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Problem with Wavefunction Methods




—arly Local Correlation Approaches

The idea of local correlation is almost as old as correlation theory itself and has been
suggested long before even Hartree-Fock calculation on medium sized molecules were
feasible

O Sinanoglu Aav. Chem. Phys., 1964, 6,315
RK Nesbet, Adv. Chem. Phys., 1965, 9, 321

it took almost 20 years before it was taken up again. An important paper is from Cullen
and Zerner (received no attention, perhaps because it was in a semi-empirical context)

JM Cullen, MC Zerner J. Chem. Phys., 1982, 77, 4088
Followed by the pioneering work of Pulay and Saebo (CISD, MP4)
P Pulay, Chem. Phys. Lett. 1983, 100, 151.; S Saebo, P Pulay, Chem. Phys. Lett. 1985, 113 13.
P Pulay, S Saebg, Theor. Chim. Acta 1986 69, 357.; S Saebo, P Pulay, J. Chem. Phys. 1987, 87 914.

And the early coupled cluster work (mostly CCD)

RJ Bartlett, GD Purvis, Int. J. Quantum Chem. 14, 561 1978 WD Laidig, GD Purvis Ill, RJ Bartlett, Int. J.
Quantum Chem., Symp. 16, 561 1982. WD Laidig, GD Purvis lll RJ Bartlett, Chem. Phys. Lett. 97, 209

1983; WD Laidig, GD Purvis lll RJ Bartlett, J. Phys. Chem. 89, 2161 1985; W Forner, J Ladik, P Otto, J
Cizek, Chem. Phys. 97, 251 1985 W Foérner, Chem. Phys. 114, 21 1987 M Takahashi J Paldus, Phys. Rev.
B 31,5121 1985

... given the hard- and software limitation at the time real applications were not feasible



Importance of Accuracy Goals

v preserve - as much as possible - the accuracy of wave function based
approaches.

v Reduce the unfavorable scaling with system size - ideally to linear

HOWEVER
= The error that we introduce by exploiting the locality must not spoill

the intrinsic accuracy of the method!
= Example: large molecule Ec ~10 Eh=6270 kcal/mol

= Chemical accuracy is ~1 kcal/mol

= The target accuracy MUST be 99.9 to 99.99% of E.

= Error cancellation is NOT better than ~1 order of magnitude



Principles of Local Correlation Theory

Pretty much all local correlation methods:

N, N/ <N, Approximation 1
_ ~ (approz)
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Approximation 1: Correlation Energy ,Chunks’



Decomposition of the Exact Correlation Energy

Start from the Schrédinger equation ﬁBO\If = BV

Insert the full Cl expansion

ﬁBO((I)HF + Z C;(I)j 2' Z Cz Q)ab E(CO (I)HF T Z O;(I)? Z Oqu)jjb
a 1jab a 1jab

Multiply with the HF function from the left:

(@ | By | @) +25C (@, |HBO|c1>a>+ anb< A, 90)

1jab

Eyp F;a =0 (Brillouin) (ijl]ab)

-l )+ 00 )37 2
1
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L. (Nesbet‘s theorem)
1jab

Thus: 1N "cY <z'j | ab> |

If we know the precise values of the double excitation coefficients we know
the EXACT correlation energy! It is a sum of PAIR CORRELATION ENERGIES




Approximation 1: Pair Approximation
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The Leading Term of Electron Correlation

Coulomb Exchange
e _ S A(ia | jb)(ia | jb) — 2(ia | jb)(ib| ja)
? ab ga -+ 8b — 52. — 8].

Assumptions: - Occupied orbitals are localized
- Orbital energies in the denominator can be replaced by diagonal
Fock matrix elements (semi-canonical approximation)

- Drop the exchange part for the long range behavior (it falls off
exponentially)

SSO-MP2 _42 (ia | jb)°
’ ab ga—l_gb_P;i_ij

Analysis: - For non-zero contributions, orbitals i and a and | and b must be ,,close”
- If the charge distributions pia(r)=i(r)a(r) and pio(r)=j(r)b(r) are well
separated, we can make a multipole expansion.



