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Lecture 2: Approximation Methods

„Getting Approximately the right number even faster“

„Getting the exact same number faster“

Lecture 1: Algorithm Design



Approximations in Quantum Chemistry

Well justified approximation may lead to many orders of magnitude speedups, make 
impossible calculations possible and may not deteriorate the results

HOWEVER

In fact, today there are next to NO quantum chemical calculations done that do not 
introduce approximations



Getting a bad 
result fast is 

USELESS



Corollaries Getting a bad 
result fast is 

USELESS

First your approximation needs to be ROBUST and THEN it can be efficient! 

Approximations should be well controlled, e.g. by a threshold T such that at T=0 the 
result is identical with the approximation free result

When you document speedups, the proper point of reference is the best alternative 
method of comparable accuracy and NOT a highly inefficient implementation!

When you document speedups, you must keep the desired target accuracy and not 
relax thresholds

You should NOT make general rules based on one calculation on one system. Your 
statements should be backed up by at least a minimal amount of statistical analysis 

on a range of systems



Target Precision
It is very important that YOU define a target precision that - when reached - renders 
the approximate result useful. You have to demonstrate that you reached that goal.
Examples: 
✓ You approximate a coupled cluster energy and make an error of >100 kcal/mol

➡ Not useful! Your result is worse than a Hartree-Fock calculation. 

✓ You approximate excitation energies with an error between 100 cm-1 and 10000 cm-1

➡ Probably not useful, in particular if the error is inconsistent between states 

✓ You approximate vibrational frequencies and introduce an error of 10 cm-1 

➡ May or may not be useful. For most everyday applications that is good enough, for high 

precision studies (e.g. astrophysics) not good enough 

✓ You approximate the total energy and introduce errors of 1-2 kcal/mol in energy 
differences. 


➡ May or may not be useful. E.g. does it matter whether one isomer is 30.12 or 31.26 
kcal/mol higher than another? But if one transition state is 1 kcal/mol higher or lower 
than another it changes the stereospecificity of the reaction! 

✓ You calculate the electronic energy to a prevision of 0.03 kcal/mol but you have an 
error of 5 kcal/mol in the solvation energy or the entropy. 


➡ Your could probably get away with a less accurate electronic energy



Numerical Precision and Thresholding



Machine Precision & Numerical Algorithms

The computer can only represent numbers with finite precision! 

Floating point numbers with 8 byte size (double precision) are accurate to an absolute 
value of ~10-16 

➡No quantum chemical result can be more accurate than this! 
➡ In actual calculations there is a propagation of round-off errors 

which can become problematic! 
➡Numerical algorithms have to be chosen carefully 

✓ BLAS operations are uncritical

✓ Eigenvalue solvers (e.g. LAPACK) become inaccurate for large matrices 

✓ Gram-Schmidt orthogonalization is problematic and singular value 

decomposition is preferred.

✓Matrix inversion is numerically unstable and should be replaced by 

diagonalization, SVD, Cholesky decomposition, … in most if not all 
cases the explicit construction of the inverse matrix is not necessary!


✓…



Example: Near Linearly Dependent Basis Sets

Benzene /aug’-cc-pVDZ  
(additional diffuse s-functions down to exponent 0.0001)

- 246 basis functions  
- Smallest eigenvalue of the overlap matrix 8.5x10-16

We can remove the linearly dependent eigenvalues and 
vectors according to a threshold t 

t #Vecs removed RHF Energy (Eh)

10-4 39 -230.725 367 74
10-6 16 -230.725 957 21

10-8 9 -230.725 982 27

10-10 5 -230.725 982 44

10-11 4 -230.725 982 45

<10-12 0 explodes

Energy does not really 
converge before the 
calculation becomes 
numerically unstable

Some basis sets can not 
be used to obtain 
converged results

t=10-8-10-10 gives about 
7 significant digits
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Typical Timings of a Traditional HF Calculation

1. Calculate Integrals


2. Guess some starting orbitals


3. Calculate the Fock operator with the present orbitals


4. Diagonalize the Fock operator to obtain new orbitals


5. Calculate the total energy


6. Check for convergence

Print results and/or do additional calculations

Converged (Hurray!)
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def2-SV(P) 

296 basis fncs

43 sec

<1 sec

(610 million integrals; 
~9 GB on disk)

14 sec

3 sec

<1 sec

<1 sec

Reasonable conclusion: try to minimize integral calculation time

(all I/O)



Almlöf’s Revolutionary Proposals
For several decades progress in quantum chemistry was prevented by the large 
number of two-electron integrals that need to be calculated.

