0
loop 1 in xyz a
x=x+SRC[1,1,73,k]*d[m, 1]
end loop 1
TEMP (m, i, 3, k]=x
end loops 1i,7,k
etc for the other three indices
to fill target array DST
end subroutine

Unrolled, optimized code

Cart2S1m 4 £ (SRC,DST)
loop 1 1n xyz a
loop j 1n xyz b
loop k 1n xyz c

DST[ 0+ 7* (k+dim3* (J+dim2*1)) ]

DST[ 14+ 7* (k+dim3* (J+dim2*1)) ]

end loops
end subroutine

.258198889747161153*SRC
.387298334620741647*SRC
.387298334620741647*SRC
.158113883008418971*SRC
.158113883008418943*SRC
.632455532033675771*SRC

k+dim3*
k+dim3*
k+dim3*
k+dim3*
k+dim3*
k+dim3*

[ T s N s B s B e e |

1000 x (gg|gg)=0.12 sec

Only factor ~2
= The compiler does a
decent job here

1000 x (gg|gg)=0.06 sec

J+dim2*1)) ]
J+dim2*1)) ]
J+dim2*1)) ]
J+dim2*1)) ]
J+dim2*1)) ]
J+dim2*1)) ]

P~ A~ o~ o~ o~ —~



Design of an algorithm: FLOP count

In the early days of algorithm design, developers were carefully minimizing the number of
floating point operations (FLOPs) required to accomplish a given task

Example: Partial integral transformation (uv | k7) — (ia | jb)

,j= occupied MOs (#=0), a,b, unoccupied MOs (#=V), u,v,k,t=basis functions (#=B)

=28
pp p

Naive: (ia | jb) = ZZZZ WConCoiCa WV | KT)  FLOPS = B'O*V?

O(N?) scaling

Must be possible to do better than that



FLOP Count: Partial Integral transformation

Algorithm A: occupied indices first

(w|KkT) = Zcm(,uu | KT) (B'O) 3125

Algorithm B: virtual indices first

(pa|kT)=> ¢ (uv|kKT) (B'V) 28215

(iv] j7) = e, (iv] KT) (0’B*) 312 (pa|vb)=> c (na|kT) (V?B®) 25312
(ia] j7)=> c (| j7) (O*’VB®) 281 (ia | vb) = Zcm(,ua | vb) (OV?B?*) 2531
(ta | jb) = Zcﬂ)(m | g7) (O°V?’B) 253 (ta | gb) = chj(z'a | vb) (O°V?’B) 253
T W 1%
Four O(N°) steps
FLOP 2B° —V°
ratio of FLOP counts: #FLOPS), = ( ) <1 0.07
#(FLOPS), V (B*+3BV —-3BV'+V") 4

Always transform the index first that offers the largest data reduction!

Example: GFLOPS for B=500, O=50, V=450



FLOP count versus Performance

In order to capitalize on the efficiency of the BLAS routines, it is sometimes advantageous
to sacrifice optimal FLOP count.

Example: Integral direct partial integral transformation for MP2

(za | 7b b | 7a
__Z | jb) = (ib] ja)I

1,7,a,b 6 _|_€ _8 _6

Key step: integral transformation

(ta | 7b) = y‘ y‘ y‘ S: cc.c c (W |KT)