Sipolar Expansion

Use the bipolar expansion in real spherical harmonics:

L Q” Qf’b )

mo_ A =)+ )
(za | ]b S S 5 V) % (20, +1)(2, +1) \/(za +m)(l, +m)(l, —m)(l —m)
Ll m=l

A Rl +1, +1

Distance between the center of the charge distributions

' [ . .
Q;:L — f r Slm (9, ¢) P, (I‘) dr Multipole moments of the charge distributions

Since occupied and virtual orbitals are orthogonal, they have no monopole.
= the leading term is the dipole-dipole-interaction

(ia] jb) x R = 550_MP2 ox R

This is the pure dispersion (induced dipole-induced dipole) interaction.



Chemically Speaking: How Local is the Correlation?

AE = 4+1.920.5 kcal/mo:
-11.4 kcal/mol
-0, 4 kcal/mol CCSD
-8.4 kcal/mol B3LYP
-9.9 kcal/mol BLYP




Semi-Local Correlation Effects

Pair correlation energy (kcal/mol)

-10

-15

-20

-25

Electron pair

26 51 6 101 126 151 176 201 226 251 276

Dispersion tail A=6,2 kcal/mol

A=4,6 kcal/mol

semi-local correlation!

—not present in standard DFT functionals

C-C (except partially in in DHDF’s)

A=0,2 kcal/mol |

—== hranched

C-H

=== linear

Bl We really need to capture both: semi-local and dispersion effects
B Correlation is not quite as local as we’d like it to be!




Approximation 2: Limited Excitation Spaces



Approximation 2: Virtual Space Truncation

v The occupied (internal) orbitals localize nicely (mostly, that is)

TGP PV 4

= Significant MO coefficients extend over only a few atoms (1-5)

v Pair correlation energies based on localized internal orbitals show locality with the
expected R*° decay

v The virtual (external) orbitals are problematic

= Chaotic”, delocalized nature
= Building higher and higher towers with smaller and smaller stones
= [runcation schemes based on canonical MOs are unlikely to be highly successful



Local Excitation Spaces

Let us go back to our analysis of the leading correlation term

50~ MpzN_4Z (ia | jb)°
ab 8 _|_5 _F;z _ij

In order for this term to be significant
orbital a must be close to i AND orbital b must be close to j

IN mathematical terms

The orbital pair ia and jb must have a significant differential overlap

Consequence: \\e can focus on local excitations and neglect long range charge

transfer
However: A local representation of the virtual space is necessary
BUT: Standard localization schemes do not work well (but see Jorgensen et al)

» In particular for large basis sets the virtual orbitals do not localize well
since the orthogonality constraint leads to highly oscillatory behavior
» Most researchers: Choose a non-orthogonal, local representation



Projected Atomic Orbitals

Projected atomic orbitals, PAOs, Pulay, P. CPL, 1983, 100, 151

v’\\v
ST S HY

j‘> PAQ’s are local close to the ,parent® atom (but have significant tails)

j‘> PAQ’s span the virtual space and are orthogonal to the occupied space

j‘> PAQO’s are non-orthogonal and linearly dependent



Domains and Pair Domains

: A domain {u}; is a set of PAOs chosen for a given internal LMO

according to some prescription (Mostly heuristic - most researchers use
connectivity and distance criteria)

{1}46 {ueos
() (.)
Al ) ™ * riﬁh
a /\1(\& L ) |
?‘\2.*\ : " 1.',\‘?-\\ - ( _etc)
3 — ‘ _‘\ )\
® 3./ CF y
*s‘\}'**‘ \)\\}\(u\w
LMO 46 LMO 28

> A pair domain {u}i is the union of the individual orbital domains

U, = g, Vg,



Orthonormal Localized Virtual Orbitals

IM Hoyvik, K Kristensen, T Kjaergaard, P Jérgensen Theo. Chem. Acc., 2014, 133, 1417