The integral bottleneck was finally overcome by Almlöfs revolutionary proposals
1. Do not store integrals. Recalculate when needed (direct SCF) 
2. Split the calculation of the Coulomb and exchange terms and use the most 

efficient approximation for each rather than use the same integrals for both.

Even if the integrals can be stored for a 1000 basis 
function calculation, the I/O penalty is huge and 
the CPU remains largely idle while waiting for data 
to arrive from the hard drive



Negligible Integrals: Gaussian Product Theorem
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In a large system there are only O(N) ‚significant‘ Gaussian products

These significant products interact via an 1/r operator (which never 
becomes small). Hence there are O(N2) non-negligible integrals

Recall: Wim Klopper’s lecture 4



Integral Estimates

In order to skip negligible contributions, we must be able to recognize small integrals 
BEFORE we calculate them

Almlöf originally used the prefactor of the Gaussian product theorem. However, Häser and 
Ahlrichs used the Schwartz inequality to show: 

(µ
A
ν
B
|κ
C
τ
D
) ≤ (µ

A
ν
B
| µ
A
ν
B
) (κ

C
τ
D
|κ
C
τ
D
)

Cheap upper bound! Universally used. 

Problem: does not take into account the multipolar structure of the charge 
distributions and hence may overestimate the integral strongly

Improved upper bounds can be formulated (Gill; Ochsenfeld and co-
workers)



Kohn’s Conjecture and the Density Matrix
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LUMO gap), the density matrix 
decays roughly exponentially 
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The decay is exponential, but slow. 10-10 is only reached at 20-25 Angström!



Intrinsic Scaling of Coulomb and Exchange
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Assuming exponential decay of the density, Almlöf realized that the intrinsic scaling of the 
Coulomb and exchange terms is different:
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Conclusion: Use the most efficient way to calculate or approximation each 
term separately! 



Typical Observed Scaling
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Conclusion: Coulomb dominates quickly. True asymptotic scaling reached 
relatively late w.r.t. system size

(typical in practice)

(typical in practice)



Fock-Matrix Construction and Pre-Screening

Only contributions >= Thresh go into the Fock matrix

 G=0 
 loop µ
   loop ν≤µ
     loop κ
        loop τ≤κ (µν≤κτ) 
          test=sqrt(µν|µν )sqrt(κτ| κτ)max(P(κ,τ),P(ν,τ),...) 
          if (test<Thresh) skip 
          else 
            Calculate (µν|κτ) 
            add G(µ,ν)+=P(κ,τ)(µν|κτ) (Coulomb) 
           add G(µ,κ)-=P(ν,τ)(µν|κτ) (Exchange) 
               (and permutations of indices)  
         end (else) 
 end loops µ,ν, κ, 

F
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Better than testing for small integrals alone since P can be large



Recursive Fock-Matrix Construction

However: Recursive build leads to error accumulation and hence needs 
to be restarted every ~10 SCF cycles
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Prescreening becomes more efficient as the calculation is approaching 
convergence as DP is approaching zero



Typical Timings

 Iteration   Time for Fock (sec) 
———————————————————————————————— 
     1            522 
     2            436 
     3            447 
     … 
     9            278 
    10            268 
    11            253 
(*) TConv=10-10, Thresh 10-13  
(**) ~600 basis functions up to f

Total SCF time: 0 days 2 hours 13 min 19 sec  

Total time                  ....    7999.924 sec 
Sum of individual times     ....    7998.252 sec  (100.0%) 

Fock matrix formation       ....    7990.164 sec  ( 99.9%) 
Diagonalization             ....       0.984 sec  (  0.0%) 
Density matrix formation    ....       0.320 sec  (  0.0%) 
Population analysis         ....       0.845 sec  (  0.0%) 
Initial guess               ....       2.892 sec  (  0.0%) 
Orbital Transformation      ....       0.000 sec  (  0.0%) 
Orbital Orthonormalization  ....       0.000 sec  (  0.0%) 
DIIS solution               ....       1.220 sec  (  0.0%) 
SOSCF solution              ....       1.015 sec  (  0.0%)

‣Overall timing strongly dominated by 
integral evaluation. 
‣ Incremental build leads to speedups 

~2 in later iterations



Direct SCF Precision
The first decision is when to consider a calculation to be converged and how to check on 
convergence! (total energy, density, error, orbital gradient, orbital rotation angles, …). 

Pragmatic: total energy change <Tconv and one electron energy change <103Tconv

Good: Error in Energy is 
always slightly lower than 
the requested tolerance!