FLOP count optimized algorithm

Full eightfold permutation symmetry used

loop ibatch over batches of occupied MOs
loop p=1..NBas
loop g=1..p
loop r=1.p
loop s=1..r|q
Calculate (pglrs)
loop i=1..Nocc (in ibatch)
ITMP[p,q,r,1i]+= Cocc[s,i]*(pglrs) and non-redundant permutations of indices
end 1 in ibatch
end loops p,q,r,s
loop p=1..NBas
loop r=1..NBRas
loop i=1,..Nocc (in ibatch)
loop j=1..1
loop g=1..NBas
JTMP[p,Jj,r,i]+= Coccl[q,j1*ITMP[p,q,r,i]
end loop g
end loops Jj,1,r,p Transformation of 3™ index
loop i=1..Nocc (in ibatch)
loop j=1..1
loop p over AOQO’s
loop b=1..NVirt
loop r over AO’s
ATMP (p,b) +=C[r,b] *JTMP[p,j,r,i] Transformation of 41 index
end loops r,b,p
loop a=1..Nvirt
loop b=1..Nvirt
loop p over AO’s
KIJ[a,b]+= C[p,a] *ATMP[p, b]
end loops p,a,b
Evaluate MP2 amplitudes and palr energy
end loops 1, ]
end loop 1
end loop ibatch

have to be able to store Ngas® integrals for each
occupied MQO. Hence need batches of occupied
MOs

Transformation of 2" jndex



BLAS optimized algorithm

We only use one out of eightfold permutational
loop p=1..NBas symmetry, which means that we generate the
loop r= 1..p integrals effectively 4 times

loop g=1..NBas
loop s=1..NBas TWQ BMS (eve/S
multiplications in the rate

calculate K[p,r] (g,s)= (pglrs) determining Step

end loop d,s

1 ; 2y — T% * .

PeJl:form tral.nsformat:l.on K .[p, r] (1,3)=(Cocc " *K[p, r] *Coec) i We only use one
end loops p,r here too, which means we
Resort Integrals K[p,r] (i,3) to give K[i,3J](p,r) (i<=7) store 4 times 0o many

. integrals
Loop 1= 1..Nocc
loop j=1..1 Awkward.: Lots of I/O
Read integrals K[i,7]] (p,r)
Perform transformation K[i,J] (a,b)=(Cvirt™*K[i, 7] *Cyirt) ab
Calculate MP2 amplitudes T[i,]] (a,b)
Calculate MP2 pair energy e (i,j) Two BLAS level 3
muiltiplications

Sum up MP2 correlation energy
end loops 1,]



Performance Test (l)

'» | Hexane
‘,'-5\ A A def2-TZVP (258 basis functions)
J 8 # 4 GB main memory used
FLOP optimized algorithm BLAS optimized algorithm
(1 batches necessary)
108 sec 79.8 sec
TOTAL TIME for half transformation: 79.4 sec
AO-1ntegral generation : 71.5 sec
Half transformation : 5.7 sec
K-integral sorting : 0.4 sec



Performance Test (ll)

FLOP optimized algorithm
(25 batches necessary)

(too) many hours

? Diclophenac

def2-TZVP (667 basis functions)

4 GB main memory used

BLAS optimized algorithm

TOTAL TIME for half transformation: 1697.
AO-1ntegral generation : 1078.
Half transformation : 354,

K-integral sorting : 60 .

= O O O

SecC
SecC
SecC
SecC



—xample: Factorization in Coupled Cluster

The scaling of an algorithm can sometimes be reduced through factorization. This
happens If intermediates can be defined that only depend on a subset of the summation
iIndices. In this case the summations can be carried out in two steps:

Look at one nonlinear term in the CCSD equations:

OZ) % Z;Z:Cd H Cd> tZitZi O(NB8) scaling

= 4 target indices
= 4 summation indices

= ... But any quantity depends on only 2 target indices at a time
= Must be able to re-arrange loops more cleverly

Two possibllities:

o =SS (W), oo SO0 ST (R ed)
kl cd y , cd ki )

U]
Xy

Y
ab
Yo



o — ¢ Z<kz | cd>tj;
ki cd J

e

i
Xkl

— Zt Zt (kl|| cd)

Algorithm 1

J

Y!éf
N OCC2
FLOPS <<1
N virl‘2

XV = Z<kl | cd>t§;
Zt“X J

—xample: Factorization in Coupled Cluster

Nocc? Storage
Nocc‘I'Nvirt2 FI_O PS

Nocc‘I'Nvirl;2 FLO PS

O(N®) scaling

Y = ;tfé (Kl || cd)

O' —

17 x/ab
tcd }/cd
cd

ZXNocc4Nvirt2 F LOP S
Nocc? Storage

Nvirt* Storage
Noccszirt4 FLO PS

Noccszirt4 FLOPS

O(N®) scaling

2xNocc®Nvirt* FLOPS
Nvir? Storage

<— — MUCH better and MUCH less Storage!



