
Local Correlation Approaches

Frank Neese

Max Planck Institut für Chemische Energiekonversion 
Stiftstr. 34-36 
D-45470 Mülheim an der Ruhr 
Frank.Neese@cec.mpg.de

ESQC 2017, Sicily



Problem with Wavefunction Methods
So why don‘t we use these accurate ab initio methods for our 

everday theoretical chemistry?

Explosive cost 
Wall clock time  ∝ O(N7)



Early Local Correlation Approaches

The idea of local correlation is almost as old as correlation theory itself and has been 
suggested long before even Hartree-Fock calculation on medium sized molecules were 
feasible

O Sinanoglu Adv. Chem. Phys., 1964, 6,315 
RK Nesbet, Adv. Chem. Phys., 1965, 9, 321

it took almost 20 years before it was taken up again. An important paper is from Cullen 
and Zerner (received no attention, perhaps because it was in a semi-empirical context)

JM Cullen, MC Zerner  J. Chem. Phys., 1982, 77, 4088

Followed by the pioneering work of Pulay and Saebo (CISD, MP4)
P Pulay, Chem. Phys. Lett. 1983, 100, 151.; S Saebo, P Pulay, Chem. Phys. Lett. 1985, 113 13.

P Pulay, S Saebø, Theor. Chim. Acta 1986 69, 357.; S Saebo, P Pulay, J. Chem. Phys. 1987, 87 914.


And the early coupled cluster work (mostly CCD)

       RJ Bartlett, GD Purvis, Int. J. Quantum Chem. 14, 561 1978  WD Laidig, GD Purvis III, RJ Bartlett, Int. J. 
Quantum Chem., Symp. 16, 561 1982.  WD Laidig, GD Purvis III RJ Bartlett, Chem. Phys. Lett. 97, 209 
1983; WD Laidig, GD Purvis III RJ Bartlett, J. Phys. Chem. 89, 2161 1985; W Förner, J Ladik, P Otto, J 
Čížek, Chem. Phys. 97, 251 1985 W Förner, Chem. Phys. 114, 21 1987 M Takahashi J Paldus, Phys. Rev. 
B 31, 5121 1985 

… given the hard- and software limitation at the time real applications were not feasible



Importance of Accuracy Goals
✓ preserve - as much as possible - the accuracy of wave function based 

approaches. 

✓ Reduce the unfavorable scaling with system size - ideally to linear 

HOWEVER 
➡ The error that we introduce by exploiting the locality must not spoil 

the intrinsic accuracy of the method! 

➡ Example: large molecule Ec ~10 Eh=6270 kcal/mol

➡ Chemical accuracy is ~1 kcal/mol

➡ The target accuracy MUST be 99.9 to 99.99% of Ec 
➡ Error cancellation is NOT better than ~1 order of magnitude 



Principles of Local Correlation Theory

Pretty much all local correlation methods:

E
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= δE

K
Chunks K=1

NK

∑ ≈ δE
K
(approx )

Chunks ′K =1

′NK <NK

∑

‣ Fragments 
‣ Atoms 
‣ Atom Pairs 
‣ Orbitals 
‣ Orbital Pairs 
‣ … 

Approximation 1

Approximation 2

where „chunks“ = 



Approximation 1: Correlation Energy ‚Chunks’



Decomposition of the Exact Correlation Energy

Start from the Schrödinger equation

Multiply with the HF function from the left:

Insert the full CI expansion
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If we know the precise values of the double excitation coefficients we know 
the EXACT correlation energy! It is a sum of PAIR CORRELATION ENERGIES

Thus: (Nesbet‘s theorem)1
4
C
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Approximation 1: Pair Approximation

FN, Wennmohs, F.; Hansen, A. 2009, J. Chem. Phys. 130, 114108
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Pair energy 
MP2 estimate

Exploit locality 
by cutting pairs 
with estimated 
eij <TCutPairs



The Leading Term of Electron Correlation

Assumptions: - Occupied orbitals are localized  
- Orbital energies in the denominator can be replaced by diagonal 

Fock matrix elements (semi-canonical approximation) 
- Drop the exchange part for the long range behavior (it falls off 

exponentially)

Exchange Coulomb 
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Analysis: - For non-zero contributions, orbitals i and a and j and b must be „close“ 
- If the charge distributions ria(r)=i(r)a(r) and rjb(r)=j(r)b(r) are well 

separated, we can make a multipole expansion.