>

>

Careful comparison of PAOs and standard localized virtual MOs

Suggested localization functional
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it seems possible to generate orthonormal virtual molecular orbitals that are as good
or better than PAOs



Types of Local Correlation Approaches

Methods to exploit the locality of electron correlation fall into two broad categories:
1) ,,Piecewise” Local Approaches (Stoll, Piecuch, Kallay, Li, Jorgensen, Friedrich, ...)

v Locality is used by dividing the molecule into subsystems (molecular

fragments, orbital groups, ...).
v Small calculations are carried out on one, two, three ... subsystems at the

time and
v Results are combined to estimate the total correlation energy

2) ,,Direct” Local Approaches (Pulay, \Werner/Schutz, FN, ...)

v Locality is used in the algorithm to avoid the computation of terms that are near

zero or factors that are unity.
v Some kind of localized representation of the virtual space is required



,Pilecewise’ Local Correlation Schemes



The Divide-Expand-Consolidate (DEC) Approach

v Jorgensen and co-workers proposed a variant of an incremental scheme that is called

Divide-Expand-Consolidate (DEC)

v Linear scaling and massively parallel

» Localize occupied and virtual HF orbitals separately using standard algorithms.

» Assign localized orbitals to atomic sites:
V0, = P.Q
2 ]
V9, = P,Q

Hence, each atom has a set of (orthonormal) occupied and virtual orbitals assigned to it.
» EXxpansion of the correlation energy:

E, —ZE +) AE,,

P<Q

EP — % Z Z(t;jb + t;t5)<’&] | Clb> still exact!

1<jeP ab

|aB, =1 S S +11) )(ij || ab)— E, — E,

1€P,Q,5€Q,P ab

M Ziolkowski, B Jansik, T Kjaergaard, P Jorgensen J. Chem. Phys., 2010, 133, 014107; K Kristensen, M Ziolkowski, B
Jansik, T Kjaergaard, P Jorgensen J. Chem. Theo. Comp., 2011, 7, 1677



The DEC family of methods

» Local approximations

o1 S‘ Y i iy ..
E,~5) ) (& + tatb)<Z] | ab>
1<jeP abeP
This is a 0" approximation. Solve the CC equations just using these MOs. This would be

missing a lot of pair-pair coupling contributions. Hence need to refine

» EXxpansion and consolidation step

Add spatially close orbitals k and ¢ to the local space of P (Three distance thresholds Ri) and
recalculate Ep until convergence is reached to a pre-specified accuracy threshold FOT

E,~t S > (85 +tt)(ij]| ab)

i<jeP+keB, abe P+ceB;

» Orbital truncation step

Truncate the AO contributions to the occupied and virtual MOs according to a
completeness relation with threshold o. The truncated MQOs are fitted to be as similar to

the original, untruncated MOs
» Pair neglect step

Neglect pair increments according to another distance threshold Rerit



The Divide Expand Consolidate (D

—(C) Approach

K Kristensen, M Ziolkowski, B

Jansik, T Kjaergaard, P Jorgensen J.
Chem. Theo. Comp., 2011, 7, 1677

Unoccupied
space

Occupied

Nice features of DEC
» Can drive existing canonical CC programs for

the site calculations n=10 %M%
D 4 - v (S .

,Embarassingly well parallelizable’

space

» Accuracy essentially controlled by FOT. High no.alanines  Eope (1)  AEey () % OfEeor  orb. spread (A)

accuracy reachable

o O 4= bw

Not yet reported for DEC:
» Statistical error analysis for chemical test sets 10

1.737622 0.0015
3.278702 0.0020
—4.8198%0 0.0034
6.361143 0.0035
—7.902389 0.0056

»  Chemical applications on electronically more complicated systems

» Calculations with large and diffuse basis sets

9992 )

99.94
99.93
99.95
99.93

"/

1.91
1.92
1.50
1.89
1.9§



The Cluster in Molecules (CIM) Approach

The Cluster in Molecules (CIM) approach was proposed by Li et al. and adopted by
Piecuch et al. and Kallay et al.