(TurboMole)



Influence of the Fock Matrix Neglect Threshold

Instability 
region: 

No convergence 
anymore

Convergence 
threshold limits 

accuracy

error >= but ~ 
neglect 

threshold

The neglect threshold should be smaller than convergence threshold! (e.g. in 
ORCA 0.01*TConv is enforced). Typical accuracy in SCF energies 10-7-10-12 Eh

Tconv



Balancing Cost and Accuracy

✓ How much does improved accuracy cost in terms of computer time?

TConv (Eh) Thresh (Eh) #(Iter) Time (sec) Energy (Eh) Error (Eh)

10-6 10-10 11 3391 x.991 303 890 741 5,4x10-8

10-7 10-11 12 3678 x.991 303 941 877 3,1x10-9

10-8 10-11 13 4542 x.991 303 948 517 3,5x10-9

10-9 10-12 16 5759 x.991 303 944 568 4,4x10-10

10-10 10-13 18 7813 x.991 303 944 971 4,2x10-11

10-11 10-14 18 9574 x.991 303 945 004 9,0x10-12

10-12 10-15 20 11060 x.991 303 945 013 -

def2-TZVP=667 BFs



SCF Convergence and Frequencies
✓ You may rightfully argue that for thermochemistry any accuracy in the SCF energies 

better than, say, 0.01 kcal/mol (e.g. 10-5 Eh) is good enough. 
✓ However, SCF accuracy becomes a bigger issue for each additional derivative  your 

taking! 
‣ How accurate do you need your SCF to be for analytic frequencies to be accurate to 1 

cm-1?

Tconv (Eh) Dwmax (cm-1) DwRMS (cm-1)

10-6 4.41 0.83
10-7 3.92 0.41
10-8 0.68 0.05
10-9 0.67 0.05
10-10 0.41 0.03

D. Bykov, T. Petrenko, R. Izsak, S. Kossmann, U. Becker, E. Valeev, FN Molecular Physics 113 (2015) 1961.

‣ Convergence to at least 10-8 Eh is necessary to have frequencies accurate to 1 cm-1



Quantum Chemical Approximations
1. Numerical Integration 
2. Auxiliary Basis Set Expansion 
3. Semi-Numerical Techniques 
4. Multipole Techniques



Numerical Integration



Numerical Integration in Quantum Chemistry

Numerical integration in general:
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g
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g
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Weights ‚Roots’

For Atoms:
Make use of polar coordinates r,q,f:

x = r sin θ sinφ
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Very computer friendly, highly parallelizable, exposes locality clearly 
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Numerical Integration: Radial Integration

Radial integration
✓ Pretty much anything works. 
✓ Need to map interval 0..infinity to something 0..1 
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Numerical Integration: Angular Integration

✓ Lebedev grids: grids of octahedral symmetry that integrate spherical harmonics up to 
a given order Lmax exactly.

NPoints Lmax

50 11

110 17

194 23

434 35

590 41

770 47

Since atom centered basis functions are spherical harmonics, these grids are 
optimal



Numerical Integration: Molecular Grids

For molecules, we can not just superimpose atomic grids. Rather we should make sure 
that the contributions of ‚foreign’ atoms are damped around a ‚reference‘ atom

➡ Voronoi cells 
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Numerical Integration: Grid Pruning

✓ Close to the nucleus, the integrand is typically close to spherical and one gets away 
with a smaller angular grid 

✓ Far away from the nucleus the weights of the grid points will be strongly damped and 
one gets away with a smaller angular grid 

➡ Divide the integration region in 5 sub-areas with a maximal angular integration grid in 
the bonding region at atomic size parameter R (depending on the row of the periodic 
table) 

Region 1: 0     -  0.25*R  Grid Lminimal 
Region 2: 0.25*R   - 0.50*R   Grid LMax-2  
Region 3: 0.50*R  - 1.00*R   Grid LMax-1 
Region 4: 1.00*R  - 4.50*R   Grid LMax 
Region 5: >4.50*R       Grid LMax-1

Gill’s pruning algorithm:



Numerical Integration: Linear Scaling Algorithm

 

 

 

 

Set to 0 Set to 0

1. Organize Grid points in spatially close batches

2. Find the spatial extent of the basis functions

3. Find the contributing basis functions for each grid point batch

loop grid point batches

Evaluate basis function values Xµ(rg)

Evaluate density D(rg)=Sµn PµnXµ(rg)Xn(rg)

O(N)
const

F
µν∈batch

← µ |V[ρ] | ν ρ(r)= P
µν
µ(r)ν(r)

µν∈batch∑

Evaluate potential V(rg)

Local Fock matrix contributions Fµn += V(rg)Xµ(rg)Xn(rg)

end loop grid point batches

const
const
const

Simple, convenient, efficient, general, … much more than just XC integration!