Bipolar Expansion

Use the bipolar expansion in real spherical harmonics: 
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Since occupied and virtual orbitals are orthogonal, they have no monopole. 
➡ the leading term is the dipole-dipole-interaction

Multipole moments of the charge distributions

(ia | jb)∝ R−3 ⇒ ε
ij
SC−MP2 ∝ R−6

This is the pure dispersion (induced dipole-induced dipole) interaction. 

Distance between the center of the charge distributions



Chemically Speaking: How Local is the Correlation?

 
ΔE = +1.9±0.5  kcal/mol  Exp. 
   -11.4     kcal/mol  HF 

 -0,4  kcal/mol  CCSD 
   -8.4      kcal/mol  B3LYP 
   -9.9      kcal/mol  BLYP
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semi-local correlation!
→not present in standard DFT functionals 
    (except partially in in DHDF’s)

We really need to capture both: semi-local and dispersion effects
Correlation is not quite as local as we’d like it to be! 



Approximation 2: Limited Excitation Spaces



Approximation 2: Virtual Space Truncation

✓ The occupied (internal) orbitals localize nicely (mostly, that is) 

➡ Significant MO coefficients extend over only a few atoms (1-5)

✓ Pair correlation energies based on localized internal orbitals show locality with the 
expected R-6 decay 

✓ The virtual (external) orbitals are problematic 

➡ „Chaotic“, delocalized nature 
➡ ‚Building higher and higher towers with smaller and smaller stones 
➡ Truncation schemes based on canonical MOs are unlikely to be highly successful



Local Excitation Spaces

Let us go back to our analysis of the leading correlation term
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In order for this term to be significant

orbital a must be close to i AND orbital b must be close to j

The orbital pair ia and jb must have a significant differential overlap

in mathematical terms

Consequence: We can focus on local excitations and neglect long range charge 
transfer 

However: A local representation of the virtual space is necessary

BUT: Standard localization schemes do not work well (but see Jörgensen et al)
‣ in particular for large basis sets the virtual orbitals do not localize well 

since the orthogonality constraint leads to highly oscillatory behavior 
‣ Most researchers: Choose a non-orthogonal, local representation



Projected Atomic Orbitals
Projected atomic orbitals, PAOs, Pulay, P. CPL, 1983, 100, 151

!µ = (1− i i
i∑ ) µ

PAO’s are local close to the ‚parent‘ atom (but have significant tails)

PAO’s span the virtual space and are orthogonal to the occupied space

PAO’s are non-orthogonal and linearly dependent



Domains and Pair Domains
A domain {µ}i is a set of PAOs chosen for a given internal LMO 
according to some prescription (Mostly heuristic - most researchers use 
connectivity and distance criteria)

LMO 46

{µ}46

(…)

LMO 28

{µ}28

(…)

(…etc)

A pair domain {µ}ii is the union of the individual orbital domains 

µ{ }
ij
= µ{ }

i
∪ µ{ }

j



Orthonormal Localized Virtual Orbitals

IM Hoyvik, K Kristensen, T Kjaergaard, P Jörgensen Theo. Chem. Acc., 2014, 133, 1417

‣ Careful comparison of PAOs and standard localized virtual MOs
‣ Suggested localization functional

L = ψ
i
| (r−R

i
)4 | ψ

i

2

R
i
= ψ

i
| r | ψ

i
i
∑

Center of gravity of MO iFourth ‚central moment‘

(emphasizes the LMO tail region)

Diamond (localized) Graphene (delocalized)

it seems possible to generate orthonormal virtual molecular orbitals that are as good 
or better than PAOs



Types of Local Correlation Approaches

Methods to exploit the locality of electron correlation fall into two broad categories:

2) „Direct“ Local Approaches (Pulay, Werner/Schütz, FN, ...)

✓ Locality is used in the algorithm to avoid the computation of terms that are near 
zero or factors that are unity.  

✓ Some kind of localized representation of the virtual space is required

1) „Piecewise“ Local Approaches (Stoll, Piecuch, Kallay, Li, Jörgensen, Friedrich, ...)

✓ Locality is used by dividing the molecule into subsystems (molecular 
fragments, orbital groups, ...).  

✓ Small calculations  are carried out on one, two, three ... subsystems at the 
time and  

✓ Results are combined to estimate the total correlation energy



‚Piecewise‘ Local Correlation Schemes



The Divide-Expand-Consolidate (DEC) Approach

✓ Jörgensen and co-workers proposed a variant of an incremental scheme that is called 
Divide-Expand-Consolidate (DEC)

✓ Linear scaling and massively parallel

‣ Localize occupied and virtual HF orbitals separately using standard algorithms.
‣ Assign localized orbitals to atomic sites: 

Hence, each atom has a set of (orthonormal) occupied and virtual orbitals assigned to it.