Let us start from the (orbital invariant) coupled cluster energy expression
B, =y tf, + 4>t +tt))(if || ab)
1a 1jab

and re-write it in terms of single-occupied orbital increments:

B, =) 6E, 6E =) tf +1> (t) +tt)){ij|l ab)

jab
let the occupied orbital be localized.
Replace: 1. (r) = Zcm,u(r) — ) (r) =~ Z ¢ H(r)
7!

pefi}

{i} is the orbital domain of localized MO | and contains the AOs of all atoms to ensure a
population of at least 1.98 when summed. Threshold t Very small: 1-3 atoms!

S Li, d Ma, Y Jiang J. Comp. Chem., 2002, 23, 237; S Li, W Li, d Ma Chin. J. Chem., 2003, 21, 1422; S Li, J Shen, W
Li, Y Jiang J. Chem. Phys, 2006, 125, 074109



The Cluster in Molecules (CIM) Approach

Now use the off-diagonal Fock matrix elements Fj > (1 to select orbitals j interacting with i
= Environment [il=[i, ji, j2is««-sini]

Associated with the primary environment are the AOs that are the union of the AO
domains of the orbitals in the environment

= AO domain [u];

Finally, the virtual space for the domain of orbital i is spanned by the PAO’s belonging to
the atoms that compose the AO domains

= PAO domain [];

After orthogonalization, removal of linear dependencies and cutting small AO
contributions, there is a set of orthonormal virtual orbitals that belong to the domain of |

(the actual algorithms are more involved than this, but the essence is just this)

W Li, P Piecuch, JR Gour, S Lij Chem. Phys, 2009, 131, 114109



Implementation of CIM

Since the described algorithm has selected as subset of occupied orbitals, and a subset
of virtual orbitals that are all orthonormal and a subset of atomic orbitals one can simply
drive an existing correlation code using the subsystem information as input

= Reduces one large CC problem to Nocc sSmaller coupled cluster calculations

= Highly efficient parallelization since no communication is required

= Can take full advantage of sophisticated canonical programs that have been
developed (e.g. completely renormalized CC methods)

= Reasonably simple implementation since no new coupled cluster routines for non-
orthogonal orbitals need to be written

However:

@ CIM or DEC will only be as efficient as the most expensive subsystem CC
calculation. If this is getting out of hand (e.g. >500 orbitals) the algorithm will fail

® There is a significant amount of redundant computation since the various domains
have overlapping orbitals and atoms and hence, many intergrals are computed
multiple times



An Integral-Direct Linear-Scaling Second-Order Mgller—Plesset Approach

Péter R. Nagy', Gyula Samu, and Mihaly Kallay’
MTA-BME Lendiilet Quantum Chemistry Research Group, Depariment of Physical Chemistry and Materials Science,

Budapest University of Technology and Economics, P.O. Box 91, Budapest H-1521, Hungary
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Local MP2

for HIV-1 integrase

¢ 2380 atoms
22621 atomic orbitals

12 h on a workstation



Direct Local Correlation Schemes



A Treatment on Sparsity



Formal Treatment of Sparsity

. Local correlation approaches lead to complicated book-keeping problems since
subspaces of a large number of function spaces must be organized (occupied MQOs,
electron pairs, PAOS, fit functions, atomic orbitals, atoms, ...)

. So far, developers have each addressed the problem individually by developing
complicated software solutions that are difficult to understand and maintain

. exploitation of sparsity to the point of reaching linear scaling creates a complex
circular interdependencies that are easy to get lost in

... recently, an attempt was made to provide a formal (and programming) framework
for exploiting sparsity in quantum chemistry in a systematic manner

SparseMap formalism

P Pinski, C Riplinger, E Valeev, FN, J Chem Phys. 2015, 143, 034108



Multiplicative vs Additive Sparsity

Consider two sets of functions { f } and { g}

We differentiate two different types of sparsity

Additive Multiplicative
J, :zk:xkz'gk }[fZ (I‘)gk (r)dr
e.g. [1)=2e|n) e.g. (ifi] K)

Sparse List: L (f —g)  forwnich |z _[|>¢
Sparse Map: L(f —> g) — {[/17[/27 7LM} (collection of lists for all i)

Pretty obvious sparsity criterion for additive sparsity, but what about multiplicative sparsity?