Numerical Integration: Example

LMax IntAcc #(Grid) T (sec) Error-Density Error-Energy (Eh)

110 5.34 53046 95 -3,4x10-3 9,7x10-4

194 5.34 102466 158 +7,7x10-5 8,4x10-5

302 5.67 189941 268 +5,0x10-5 4,0x10-6

434 6.00 327912 432 -3,2x10-6 5,5x10-6

590 6.34 498480 657 -1,2x10-5 4,6x10-6

770 6.67 762322 942 +1,3x10-6 1,0x10-7

ref 15.00 9180185 12580 +4,5x10-7 -

def2-TZVP=667 BFs

‣ Error is roughly same order of magnitude than error in the density.  
‣ Error is not bounded from above or below, can be positive or negative 
‣ Error is essentially random and does not cancel in energy differences



Auxiliary basis set expansions (RI,DF)



Expansion of basis function products

✓ Basis function products define charge distributions

✓ Charge distributions have multipole moments. However, rather than performing an 
actual multipole expansion, we expand the charge distribution in an atom-centered 
auxiliary basis set

✓ This is a two-center quantity. We aim to break it down into easier, one-center parts.
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All atom centered!



Expansion of Basis Function Products

✓ The expansion coefficients can be determined in many ways. It would be natural to 
simply minimize:
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The first molecular DFT calculations with Slater basis sets by Baerends and co-workers used such an approach 
together with constraints that the fitted density integrates to the correct number of electrons
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✓ In 1993 Almlöf showed that minimizing the self-repulsion:

is an order of magnitude more accurate for a given auxiliary basis set.

✓ Dunlap analyzed the physical content of that approximation and pointed out that one 
fits the electric field of the charge distribution

EJ Baerends, DE Ellis P. Ros, Chem. Phys. 2 1973, 41; O Vahtras, J Almlöf MW Feyereisen, Chem. Phys. Lett. 213 1993, 
514.; BI Dunlap, JWD Connolly JR Sabin, J. Chem. Phys. 71 1979, 3396.; BI Dunlap, J. Mol. Struct. Theochem 529 2000, 37



Expansion of Basis Function Products

The fit is straightforward:
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EJ Baerends, DE Ellis P. Ros, Chem. Phys. 2 1973, 41; O Vahtras, J Almlöf MW Feyereisen, Chem. Phys. Lett. 213 1993, 
514.; BI Dunlap, JWD Connolly JR Sabin, J. Chem. Phys. 71 1979, 3396.; BI Dunlap, J. Mol. Struct. Theochem 529 2000, 37



How to solve the equations?

If the auxiliary basis is wisely chosen, the inverse of V exists (V is positive definite).

However - matrix inversion is numerically almost never the best choice! 

Possibility 1: Diagonalization
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Solving the RI equations

Possibility 2: Cholesky decomposition

Since V is positive definite one can Cholesky decompose it

V = LLT

and use L in place of V-1/2

One could also use SVD, but it is much slower. Cholesky is the numerically most 
stable and efficient numerical algorithm

The Cholesky vectors L can also be used to solve linear equations

Vc = g
extremely efficiently, if the the coefficients c and explicitly needed



How to construct auxiliary basis sets?
Insight comes from the single center problem. Basis functions are usually chosen as real 
spherical harmonics:
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⎝
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⎟⎟⎟⎟⎟⎟⎟κ=−λ

+λ

∑
λ= lµ−lν

lµ+lν

∑

✓ a product of two d functions creates s,p,d,f,g functions with exponents that are the 
sum of the individual exponents. 

‣ A good aux basis contains functions with up to 2Lmax (Lmax is the highest angular 
momentum in the basis set. 

‣ For each angular momentum l, there need to be gaussians with exponents between 2 
amin to 2amax  where amin/max are the smallest and largest exponents that ‚create’ 
functions with a given L.  

‣ Best constructed as a geometric series: αi+1 = αi / β β ≈ 2−3
experience(possibly further optimized by least square fitting to reference data)

Size of Auxiliary basis: 2-10 times the size of the orbital basis 
(MUCH better than N2!)