ψ
i
,ψ
j
⇒ P,Q

ψ
a
,ψ
b
⇒ P,Q

M Ziolkowski, B Jansik, T Kjaergaard, P Jörgensen J. Chem. Phys., 2010, 133, 014107; K Kristensen, M Ziolkowski, B 
Jansik, T Kjaergaard, P Jörgensen J. Chem. Theo. Comp., 2011, 7, 1677

‣ Expansion of the correlation energy: 
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still exact!



The DEC family of methods

‣ Local approximations

E
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∑

i<j∈P
∑

This is a 0th approximation. Solve the CC equations just using these MOs. This would be 
missing a lot of pair-pair coupling contributions. Hence need to refine

‣ Expansion and consolidation step
Add spatially close orbitals k and c to the local space of P (Three distance thresholds Rt) and 
recalculate Ep until convergence is reached to a pre-specified accuracy threshold FOT 

‣ Orbital truncation step
Truncate the AO contributions to the occupied and virtual MOs according to a 
completeness relation with threshold d. The truncated MOs are fitted to be as similar to 
the original, untruncated MOs
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‣ Pair neglect step
Neglect pair increments according to another distance threshold Rcrit



The Divide Expand Consolidate (DEC) Approach

Not yet reported for DEC: 
‣ Statistical error analysis for chemical test sets  
‣ Chemical applications on electronically more complicated systems  
‣ Calculations with large and diffuse basis sets

K Kristensen, M Ziolkowski, B 
Jansik, T Kjaergaard, P Jörgensen J. 
Chem. Theo. Comp., 2011, 7, 1677

Nice features of DEC 
‣ Can drive existing canonical CC programs for 

the site calculations 
‣ ‚Embarassingly well parallelizable‘ 
‣ Accuracy essentially controlled by FOT. High 

accuracy reachable



The Cluster in Molecules (CIM) Approach
The Cluster in Molecules (CIM) approach was proposed by Li et al. and adopted by 
Piecuch et al. and Kallay et al.
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Let us start from the (orbital invariant) coupled cluster energy expression

and re-write it in terms of single-occupied orbital increments:
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let the occupied orbital be localized. 

S Li, J Ma, Y Jiang J. Comp. Chem., 2002, 23, 237; S Li, W Li, J Ma Chin. J. Chem., 2003, 21, 1422; S Li, J Shen, W 
Li, Y Jiang J. Chem. Phys, 2006, 125, 074109

Replace: ψ
i
(r)= c

µi
µ(r)

µ
∑ → ψ

i
(r)≈ c

µi
µ(r)

µ∈{i}
∑

{i} is the orbital domain of localized MO i and contains the AOs of all atoms to ensure a 
population of at least 1.98 when summed. Threshold t Very small: 1-3 atoms! 



The Cluster in Molecules (CIM) Approach

Now use the off-diagonal Fock matrix elements Fij > z1 to select orbitals j interacting with i 

➡ Environment [i]=[i, j1i, j2i,…,jNi]

Associated with the primary environment are the AOs that are the union of the AO 
domains of the orbitals in the environment

➡ AO domain [µ]i

Finally, the virtual space for the domain of orbital i is spanned by the PAO’s belonging to 
the atoms that compose the AO domains

➡ PAO domain [  ]i!µ

After orthogonalization, removal of linear dependencies and cutting small AO 
contributions, there is a set of orthonormal virtual orbitals that belong to the domain of i

(the actual algorithms are more involved than this, but the essence is just this)

W Li, P Piecuch, JR Gour, S Li j Chem. Phys, 2009, 131, 114109



Implementation of CIM
Since the described algorithm has selected as subset of occupied orbitals, and a subset 
of virtual orbitals that are all orthonormal and a subset of atomic orbitals one can simply 
drive an existing correlation code using the subsystem information as input

➡ Reduces one large CC problem to Nocc smaller coupled cluster calculations 
➡ Highly efficient parallelization since no communication is required 
➡ Can take full advantage of sophisticated canonical programs that have been 

developed (e.g. completely renormalized CC methods) 
➡ Reasonably simple implementation since no new coupled cluster routines for non-

orthogonal orbitals need to be written

However: 
๏ CIM or DEC will only be as efficient as the most expensive subsystem CC 

calculation. If this is getting out of hand (e.g. >500 orbitals) the algorithm will fail 
๏ There is a significant amount of redundant computation since the various domains 

have overlapping orbitals and atoms and hence, many intergrals are computed 
multiple times 