P Pinski, C Riplinger, E Valeev, FN, J Chem Phys. 2015, 143, 034108



Multiplicative Sparsity

A great way to implement multiplicative sparsity would be the Schwartz Integral:

sP1 = (g1 Jo) \/fff )9, () (x, )g, (x, >dr1 i,

v

4
v

X

Positive semi-definite

Used as an upper bound for ERI’s

Easy to compute for AO’s

Hard to efficiently compute for MOs and related quantities

Want a simple substitute for the SPI to implement multiplicative sparsity

P Pinski, C Riplinger, E Valeev, FN, J Chem Phys. 2015, 143, 034108



The Differential Overlap Integral (DOI)

New proposal: Use the Differential Overlap Integral

oI, = | [11 () F | g,0)F

to implement multiplicative sparsity

s V' Excellent estimate for the SP!
E ] ] [
2 Vv Easy to compute efficiently in
g linear scaling for any set of
= functions
=
o
£
()
1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0,01 0,1 1 P Pinski, C Riplinger, E Valeev, FN,

Schwartz Integral (a.u.) J Chem Phys. 2015, 143, 034108



Implementing Sparsity:,Linked Index Principle’

In order to reach linear scaling there MUST be an uninterrupted

path of sparsity relationships that connects each index of a given

object (integral, amplitude) to each other index)

L(,‘ — ]\-') multiplicative (DOI)
L(1 — f1) J
multlpl|cat|v DOI)

(ifn| K) = Zcm (| K) (Z ’u | K)
-

Example: Three-Index Integral transformation

L(i — p) L — v),
Chain of sparsity relationships exist additive (¢) additive (P)

A (b v| K)
L]

Linear scaling is possible
P Pinski, C Riplinger, E Valeev, FN, J Chem Phys. 2015, 143, 034108 L(/l. — 1_/) multiplicative (SPI)



Working with Sparsity:,Sparse Map® Operations

In order to actually (not just formally) take advantage of sparsity one needs to define
operations on sparse maps. Consider L(f — g)

Inversion: Lig— f)=L"'(f —g)

Contraction: L(f—>v) = L(f —v,) L(f—v)—=L(f—v,)
shells atoms

Union & Dissection: L =L UL, L3 — L1 M L2

L(f—9) L,(f—9)

Chaining L(f—h)=L(f—g) CL/(g9—h)
L(f—9) L(g—n

We have developed a C++ object library that implements sparse map operations



(i | K) = Yol B, (| K)
v

—xample 2: Linear Scaling 3-Index Transformation

— O(N)

Loop ov;r.at.;xi].;ary baslis function ghel'_ Ks L(K — Z) — L‘l(q; — K)
¥ primitive integral transformation o “
Loop over basis functions/ e Ly (K—)}D L(K N N) _ L(K . Z) c L(i . ,U)
Loop over basis funclLiodng veLg (K—v)
Compute integrals (uv|K) L(K N V) — L(K N Z) C L(i N I[L) C L(,[L N V)
Buffer integrals Iz (uv)=(uvIK)
End Loop V
End Loop 1
# actual transformation
Toop over MOs 1(-TK(T\—H
Loop \e__,K (K—=V)
(1vIK) - All O(0) operations on
Loop NE LK(K—>}l)f'\Li (1—pn) (ivIK) += ct (L, 1) *Ig(uv) the current auxiliary
End Locp Vv shell
End Loop 1

Loop over PAO€ [ eL(K—>§:)\ LK —p)=LK —1i)CL(i— f)
Locp over MOs 1L (X—1)
(1f |K)=0

Locp VEL(K—=V)NL(g—V) (1ulK) +—]—1ﬂ* (1v[K)