Standardized Fitting Basis Sets

1. K. Eichkorn, O. Treutler, H. Ohm, M. Haser, and R. Ahlrichs, Chem. Phys. Lett. 
242 (1995) 652. 

2. K. Eichkorn, F. Weigend, O. Treutler, and R. Ahlrichs, Theor. Chem. Acc. 97 
(1997) 119. 

3. F. Weigend, M. Häser, H. Patzelt, and R. Ahlrichs, Chem. Phys. Lett. 294 
(1998) 143. 

4. F. Weigend, Phys. Chem. Chem. Phys. 4 (2002) 4285. 
5. F. Weigend, Phys. Chem. Chem. Phys. 8 (2006) 1057. 
6. F. Weigend, J. Comp. Chem. 29 (2008) 167.

Highly recommended fitting basis sets for various purposes: 
‣ Coulomb fitting, 	 	 	 def2/J bases 
‣ MP2	 	 	 	 	 	 def2/C bases  
‣ Hartree-Fock exchange	 def2/JK bases

Available from the EMSL basis set exchange
https://bse.pnl.gov/bse/portal

https://bse.pnl.gov/bse/portal


An AutoAux Algorithm
For each atom in the molecule

✓ For each basis function calculate the radial expectation value <r> 
✓ For each angular momentum. Calculate an effective single Gaussian with the 

same <r> 

✓ For each angular momentum find lowest and highest effective exponent 
✓ For each basis function pair loop over l1+l2 … |l1-l2| and keep track of the lowest 

and highest exponent generated by the pair. 
✓ Tweak the range of exponents for each aux basis angular momentum 
✓ For each effective angular momentum in the aux basis generate a geometric 

progression of auxiliary functions: 

✓ Additional limited heuristics to limit the number of high L aux functions 

α
eff
=
2
π
22l+1((l +1)!)2

(2l + 2)!

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

2

1
r

α
i
= β

l
α
i−1
(l )

Stoychev, G.; Auer, AA, FN 2016, submitted



An AutoAux Algorithm

➡ Similar accuracy to specific purpose optimized auxiliary basis sets while keeping 
performance with ~factor 2

Stoychev, G.; Auer, AA, FN 2016, submitted



Advantages of the RI/DF approximation

1. The error is small, smooth and bounded. 
With reasonable auxiliary basis sets largely cancels upon taking energy differences 
(e.g. 0.02 kcal/mol in total energies). The RI-fitted Coulomb energy always 
undershoots the exact Coulomb energy  

2. The number of three center integrals is much smaller than four center integrals  
Saves about one order of magnitude in storage, integral generation, …  
Reduces the formal scaling of the algorithm  

3. The three center integrals can be calculated much faster than four center integrals 
The calculation time per integral is up to a factor of 10 smaller owing to the much 
smaller FLOP/MOP count of 3-center vs 4-center integrals  

4. The RI/DF approximation is an approximate factorization. 
Depending on the application, this may lead to reduced scaling algorithms through 
new and more compact, favorable intermediates 



Semi-Numerical Techniques (COS, PS)



Locality of basis functions and Integration

Basis functions are inherently local and numerical integration is a natural way to exploit 
this locality

 

 

 

 

 

 

 

 

µ
A
(r)ν

B
(r)= =0 if the two spheres do not 

intersect

Hence, on a grid, non-zero basis functions for a given gridpoint and non-zero products 
are readily identified and can be skipped

However, two-electron integrals:
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Involve a nasty Coulomb singularity at r1=r2, which is unpleasant to integrate over 
numerically



Locality of Basis Functions and Integration

Rather consider the potential created by the second electron:
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dr
1∫

Which implies, that we may want to numerically integrate over r1 and analytically over r2
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This is another approximate 
factorization of the integral 

(Alternative to RI)

X
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g
µ
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g
)

A
κτ
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|−1 κ

R
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(Reasonably simple integrals, like electron-nuclear attraction)



Dealiasing and Overlap Fitting

X
µg
X
νg
A
κτ
g

g
∑ → Q

µg
X
νg
A
κτ
g

g
∑

The accuracy of the procedure can be improved by analyzing the error introduced by the 
numerical integration. 

First replace:

Error analysis:

Action of an operator on a function:  Ôφ
i

Introduce a complete basis {j} which has components inside (    ) and outside (    ) 
the actual orbital basis

Ôφ
i
= ϕ
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For analytic integration=0

R Izsák, FN, W Klopper, J Chem Phys 139, 2013, 094111 R Izsak, FN, J Chem Phys 135, (2011) 144105.



Dealiasing and Overlap Fitting
For a numerically approximated integral
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If the numerically evaluated overlap is exact, the first term vanishes and one is only 
left with the dealiasing error

φ
j
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The exactly numerically integrated overlap can be ensured by choosing Q wisely:
Q= S(XTX)−1X = SS

N
−1X

Straightforward, computationally trivial and general for any orbital basis. 