Direct Local Correlation Schemes



A Treatment on Sparsity



Formal Treatment of Sparsity

… Local correlation approaches lead to complicated book-keeping problems since 
subspaces of a large number of function spaces must be organized (occupied MOs, 
electron pairs, PAOs, fit functions, atomic orbitals, atoms, …)

… So far, developers have each addressed the problem individually by developing 
complicated software solutions that are difficult to understand and maintain

… recently, an attempt was made to provide a formal (and programming) framework 
for exploiting sparsity in quantum chemistry in a systematic manner 

… exploitation of sparsity to the point of reaching linear scaling creates a complex 
circular interdependencies that are easy to get lost in

SparseMap formalism

P Pinski, C Riplinger, E Valeev, FN, J Chem Phys. 2015, 143, 034108



Multiplicative vs Additive Sparsity

i = c
µi
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(i !µ |K)e.g. e.g.

Additive Multiplicative

Consider two sets of functions {f } and {g}

We differentiate two different types of sparsity

Sparse List: for which

Sparse Map:

Pretty obvious sparsity criterion for additive sparsity, but what about multiplicative sparsity?

(collection of lists for all i)

P Pinski, C Riplinger, E Valeev, FN, J Chem Phys. 2015, 143, 034108



Multiplicative Sparsity

A great way to implement multiplicative sparsity would be the Schwartz Integral:

SPI
ik
≡ (fg | fg) =

f
i
(r
1
)g
k
(r
1
)f
i
(r
2
)g
k
(r
2
)

r
1
− r

2

∫ dr
1
dr
2∫

✓  Positive semi-definite

Easy to compute for AO’s ✓  

   ✗ Hard to efficiently compute for MOs and related quantities

Want a simple substitute for the SPI to implement multiplicative sparsity

Used as an upper bound for ERI’s✓  

P Pinski, C Riplinger, E Valeev, FN, J Chem Phys. 2015, 143, 034108



The Differential Overlap Integral (DOI)

DOI
ik
= | f

i
(r) |2∫ | g

k
(r) |2 dr

New proposal: Use the Differential Overlap Integral 

to implement multiplicative sparsity

Excellent estimate for the SPI

Easy to compute efficiently in 
linear scaling for any set of 
functions

✓  

✓  

P Pinski, C Riplinger, E Valeev, FN, 
J Chem Phys. 2015, 143, 034108



Implementing Sparsity:‚Linked Index Principle‘

(i !µ |K)= c
µi
L !P
ν!µ
(µν |K)

µν
∑

In order to reach linear scaling there MUST be an uninterrupted 
path of sparsity relationships that connects each index of a given 

object (integral, amplitude) to each other index)

Example: Three-Index Integral transformation

additive (c)

multiplicative (SPI)

multiplicative (DOI)

additive (P)

multiplicative (DOI)

Chain of sparsity relationships exist

Linear scaling is possible
P Pinski, C Riplinger, E Valeev, FN, J Chem Phys. 2015, 143, 034108



Working with Sparsity:‚Sparse Map‘ Operations

L(f → g)
In order to actually (not just formally) take advantage of sparsity one needs to define  
operations on sparse maps. Consider

We have developed a C++ object library that implements sparse map operations

L(g → f )= L−1(f → g)Inversion:

L(f → ν)→ L(f → ν
S
) L(f → ν)→ L(f → ν

A
)Contraction:

shells atoms
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2
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Union & Dissection:
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(g → h)Chaining



Example 2: Linear Scaling 3-Index Transformation

(i !µ |K)= c
µi
L !P
ν!µ
(µν |K)

µν
∑

L(K → µ)= L(K → i)⊂ L(i→ µ)

L(K → !µ)= L(K → i)⊂ L(i→ !µ)

L(K → ν)= L(K → i)⊂ L(i→ !µ)⊂ L(!µ→ ν)

O(N)

All O(0) operations on 
the current auxiliary 

shell

L(K → i)= L−1(i→ K)

P Pinski, C Riplinger, E Valeev, FN, J Chem Phys. 2015, 143, 034108



Linear Scaling 3-Index Transformation Performance

Linear carbon chains:

Next to no overhead compared to dens transformation that heavily uses BLAS

Linear scaling sets in around 40 carbon atoms
P Pinski, C Riplinger, E Valeev, FN, J Chem Phys. 2015, 143, 034108



Projected Atomic Orbitals and Correlation Domains



Local MP2 Theory
Two complications relative to canonical MP2:  

‣ At first sight the use of non-orthogonal orbitals appears to be „nightmare“ of 
added complexity. However, the PAO’s remain orthogonal to the occupied space and 
there are never more than two PAOs in any excited determinant 

‣ In the local representation the Fock matrix is no longer diagonal and hence the 
usual Möller Plesset expansion does not apply. 