Stocre (1 |K)
Loop over MOs 1eL(X—1)
End Toop
End Loop K

~

H

v

P Pinski, C Riplinger, E Valeev, FN, J Chem Phys. 2015, 143, 034108



Linear Scaling 3-Index Transformation Performance

Linear carbon chains:
9000

8000 | -nonlocal transformation

2000 F ®-|ocal transformation

wall clock time / s

0 . - 1 1
0 20 40 60 80 100
number of carbons

— Next to no overhead compared to dens transformation that heavily uses BLAS

— Linear scaling sets in around 40 carbon atoms
P Pinski, C Riplinger, E Valeev, FN, J Chem Phys. 2015, 143, 034108



Projected Atomic Orbitals and Correlation Domains



Local MP2 Theory

Two complications relative to canonical MP2:

» At first sight the use of non-orthogonal orbitals appears to be ,nightmare” of
added complexity. However, the PAO’s remain orthogonal to the occupied space and
there are never more than two PAOs in any excited determinant

» In the local representation the Fock matrix is no longer diagonal and hence the
usual Moller Plesset expansion does not apply.

Pulay and Saebo suggested to use the Hylleraas functional instead
E® = min(2(9" | H [ 9"} + (" | H — B, [9")

it readily leads to an orbital invariant formulation of MP2

— \y(0) (1) __ i Fab
V=v"+w _\IJHF_l_iZCanq)zj

1jab
H=H+V H =F, V=H—H,

P. Pulay, and S. Saebg, Theor. Chim. Acta 69, 357 (1986).



Local MP2 Theory

(U | H |90 =139 (ij || ab)

1jab

(VW[ H, B, |9") =13 CUF,CY — 13 CIF,Ch

1jabe 1kab

Minimization w.r.t. the coefficients C leads to the linear equation system:

RY = (ij||ab)+ > (C'F, + F C) = (CiF, + F,C%) =

k

Which immediately leads back to canonical MP2 if the Fock operator is diagonal.

If now the virtual orbitals are replaced by non-orthogonal PAO’s, only a slight
complication arises. The first order wave function is:
gl — Z O Hrv

i~ i
%



Local MP2 Theory

The residual becomes:

RY = (ij|| i)+ Y (F,.C.S +S CUF, )~ ; (F.S C%S +FS C*S )=0

ik AR T RT  TD ki~ gk~ RT  TU

or: R’ =K"+(FC'S+SC'F)— > (f,SC"S+ f SC"S)=0

k

With the PAO overlap matrix S, = (ji|7)

So far: no approximation!

These equations represent a more complicated and ill-conditioned way to do MP2!

> Owing to the linear dependencies in the PAO set, the equations are singular.

> Removing the singularities by diagonalizing of the PAO overlap matrix and dropping the
eigenvectors corresponding to zero eigenvalues leads back to canonical MP2

= Introduce correlation domains for each electron pair ij



Local MP2 Theory

> In the local treatment, only a subset of PAOs are included for each electron pair (ij), e.g.
those PAOs that are ,spatially close” to (i))

> |n the early days of correlation theory this was done using heuristic connectivity
arguments and analyzing the MO coefficients of occupied local orbitals (i) and (j).

> Pair domains are constructed as the union of orbital domains

> Correlation domains contained typical 2-5 atoms

¥
¢ - PAQO’s of these
— \___0 atoms define the
o domain

—

3
o

Correlated bond

J. W. Boughton and P. Pulay, J. Comput. Chem. 14, 736 1993.



Local MP2 Theory

Using the domains, the residual becomes

RY = KVY 4 (F(ij)Cijg(ij,ij) + S(ij,ij)CiJF(ij)) _ Z(f;k S(ij,j/f)ijg(kj,ij) 4 j;{jg(ijyik)Cikg(ik,ij)) —0
k

Where all matrices are now local:

1 1

iy = Racgyoetsy )