In genuine Pseudospectral approaches, additional dealiasing functions must be 
introduced. They are specific for the underlying orbital basis and hence PS is not general

R. A. Friesner, Chem. Phys. Lett. 116, 39 (1985); R. A. Friesner, J. Chem. Phys. 85, 1462 (1986).;R. A. Friesner, J. Chem. Phys. 86, 3522 (1987).

R Izsák, FN, W Klopper, J Chem Phys 139, 2013, 094111 R Izsak, FN, J Chem Phys 135, (2011) 144105.



Numerical Example

Total energies Reaction energies

R
el

at
iv

e 
er

ro
r (

a.
u.

)

Radial grid size Radial grid size
blue : without overlap fitting 
red : with overlap fitting 
An	 	 : angular grids of increasing size

R Izsák, FN, W Klopper, J Chem Phys 139, 2013, 094111 R Izsak, FN, J Chem Phys 135, (2011) 144105.



Approximations to SCF Equations

For a review see e.g. 

FN, 

in Linear Scaling Methods in Quantum Chemistry, 

edited by M. Papadopoulous et al. (2011), 

Springer, Heidelberg, 

p.227-262



Coulomb Term: Density Fitting and Split-RI-J

The RI-approximation works particularly well for Coulomb-type contractions:

J
µν
= P

κτ
(µν |κτ)

κτ
∑
≈ P

κτ
c
µν
Kc
κτ
L (K |L)

K ,L
∑

κτ
∑
= (µν |K)

K
∑ V

KL
−1

L
∑ P

κτ
(κτ |L)

κτ
∑

gL

! "##### $#####

PK

! "######### $#########

= P
K
(µν |K)

K
∑

Requires generation (or read) of the three index integrals twice

Quadratic scaling with system size remains unaffected

Coulomb energy is variational



Implementation

g=0 
Loop k,t 
   Loop L 
      Calculate (kt|L) 
      g(L)=g(L)+P(kt)*(kt|L) 
end loops k,t,L 
Use Cholesky decomposition of V to solve VP=g 
Loop µ,n 
   Loop K 
      Calculate (µn|K) 
      J(µ,n)=J(µ,n)+P(K)* (µn|K) 
end loops µ,n,k

Through the much smaller number of integrals and their cheapness, the 
savings are fairly spectacular (factor 10-100)

def2-TZVP=667 BFs

Enables a lot of computational chemistry! If exact exchange is not needed - 
Larger systems, faster turnaround, time, better basis sets, …

def2-TZVP/J=1056 Aux BFs

Traditional : 5800 sec

RI(direct) :   172 sec

RI(conv) :    44 sec

Error :     0.5 mEh

0.3 kcal/mol



Split-RI-J
Obviously, RI-J can profit in the same way from integrating the integral evaluation as 
Split-J (J-engine) can.

Loop ��
      Calculate T(q)=� ��P(�,�)E(�,�,q)(-1)q 
end 
Loop r
  Loop q 
     Calculate R(p,q) 
     V(p)+=R(p,q)T(q) 
   end  
   Calculate E(r,p) 
   g(r) += E(r,p)V(p) 
end 
Solve c=V-1g through Cholesky 
Loop r
      Calculate X(p)=�rc(r)E(r,p) 
end 
Loop � ,�
  Loop p 
     Calculate R(p,q) 
     Y(q)+=R(p,q)X(p) 
   end  
   Calculate E(� ,�,q) 
   J(� ,�) += E(� ,�,q)Y(q) 
end 
 

J
µν
RI = E

tuv
µν R

t+ ′t ,u+ ′u ,v+ ′v
′t ′u ′v
∑ (−1) ′t + ′u + ′v E ′t ′u ′v

K X
K

K
∑

tuv
∑

X
K
= V

KL
−1

L
∑ E

tuv
κτ R

t+ ′t ,u+ ′u ,v+ ′v
P
κτ
(−1) ′t + ′u + ′v E ′t ′u ′v

L

κτ
∑

′t ′u ′v
∑

tuv
∑

FN J. Comput. Chem. 24 (2003) 1740.
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A Numerical Comparison 
Cocaine

If the RI integrals can be stored, the speedups are gigantic!