Pulay and Saebo suggested to use the Hylleraas functional instead

P. Pulay, and S. Saebø, Theor. Chim. Acta 69, 357 (1986).

E
(2) = min(2 Ψ(1) |H |Ψ(0) + Ψ(1) |H

0
−E

0
|Ψ(1) )

it readily leads to an orbital invariant formulation of MP2
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Local MP2 Theory
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Minimization w.r.t. the coefficients C leads to the linear equation system: 
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Which immediately leads back to canonical MP2 if the Fock operator is diagonal. 

If now the virtual orbitals are replaced by non-orthogonal PAO’s, only a slight 
complication arises. The first order wave function is:

Ψ(1) = 1
4
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ij Φ

ij
!µ!ν

ij !µ!ν
∑



Local MP2 Theory

R
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ij = ij || !µ!ν + (F
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The residual becomes:

or: Rij = Kij + (FCij!S+ !SCijF)− (f
ik
!SCkj!S+ f

kj
!SCik!S)

k
∑ = 0

With the PAO overlap matrix !S
!µ!ν
= !µ | !ν

So far: no approximation! 

These equations represent a more complicated and ill-conditioned way to do MP2!  
‣ Owing to the linear dependencies in the PAO set, the equations are singular.  
‣ Removing the singularities by diagonalizing of the PAO overlap matrix and dropping the 

eigenvectors corresponding to zero eigenvalues leads back to canonical MP2

➡ Introduce correlation domains for each electron pair ij



Local MP2 Theory

‣ In the local treatment, only a subset of PAOs are included for each electron pair (ij), e.g. 
those PAOs that are „spatially close“ to (ij)

‣ In the early days of correlation theory this was done using heuristic connectivity 
arguments and analyzing the MO coefficients of occupied local orbitals (i) and (j). 

‣ Correlation domains contained typical 2-5 atoms

‣ Pair domains are constructed as the union of orbital domains 

	 J. W. Boughton and P. Pulay, J. Comput. Chem. 14, 736 ︎1993 ︎. 

Correlated bond

PAO’s of these 
atoms define the 
domain



Local MP2 Theory

Using the domains, the residual becomes

Rij = Kij + (F(ij )Cij!S(ij ,ij )+ !S(ij ,ij )CijF(ij ))− (f
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k
∑ = 0

Where all matrices are now local:

R
!µ!ν
ij → R

!µ∈{ij},!ν∈{ij}
ij

K
!µ!ν
ij → K

!µ∈{ij},!ν∈{ij}
ij

F
!µ!ν
(ij )→ F

!µ∈{ij},!ν∈{ij}

!S
!µ!ν
(ij ,kl )→ !S

!µ∈{ij},!ν∈{kl}

} ✓ Sub-matrices can either be stored or constructed on 
the fly

Two more steps are necessary to reach linear scaling
1. Discard weakly interacting electron pairs:  

In almost all local treatments done by distance criteria (Rij=distance between 
orbital centroids)  

2. Discard small terms in the sum over k by analyzing fik,fjk 
Threshold FCut~10-5 Eh



Amplitude Update

And in each iteration update the amplitudes according to:

After the domains have been formed, it is advantageous to diagonalize the local overlap 
matrix

!S
!µ!ν
(ij ) = !µ | !ν

and discard eigenvalues smaller than a threshold (i.e. 10-8). This gives a set of non-
redundant, locally orthonormal PAO’s 

!′µ = s
!µ!′µ
!µ

!µ∈{ij}
∑

Furthermore, one can diagonalize the Fock matrix over this local set to arrive at a set of 
local quasi-canonical PAO’s        with energies !′′µ ε

!′′µ

We assume this done (and drop the primes). The initial guess to the amplitudes is:

C
!µ!ν
ij ←C

!µ!ν
ij −

R
!µ!ν
ij

ε
!µ
+ ε

!ν
− f

ii
− f

jj

(!µ!ν ∈ {ij})

C
!µ!ν
ij (guess)=−

(i !µ | j!ν)
ε
!µ
+ ε

!ν
− f

ii
− f

jj

(!µ!ν ∈ {ij})



PAO based Local Correlation Treatments

Hierarchical treatment of electron 
pairs, multipole approximations, 

careful thresholding lead to 
efficient, linear scaling algorithms



Problems with PAO based treatments
NJ Russ, TD Crawford J. Chem. Phys., 2004, 121, 691