K% — K%
(“_ 7) Aelij ) reti;y } v Sub-matrices can either be stored or constructed on
Y

b’ = Hactgroe) the fly

Q(,kl) Q

Sio’ 7 Oetiyoetin j

Two more steps are necessary to reach linear scaling

1. Discard weakly interacting electron pairs:
In almost all local treatments done by distance criteria (Rij=distance between
orbital centroids)

2. Discard small terms in the sum over k by analyzing fi.fix

Threshold Fcut~10° Eh



Amplitude Update

After the domains have been formed, it is advantageous to diagonalize the local overlap
matrix o
S =(a17)

and discard eigenvalues smaller than a threshold (i.e. 10-8). This gives a set of non-
redundant, locally orthonormal PAO’s

~/ ~
lu T Z Sﬂﬂ’lu“
aelij}
Furthermore, one can diagonalize the Fock matrix over this local set to arrive at a set of
local quasi-canonical PAO’s ;' with energies ¢,
U

We assume this done (and drop the primes). The initial guess to the amplitudes is:
(i | j7)

& T &~ fi — fy‘j

And in each iteration update the amplitudes according to:

) . RY.
C" «— (0" — ”” (v € {ij})
" . € TE; _fz'z' _fzy'

Cgﬁ(guess) = —

(a7 € {ij})




PAQO based Local Correlation Treatments

JOURNAL OF CHEMICAL PHYSICS VOLUME 111, NUMBER 13 I OCTOBER 1999

Low-order scaling local electron correlation methods.
l. Linear scaling local MP2

Martin Schitz, Georg Hetzer, and Hans-Joachim Werner®

10C00 7
very distant | 'I
8000 | pairs .
2 ,, | Hierarchical treatment of electron
§ 600O " pairs, multipole approximations,
o , . .
3 ; distant careful thresholding lead to
£ 4000 A oweak  |PA efficient, linear scaling algorithms
= pairs ’
' .
2000 | ) NS
£/ 8" strong pairs
,_._’é‘;.'-.{f":’t}’ - ___.g_E -« —8
5 !,ﬂz‘isgt. ' '?" - ‘
() 5 10 15 20
n

FIG. 1. The number of strong, weak, distant and very distant pairs as a
function of the size r of a polyglycine peptide chain [gly], . The number of
strong, wecak, and distant pairs all scale lincarly with the molecular size,
whercas the number of very distant pairs scales quadratically with »n.



Problems with PAO based treatments

NJ Russ, TD Crawford J. Chem. Phys., 2004, 121, 691
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FIG. 7. LMP2 and LCCSD localization errors (in mE;) for singlet ketene

dissociation, where the four discontinuities discussed in the text arc clearly FIG. 8. Contour plots of the relevant Pipek—Mezey localized orbitals for

visible. singlet ketene: (a) The or and o bonding orbitals near the equilibrium geom-
etry and (b) the corresponding lone-pair dissociated MOs of singlet methyl-
ene and carbon monoxide.

= Discontinuous potential energy surfaces due to small and changing domains along the PES
THE JOURNAL OF CHEMICAL PHYSICS 125, 184110 (2006)

= Reply:
Calculation of smooth potential energy surfaces using local electron
correlation methods

Ricardo A. Mata and Hans-Joachim Werner®



Improvements of Local MP?2

RI/DF Approximation of K
HJ Werner, F Manby, PJ Knowles, J. Chem. Phys. 2003, 118, 8149

2. Pseudospectral construction of K!
RB Murphy, MD Beachy, RA Friesner, MN Ringnalda J. Chem. Phys., 1995, 103, 1481

3. Laplace Transformation
A Wilson, J. AImIof Theoret. Chim. Acta, 1997, 95, 49

- Endless possibilities for performance improvements and minor tweaks



In either PAO based or CIM based procedures the correlation energy

recovered depends critically on the PAO domains.

... how large do they have to be in order to lead to an accurate result?