Move Work out of the Inner Loops: Split-J

Substantial performance gains can be realized by choosing intermediates wisely such that
redundant work is move out of the inner loops

Example: Integrate integral evaluation as early as possible into the target quantities.
For the Coulomb matrix, Ahmadi & AImIof suggested:

J => P (qw|kT)
v
t'+u'+0" kT
Z Etuv Z:/ 1) Et'u'v’Rt+t’,u+u’,v+v’
Jtuw tuv
mdependent of KT
t'u' 0 KT
- z Etuv Z t+t utu' v+ Z ( 1) P Et'u’v’
tuv t'u'v' KT .

"'

=P, ., independent of pv tuv

ZEtuv Z t'u'v' Rt—l—t/,u+u’,v+v'

! I/
tuv tuv

Hermite to Sim Hermite basis Hermite basis
Transformation density repulsion



Xt
;:?N\/
Performance example et

def2-TZVP=667 BFs

Coulomb term (sec)

(20-builds)
Traditional treatment 5796 sec
Split-J algorithm 2834 sec

ldentical numerical result, same scaling, but significant speedup realized through
- " thoughtful structuring of the entire computational process



—xample: 1/0 Heavy Algorithms

The I/0 system is the slowest part of your computer!
> Use It as little as possible
> Move its usage as far outside in the loop structure as reasonably possible
> Avoid reading small chunks of data

Example: Integral symmetrization in EOM-CCSD

loop c=1..Nyir
Kib (g, c)=+Ki (g, c)+K*2 (b, c) ;
end loop cC
Store matrix K in IABC
end loop b
end loop a
end loop 1

end loop b
end loop a
Write entire buffer K into IABC

6641 sec 31 sec
T o oo oEmEmmEmEEEEEEEEEEEEEEEEmmmEEmmmmmmmm—m———m—em FmT T EETE T T e EmEmEmEmEmmmmmmm——m—mmmem e
Loop 1=1..Nocc :Loop 1=1..Nocc
loop a=1. .Nyir I Initialize buffer K for all b
Write NULL matrix K'® into buffer IABC : loop a=1..Nvir
end loop a : Read matrix Kia(b,c) from IABC
loop a=1. .Nyir : loop b=1..Nvir
Read matrix K2 (b,c) = (iblac) from IABC : loop c=1..Nvir
loop b=1..Nyir : Kib(a,c)+=Kia (b, c);
I end loop c
1
1
1
1
1
1
1
1

SAME operation count!
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: Read matrix Ki*(c,d) = (ic|bd) from IABC
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| Factor 200 performance difference!!



Parallelization in a Nutshell

Principle idea: let a number of processors, say n, work on parts of the computational
problem in parallel and combine sub results into the final result.

Ideal Scenario: The problem breaks down perfectly and the time required to solve the
problem is 1/n.

Shared Memory Models: F=
- Open MP, POSIX threads

- efficient use of resources, N0 memory replication

- difficult to debug large programs

- Can only be used on one machine with common memory

Message Passing Models

- Communication via messages between processes F=
- choice between replicated and distributed memory
- distributed memory difficult to implement efficiently

- Can be used between machines F—

Hybrid Models:

- Threads + MP

- Combines shared memory on one machine with message passing between machines
- adaptation into official standards is slow



Parallelization

Parallelization is of vital importance in modern high-performance computing, yet a
LOT can go wrong here! We can only scratch the surface of this complex subject.