➡ Discontinuous potential energy surfaces due to small and changing domains along the PES

➡ Reply:



Improvements of Local MP2

1. RI/DF Approximation of Kij  

HJ Werner, F Manby, PJ Knowles, J. Chem. Phys. 2003, 118, 8149 

2. Pseudospectral construction of Kij  
RB Murphy, MD Beachy, RA Friesner, MN Ringnalda J. Chem. Phys., 1995, 103, 1481  

3. Laplace Transformation  
A Wilson, J. Almlöf Theoret. Chim. Acta, 1997, 95, 49 

…

Endless possibilities for performance improvements and minor tweaks



In either PAO based or CIM based procedures the correlation energy 
recovered depends critically on the PAO domains.  

… how large do they have to be in order to lead to an accurate result?



How Large do Domains have to be?

Correlated bond

TDO=0.1 98.4% Ecorr    NavPAO=115 
TDO=0.01 99.7% Ecorr    NavPAO=588
TDO=0.001 99.9% Ecorr     NavPAO=935

At the domain size one reaches target accuracy the average number of PAOs 
per domain is too large for the calculation to be efficient or even doable

There are important correlation effects that are not that local



Virtual Space Compaction: Pair Natural orbitals
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Most Compact Expansion: Natural Orbitals

Shortest possible accurate virtual 
space expansion through neglecting 

natural orbitals with occupation 
number TCutNO (<10-7)

(1)
(5)

(13) (29) (54)





Pair Natural Orbitals (PNOs)

n=0.0035

n=0.0030

n=0.0011

n=0.0010

n=0.0003

n=0.0002
n=0.0011

n=0.0004

n=0.0002

‣ Small number of significant PNOs per electron pair

‣ Vanishing (0-5) PNOs for weak pairs 

‣ Located in the same region of space as the internal pair 

but as delocalized as necessary

‣ Orthonormal within one pair, non-orthogonal between 

pairs

FN; Wennmohs, F.; Hansen, A. J. Chem. Phys. 2009, 130, 114108



Approximate PNO Construction

Easiest approach: Use the MP2 amplitudes

The PNOs are obtained as the eigenfunctions of the virtual pair density

PNOs with occupation numbers below TCutPNO are neglected

Refined approach: Construct pair specific orbitals which lead to nearly diagonal intra-
pair (IEPA) CI matrices (Meyer): 

Normalization subject to 
debate, presently dropped

Problem:  
‣ Have to know the pair amplitudes to make the pair densities and hence the PNOs! 
‣ Fortunately, approximate NOs and exact NOs typically behave similarly



Domain Based Local Pair Natural Orbital Coupled 
Cluster Theory



The DLPNO-CCSD Approach
The DLPNO approach to CCSD follows as a natural extension to MP2 (although 
historically, DLPNO-CCSD was much earlier than DLPNO-MP2)

The cluster operator is written in the PNO basis:

T
1
+T

2
= t

!ai

i a
!ai

+a
i

ia
∑ + 1

4
t
!aij
!bij

ij a!bij
+a
!aij

+a
j
a
i

ijab
∑

‣ PNO’s for doubles are made from DLPNO-MP2 and cut with TCutPNO 
‣ PNO’s for singles are identical to the PNOs of the diagonal pairs and cut 

with 0.01TCutPNO

a
ij
= d

µa
ij µ

µ∈{ij}
∑

The PNOs are expanded in large PAO domains (using TCutDO) for domain construction 
and TCutMKN for aux-domain construction)



PNO based Correlation Equations
PNO-CI Wavefunction:

PNO-CI Doubles Residual:

very compact Linear, scaling number of doubles amplitudes (reduction > 

factor  >107) 

Meyer, W.; IJQC, 1971, 5, 341; FN, Wennmohs, F.; Hansen, A. 2009, J. Chem. Phys. 130, 114108



Natural Triple Excitations
Our suggestion: Natural triples orbitals (TNO’s)

✓ Eigenfunctions: 
   D

ijkxijk = nijkxijk (cut-off below a given nijk(min) just as for PNOs) 

✓ Recanonicalize:    x
ijk+Fxijk

✓ Three-pair density: 
    D

ijk = 1
3
(Dij + Dik + Djk )

(The operator projects onto the joint PNO 
space of the three pairs)

✓ Formation of the three pair density in the PAO basis is linear scaling: 

➡ Integrals over TNOs must be generated for each triple 
(bookkeeping complicated but linear scaling) avoiding projection