FN, in Linear Scaling Methods in Quantum Chemistry, M. Papadopoulous et al. (eds)(2011), Springer, Heidelberg, p.227-262



Coulomb Term: Cholesky Decomposition

Cholesky decomposition leads to equations that are very similar to RI-J

Bebe and Linderberg realized that the two-electron supermatrix

I
µν,κτ
= (µν |κτ)

Is symmetric and positive (semi)definite. Hence one can Cholesky decompose it:

I = LLT

Hence: I
µν,κτ
= L

µν,J
L
κτ,J

J
∑

The ‚Cholesky vectors‘ Lµν,J take the role of the three-index integrals

There is a finite number NJ<<NBas2 of significant Cholesky vectors (e.g. 2-4N)

Large savings, if the Cholesky vectors can be made efficiently (Dalton, MOLCAS)

No auxiliary basis set necessary, precision can be finely controlled
NHF Beebe, J Linderberg, IJQC. 7, 683 ︎1977 ︎. H Koch, A Sanchez de Meras, TB Pedersen, JCP, 2003, 118, 9481



Coulomb Term: Pseudo-Spectral Approximation

The pseudo-spectral approximation works well for the Coulomb term: 

J
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Basis for Friesner’s pseudo spectral implementation in Jaguar 



Coulomb Term: Poisson Equation

One step further, one can use fully numerical techniques for the Coulomb matrix. In order 
to avoid the numerical integration over the Coulomb singularity, one might solve the 
Poisson equation instead (Becke’s NUMOL or Delly’s DMOL)

Can be used with any type of basis function, even numerical orbitals! 

ρ(r
g
)= ρA(r

g
)

A
∑

Grid points are assigned to atoms 
and hence, the density on each 
grid point can be assigned to an 
atom as well

Density:

Multipole Expansion:

ρ
lm
(r)= S

lm
(θ,φ)ρA(r,θ,φ)sin θdθdφ∫

ρA(r)= ρ
lm
(r)S

lm
(θ,φ)

lm
∑



Poisson Approach to the Coulomb term

Poisson equation: ∇2V
A
(r)=−4πρA(r)

V
A
(r,θ,φ)= r−1U

lm
(r)S

lm
(θ,φ)

lm
∑

d 2U
lm
(r)

dr 2
−
l(l +1)
r 2
U
lm
(r)=−4πρ

lm
(r)

Simple 1d differential equation; solved by standard methods

Total Coulomb potential: V(r)= V
A
(r)

A
∑

Readily available on the grid

J
µν
≈ X

gµ
X
gν
V(r

g
)

g
∑ No timings, but DMol is 

reported to be extremely 
efficient

Coulomb matrix:



Coulomb Term: Fast Multipole Method

Reaching linear or near-linear scaling in the Coulomb construction is possible by various 
variants of fast multipole methods. The basic idea is simple:

1. For a given pair of basis functions, divide the contributions to the Coulomb potential into 
a near field and a far field contribution 

2. Treat the near field contribution with exact analytical integration 	 O(N) 
3. Treat the far field contribution using multipole expansions		 	 O(NlogN) to O(N))

Reference pair µ,n

near field

J
µν
← P

κτ
(µν |κτ)

κτ∈NF
∑

Collective monopole and perhaps 
dipole of this fragment is enough

Higher-order 
multipoles are 
needed

e.g. White CA, Johnson, BG, Gill, 
PMW, Head-Gordon, M, Chem. Phys. 
Lett. 1994, 230, 8-16 



Do Batches of i 
   Calculate Xi     O(N2)-O(N3) 
     Cholesky to get Yi   O(N2) 
     loop i 
     BLAS: K<-XiYi    O(N4) 
    end loop i 
end batches

Exchange: RI/DF Approximation

The exchange term is much harder to 
approximate! Let us try the RI method

K
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∑
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i
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BAD: exchange scales intrinsically linear, but we have O(N4) scaling!

BAD: No convenient way to 
form an intermediate by 
summing two indices away at 
the same time



Exchange: „Chain of Spheres“ approach

µ νκ τ
S SX

A chain of overlapping spheres:

Each basis function is surrounded 
by a sphere outside of which it is set 
to zero:

COS-X:

 

 

 

 

Set to 0 Set to 0

F. Neese, F. Wennmohs, A. Hansen, and U. Becker, Chem. Phys. 356 (2009) 98.;R. Izsak, and F. Neese, J. Chem. Phys. 135, 
144105 (2011) 144105; R. Izsák, F. Neese, and W. Klopper, J. Chem. Phys. 139 (2013) 094111



Exchange:  „Chain of Spheres“ Implementation

Preselect interacting basis function pairs based on the overlapping 
spheres or significant density criteria 
Loop ig over grid points    O(N) 
  Calculate basis function values X(µ,g) for µ⊂{g}  const 
  Construct secondary+tertiary shell-lists    const 
  Perform Matrix multiplication F(κ,g)=P(κ,τ)X(τ,g)  const 
  Calculate analytic integrals  G(ν,g)=ΣκF(κ,g)A(κν,g) const 
  Perform matrix multiplication K(µ,ν)=G(ν,g)X(µ,g)    const 
end

Most expensive step: generation of analytic integrals

	 → Hand optimized, highly efficient code

	 → Loop unrolling, through angular momentum classes

	 → Computation of common intermediates outside  
	      the inner loop over batches of grid points

FN, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys. 356 (2009) 98. R. Izsak, and FN, JCP 135, 144105 (2011) 144105.	