A few rules:

1. Each process should have roughly the same amount of work to do (Load
Balancing).

2. Do the parallelization as far ,outside‘ as possible (e.g. distribute the outermost
loop).

3. Excessive communication (e.g. sending large chunks of data) between processes
should be avoided as much as possible.

4. Synchronization should not happen inside time critical loops and there should be
as little of it as possible.

5. I/0 in parallel applications is difficult if several processes access the same file.



Parallelization Examples

Load balancing e.g. integral calculation. The time required to calculate a given integral
batch is a complicated function of angular momenta, contraction depth
and orbital exponents > | oad balancing difficult to guarantee
> One possible solution: random distribution of batches among

Processors.
> Uneveness will average out in the limit of many batches

loop i=1..N,i+=1 H loop i=1..N,i+=NProcs

Communication Multiple and mixed communication of small amounts of data,
Interspersed by memory allocation can lead to random deadlocks
> Separate memory allocation and communication
> \ectorize data (copy all data to a large storage vector communicate
and then unwrap)

loop IP: 0 . . . number of parallel processes
loop ipair: 0 . . . NPairs
IP: broadcast N
if (myID!=IP) ALLOCATE MEMory
IP: broadcast Matrix of size N
end loop over pairs
end loop over parallel processes



Automatic Code Generation



Problems with Method Development

5 min DE S
~ Der - > Production
Idea
Equat - Program
Conclusions:

» The technical
» Humans make mistakes, Debugging takes a lot of time
» The human brain can only deal with so much complexity. Beyond it is hopeless

= \We need programming tools that take us directly from the Ansatz (our idea)
to efficient, production level code
= Automatic Code Generation



Code Generation Tools

N S e e N N S R N R

Janssen & Schaefer, ROCCSD, pioneering work 1991

Tensor contraction engine in NWCHEM, various CC (Hirata, Auer & Co)
Diagram based arbitrary order CC/MRCC (Kallay)

Gecco Internally contracted MRCC (Kohn)

Genetic algorithm based code generator, MRCC (Hanrath)

Automatic code generator, FIC-MRCI (Knizia, Werner)

MREOM-CC (Huntington, Nooijen)

General active space EOM CC (Kong, Demel, Shamasundar, Nooijen)
Bagel/Smith CASPT2 gradient, (Shiozaki)

Yanai, Saitow, DMRG-CASPT2, various contracted variants

ACES Il programming ,super-language‘ (Deumens, Bartlett & Co)
Cyclops (Solomonik)

Tiled Arrays (Valeev)

.... many others



Simple & Straightforward Equation Generation

Any Ansatz (single- or multi-reference) that can be formulated in terms of 2nd
guantization, quickly leads to expectation values of the form

(v, |E BB | W, ), E'=a'a +a'a
m-p r 0 D

98" "B ga pa’
Or, in terms of elementary spin-orbital operators:

<\Ifo la)al..a | \IJO>,

If the orbital space is divided in internal (i,},k,l), active (t,u,v,w) and virtual (a,lb,c,d), the
important commutation relations apply:

BB |=ES, —~E'S

p qr r ps

Thus: BNw ) =25 W), (¥ |E =2 (¥

E'®,) =0, (v,| B2 =0,



—guation Generation

Strategy:

v Use the commutation relation to change the order of operators |

v Move lower internal labels to the right
v Move upper internal labels to the left
v Move lower external labels to the right
v Move upper external labels to the left

= (Creates O’s, Kronecker deltas and ,pre-densities (MR case)

uw...y urw Y
tv..x <\IJO ‘ Et Ev Ex ‘ \Ij0>
Issues: ¥ redundant terms are generated

v terms that cancel each other are generated

v Equivalent terms may have inequivalent labels
v ...