➡ Linear scaling implementation achieved (Dr. Christoph 
Riplinger)

✓ Amplitudes are projected into the TNO basis: 
    
T
!a
ijk

,!b
ijk

ij ;TNO = S
!a
ijk

,!c
ij

ijk,ij
T
!c
ij
,!d

ij

ij ;PNO
S!b

ijk
,!d

ij

ijk,ij

Riplinger, Sandhöfer, Hansen, FN, JCP, 2013,139(13):134101



Convergence of DLPNO-CCSD(T)

✓ Typically 99.8-99.9% of the canonical correlation energy  
✓ Energetics of the canonical counterpart methods is reproduced to a few tenth of 

kcal/mol. Maximum achievable accuracy ~0.1 kcal/mol of the canonical result. 
✓ The methods are robust and completely black box in character

Riplinger, C. FN J. Chem. Phys, 2013, 138, 034106; FN; A. Hansen, D.G. Liakos,, J. Chem. Phys., 2009 131, 064103



Scaling of LPNO-CCSD

DLPNO-

LPNO-

CCSD

Riplinger, C. FN J. Chem. Phys, 2013, 138, 034106



Scaling of DLPNO-CCSD(T)

Riplinger, Sandhöfer, Hansen, FN, JCP, 
2013,139(13):134101



CCSD(T) Calculations on Entire Proteins
Crambin 

644 atoms

def2-SV(P)/6187 basis functions


Canonical computation time

~5 Million Years 

DLPNO-CCSD(T)

~3 weeks/1 Core

Riplinger, Sandhöfer, Hansen, FN, JCP, 2013,139(13):134101

http://www.physicstoday.org/daily_edition/physics_update/coupled_cluster_theory_tackles_a_protein

http://www.physicstoday.org/daily_edition/physics_update/coupled_cluster_theory_tackles_a_protein


DLPNO Potential Energy Surfaces

Russ, NJ; Crawford, T.D. J. 
Chem. Phys., 2004, 121, 691

No sign of artifacts anywhere. Agreement of CCSD(T), CEPA/1 
and L-RI-PNO-CEPA/1 is excellent

Relaxed PES using default settings 

LPNO-CEPA/1



DLPNO Potential Energy Surfaces

Ethane-1,2-Biphenyl:

Structures from a PBE-D/TZVP relaxed surface scan; other calculations at the optimized geometries with SV(P)

LPNO-CEPA/1

Riplinger, C. FN J. Chem. Phys, 2013, 138, 034106



(In)sensitivity to the Nature of the Localized Orbitals

 

Figure 6: The average number of correlating orbitals per electron pair as a function of 

the basis set size. All calculations were done on the (gly)3 molecule. Thresholds: 

(TCutPNO=10
-6

; TCutPairs=0 Eh, TCutMKN=10
-3

). Note the logarithmic scale. The inset shows 

the ratio of the canonical expansion to the PNO expansion. 

3.2.3 Dependence of the results on the localization method 

A further dependence of the results could result from the localization method. This subject 

was investigated on two test systems with two different basis sets. The results in Table 1 

demonstrate that the dependence of the LPNO-CEPA/1 energies on the localization method is 

extremely weak – correlation energies only differ by a few hundredth of a kcal/mol despite 

the fact that the Pipek-Mezey procedure keeps the π/σ-separation while the Foster-Boys 

localization produces banana-type bonds in benzene. Moreover, with basis sets that contain 

diffuse functions the Pipek-Mezey localization algorithm produces some very poorly 

localized orbitals that will eventually be problematic for local correlation methods that use 

real-space criteria for truncation. An example is one of the C-H bonds in benzene as shown in 

Figure 7. Obviously, the Pipek-Mezey procedure leads to LMOs in this case that show 

artificial delocalized tails while the Foster-Boys procedure behaves as expected. It is 

gratifying to observe that despite the unphysical behavior of the Pipek-Mezey MOs, the 

LPNO-CEPA/1 results obtained are almost identical to those that are based on the Foster-

Boys orbitals (Table 1). Since we consider the Foster-Boys localization criteria to be more 

physically sound, our default procedure is based on this method.  