The RIJCOSX approximation

Reduction of calculation time up to two orders of magnitude 
with very small loss in accuracy

FN, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys. 356 (2009) 98. R. Izsak, and FN, JCP 135, 144105 (2011) 144105.	



Comparison: RI-JK and RIJCOSX

S. Kossmann, and FN, Chem. Phys. Lett. 481 (2009) 240.

Small 
system,big 

basis  
➢ RIK wins

big system,  
➢ COSX wins



Application to MP2



MP2 Correlation Energy: Density Fitting

The RI approximation mixes particularly well with MP2

K
ab
ij = (ia | jb)

≈ (ia |K)(jb |K)
K
∑ Rate limiting O(N5) step

Algorithm:
Integral Transformation 
Calculate V-1/2 
Loop K 
  Loop m<=n 
    Calculate I[K](m,n)=(mn|K) 
  end  
  Transform J[K](i,n)=(cocc+I[K])(i,n) 
  Transform I[K](i,a)=(J[K]cvirt)(i,a) 
end Loop K 
Sort integrals to X[i](K,a) 
Orthogonalize integrals with V-1/2

MP2 
Loop i 
  Read X[i] 
  Loop j<=i  
    Read X[j] 
    Form Kij=X[i]+X[j] 
    Form Amplitudes Tij 
    Contribution to EMP2 
End loops i,j 



RI-MP2 Example

BLAS optimized algorithm 

Diclophenac
def2-TZVP (667 basis functions)
4 GB main memory used

1732 sec

Half transformation    : 1697.0 sec 
AO-integral generation  : 1078.9 sec 
Half transformation     :  354.0 sec 
K-integral sorting      :   60.4 sec

RI algorithm 

55 sec

Integral trafo        : 17.514 sec ( 31.4%) 
I/O of integrals      :  0.206 sec (  0.4%) 
K(i,j) Operators      : 32.342 sec ( 58.0%) 
T(i,j) pair energies  :  4.056 sec (  7.3%) 
V-calculation         :  0.040 sec (  0.1%) 
V**(-1/2)             :  0.313 sec (  0.6%)

Factor >30

error ~0.01% = 0.53 mEh

Superbly efficient for medium sized systems, but still O(N5) scaling



The Laplace-Transform MP2 

J Almlöf Chem. Phys. Lett, 1991, 181, 4

Look at the MP2 expression:

E
MP2
= 1
4

ij ||ab
2

ε
a
+ ε

b
− ε

i
− ε

jijab
∑

We know how to nicely factorize and approximate the nominator. But what about the 
denominator?

Almlöf realized that the Laplace transform: 

1
x
= exp(−tx)dt

0

∞

∫
Can be used to get: 1

ε
a
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b
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i
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∞
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Laplace Transform MP2 

Leading to: E
MP2
= 1
4

e−εate−εb teεi te
εj t ij ||ab ij ||ab

ijab
∑ dt∫

Absorb the t-dependence in the orbitals:

ψ
i
(t)= ψ

i
(0)e

1
2
εi t

ψ
a
(t)= ψ

a
(0)e−

1
2
εat

Giving: E
MP2
= 1
4

i(t)j(t) ||a(t)b(t)
2

∫ dt
ijab
∑

perform the t-integration numerically (6-10 points are enough)

Apply whatever approximation to the t-dependent integral or transform it to 
the AO basis ….

M. Häser, J. Almlöf, and G. E. Scuseria, Chem. Phys. Lett. 181, 497 ︎1991︎. 



Laplace Tranform MP2

SA. Maurer, DS Lambrecht, J Kussmann, C Ochsenfeld J Chem Phys, 138, 
014101 2013  
B Doser, J Zienau, L Clin, DS Lambrecht, C Ochsenfeld Z. Phys. Chem. Int. 
Ed., 2010, 224, 397

α=quadrature points

Linear scaling with full accuracy can be achieved 

E
MP2
= 1
4

i(t)j(t) ||a(t)b(t)
2

∫ dt
ijab
∑

2025 atoms and 20 371 basis functions (6-31G**)