L

Awkward
by hand,

easy for a
computer

Post-
processing
required



Code Generation Chain

1. Equation Generator:

v Takes the Ansatz and generates equations

v ldentifies identical, redundant and cancelling terms
v Brings all labels into a ,canonical form'

2. Factorizer

v |dentifies possible intermediates

v Finds the best possible intermediates and contraction order
v Finds common intermediates in different terms

v Ensures that all terms have their correct formal scaling

3. Code generator

v Writes code for a specific electronic structure package

v Recognizes patterns/contractions for which highly optimized code exists
v Ensures that all terms have their correct formal scaling

v Ensures minimal I/O and maximal use of BLAS

v Generates parallel code, code for specific machines, ....



Realization of a Code generation chain (AGE)

Equation generation

Factorization

Wavefunction input
The definition of wavefunction

Y

matelem
Produces blocks of Hamiltonian matrix and other
quantities as a string of excitation operators

Y

gen--process

Applies commutation rules to obtain the working
chuations

Y

canonicalizer

Exploit the tensor symmetry to reduce the number
L()f equations

1

Y

tau-apply

Applies a pre-defined set of 7 intermediates

Y

factorizer

Factorize contractions of more than two tensors
Introduce intermediates.

Y

sumint

Finds summation intermediates

Code generation

Y

shuffle

Change ordering of indexes in tensor to reduce 1/0
cost and allow BLAS operations

Y

memoryopt

Change the order of contractions to minimize the

storage cost

autogen

Turn the equations into the code, applying BLAS
for matrix-matrix operations and specialized rou-
tines for recognized types of contractions.




Cost model

In order to find the best possible intermediates and factorization, we need to have a
prediction how long each contraction should take.

1000 ¢
- RHF CISD o] Q)o L
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100 1000

Wall time (s)



—fficiency:

—Xample

Naphtalene, CISD, no symmetry used

CISD Total (s) (D|H|D) 4ext (D|H|D) 2ext (S|H|D) 3ext
Basis Nyirt native | AGE | nalive AGE native AGE nalive AGE
set
SVP 146 121 235 31 30 67 128 11 32
TZVP | 204 330 640 113 117 164 332 33 89
TZVPP | 388 2850 | 4950 | 1471 1526 1053 2080 244 6406
ik Ay kj kj 1 A i\ vk
Hand code: .j [2C -(C )](K 4375 |(c) 37| =|(c) 3
2D N1 T T 4 dgemm/k

Generated code:

O' — Z Jzkckj _Ck:szk: kaczk Cszkj Cszk:] szcjl{: + 2szC]k _1_ 2CZkKkj
8 dgemm/k




Complexity: Example

Fully internal contracted MRCI (or MRCC, also CASPT2/NEVPT?2) works with contracted
functions in the first-order interacting space (FOIS)

q);a> _ E;a \Ij0> _ z[: C;CASSCF) E;a

(CAS)
P >

v 10 Excitation classes -> 100 Blocks of matrix elements
v' Not orthogonal

v Not linearly independent

= Extremely complicated matrix elements

= 1945 equations including up to four body density

= Factorized into 3674 equations

= Removed 1222 redundant intermediates

= Nearly hopeless to program by hand. Readily done with code generator as a
matter of hours (perhaps days)



Code generation: Summary

v Code generation enables the implementation of ,impossibly complicated® methods

v Code generation reduces development times from years to hours/days

v Code generation can produce code for specific hardware, thus ensuring optimal
performance

v Code generation can ensure that all parts of the code have consistent quality

v Once the code generation chain produces correct results, it is extremely reliable (e.g. a
small bug was identified in the original CASPT2 code in 2015, CASPT2 is from 1990!)

= (Code generation will play an important part in future quantum chemistry

= (Generated code can be made almost as efficient as the best hand optimized code

= |n the future we keep just a wavefunction Ansatz in the source code repository and
generate the code during compile time. Any improvement in the code generation chain

IS the immediately applied to all parts of the program.