 

Benzene/aug-cc-pVDZ

Pipek-MezeyFoster-Boys

 

 

 

Neese et al., Table 1 

    Etot [Eh] 

Etot (LPNO-CEPA/1)-Etot(CEPA/1) 

[kcal/mol] 

Method Molecule Foster-Boys Foster-Boys Pipek-Mezey 

LPNO-CEPA/1 benzene -231.555559 0.51 0.53 

(cc-pVDZ) octahedran -463.079091 1.46 1.49 

LPNO-CEPA/1 benzene -231.586412 0.53 0.47 

(aug-cc-pVDZ) octahedran -463.145835 1.63 1.79 

 

Figure 6: The average number of correlating orbitals per electron pair as a function of 

the basis set size. All calculations were done on the (gly)3 molecule. Thresholds: 

(TCutPNO=10
-6

; TCutPairs=0 Eh, TCutMKN=10
-3

). Note the logarithmic scale. The inset shows 

the ratio of the canonical expansion to the PNO expansion. 

3.2.3 Dependence of the results on the localization method 

A further dependence of the results could result from the localization method. This subject 

was investigated on two test systems with two different basis sets. The results in Table 1 

demonstrate that the dependence of the LPNO-CEPA/1 energies on the localization method is 

extremely weak – correlation energies only differ by a few hundredth of a kcal/mol despite 

the fact that the Pipek-Mezey procedure keeps the π/σ-separation while the Foster-Boys 

localization produces banana-type bonds in benzene. Moreover, with basis sets that contain 

diffuse functions the Pipek-Mezey localization algorithm produces some very poorly 

localized orbitals that will eventually be problematic for local correlation methods that use 

real-space criteria for truncation. An example is one of the C-H bonds in benzene as shown in 

Figure 7. Obviously, the Pipek-Mezey procedure leads to LMOs in this case that show 

artificial delocalized tails while the Foster-Boys procedure behaves as expected. It is 

gratifying to observe that despite the unphysical behavior of the Pipek-Mezey MOs, the 

LPNO-CEPA/1 results obtained are almost identical to those that are based on the Foster-

Boys orbitals (Table 1). Since we consider the Foster-Boys localization criteria to be more 

physically sound, our default procedure is based on this method.  

 



Basis Set Dependence of DLPNO Methods

citations, the scaling of this contribution is as poor as O!N5".
However, should it become dominant it will be possible to
further optimize this part of the code.

III. NUMERICAL RESULTS

A. Computational details

All calculations have been performed with a develop-
ment version of the ORCA program72 in combination with the
split valence79 !SV", triple-! valence80 !TZV", and
quadruple-! valence !Ref. 81" !QZV" basis sets developed by
the Karlsruhe group that were supplemented with the appro-
priate polarization functions from the TURBOMOLE library.82

For the fitting basis sets in the RI-J treatment, the “def2” fit
bases optimized for the SV, TZV, and QZV basis sets were
used but truncated after L=4 due to technical constraints.

A number of molecules will be studied below the struc-
tures of which are shown in Fig. 1.

B. Accuracy

1. Dependence of the results on the thresholds

In order to investigate the behavior of the LPNO-CEPA-
type procedures with respect to the threshold TCutPNO, we
have first studied the !gly"3 molecule in the SV!P" basis set
and with the CEPA/1 method. The reference value is the
nontruncated CEPA/1 correlation energy of −2.048 964Eh.
As can be seen in Fig. 2 the correlation energy converges
monotonically toward the target value upon tightening

TCutPNO. At a value of TCutPNO=10−6, 99.4% of the correla-
tion energy is recovered. Below this value the calculations
quickly become more expensive as there are many PNOs per
pair with small occupation numbers. The error of the PNO
expansion is significantly reduced by the perturbative correc-
tion of Eq. !34". Thus, the correlation energy is never more
than 0.4% off the target value. However, the apparently ex-
cellent behavior of the correlation energy at TCutPNO=10−4 is
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DLPNO-CCSD(T): Summary
(1) (relative) Simplicity. Only one critical cut-off (TCutPNO); local approximations 

only ,boost‘ efficiency. TCutPNO can be use to control the absolute desired accuracy


(2) No real-space cut-offs and no fragmentation necessary


(3) No redundant integral generation or amplitude optimizations


(4) No reliance on sparsity (e.g. not linear scaling ‚by construction‘) 

(5) Correlation space for each electron pair is optimal: a) very small for weak pairs, b) as 

delocalized as necessary


(6) Excellent behavior with basis set size 

(7) Only local method with proven accuracy (better than 1 kcal/mol) and proven 

efficiency (approaching SCF/DFT times) for real life applications. 


(8) Very weak or no dependence on the localization method. Well localized internal 

space not even required


(9) Very smooth error; no kinks and jumps in PESs


(10) Black box character

Canonical: 
! cc-pVTZ CCSD

LPNO:

! cc-pVTZ cc-pVTZ/C DLPNO-CCSD(T)