How Large do Domains have to be?
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TDO=0.1 98.4‘%) Ecorr NaVPAO=1 15
Tpo=0.01 99.7% Ecorr NZ'pa0=588

At the domain size one reaches target accuracy the average number of PAOs
per domain is too large for the calculation to be efficient or even doable

- There are important correlation effects that are not that local



Virtual Space Compaction: Pair Natural orbitals



Saving Time in Electronic Structure Calculations
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Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of
Density Matrices, Natural Spin-Orbitals, and Convergence Problems
in the Method of Configurational Interaction*

PER-OLov LOwDIN
Department of Physics, Massachusetts Institute of Technology, Cambridge, M assachusetts, and
Institute of Mechanics and Mathematical Physics, Uppsala University, Uppsala, Sweden

(Received July 8, 1054)

in the k-space, i.e., the charge- and bond-order matrix, is
Hermitean, and 1t is therefore possible to find a unitary
matrix U which transforms this matrix to diagonal form
with the eigenvalues 7=y :

UfyU=n=diagonal matrix. (72)

We have further, in matrix form, y= UnUt, and, if we
introduce a new set of spin-orbitals xx by the matrix
relation x=¢U, or

Xk': Za 'anak, (73)
we may rewrite the density matrix in the form
y (X1 x0) = 2n mxee™ (1) xe (x). (74)

This form is characterized by the fact that all bond
orders are vanishing, and the new spin-orbitals x; will
therefore be called the natural spin-orbitals associated

4. NATURAL SPIN-ORBITALS AND THE CONVERGENCE
PROBLEM IN THE METHOD OF
CONFIGURATIONAL INTERACTION

Its convergence properties may now be understood
from the relations (63), (64), and (74). In the limiting
case, when exactly N natural spin-orbitals are fully
occupied and the relation y*= + is fulfilled, the natural
expansion (80) is reduced to a single Slater determinant.
In considering the convergence, this is of course the
most favorable case. However, if only a finite number of
the occupation numbers 7 in (74) arc cssentially dii-
ferent from zero, the natural expansion (80) will be
reduced to a sum of determinants over all ordered con-
figurations associated with these essentially occurring
spin-orbitals, i.e., to a sum of comparatively few terms.
The introduction of natural spin-orbitals seems there-
fore to provide a simple solution of the convergence
problem, previously discussed by Slater.}?

MARCH 15, 1955



Note added in proof —It is desirable to have also a more exact
mathematical measure for the rapidity of convergence of the two
configurational interaction series (66) and (80). We note that,
according to (60) and (63), the charge order (k) gives the
probability for the ordinary spin-orbital ¥ to occur in the expan-
sion of the total wave function W. If only M of the numbers
v(k), k=1, 2, 3, - -+, are essentially different from zero, then the
number of essential terms in (66) is given by the corresponding
number of possible configurations: M//N! (M — N)/. In using this
procedure, however, it is necessary to evaluate the individual
quantities y(%) and to distinguish between essential and unessen-
tial charge orders.

A still simpler measure of convergence may be constructed by
observing that the charge orders always lie between 0 and 1 and
that, in the limiting cases v (2)=0 and (k)=1, the corresponding
spin-orbital ¢, occurs in none or in all of the terms in (66), respec-
tively, without contributing to the slowing down of the con-
vergence of the series. The eventual slowness of the convergence
of 566) depends instead on the possibility for an electron to be
distributed over two or more spin-orbitals, giving charge orders
of an intermediate order of magnitude, 0 <v(%) <1. The rapidity
of convergence of (66) may therefore be measured by the small-
ness of the quantity

d=(1/N) Zp{1—~(k)}y(k)=1— (1/N) Zx{v(k)}?,

which fulfills the inequality of 0=9 <1. In considering different
basic sets ¥1, Y2, ¥z, - - - for the description of the same total wave
function ¥, it is clear that the natural spin-orbitals xi are char-
acterized by having the smallest & value possible. According to
(7%‘ ), we have 4= UnU" and y2=Un?U", leading to Tr(%?)=Tr(n?)
an

Zyit= Zpnlt— ‘th [vee|2< 22,

with the final result
1—(1/N) Zme<1—(1/N) 2y,

which proves our theorem. This means that the natural spin-
orbitals are distinguished not only by having vanishing bond
orders but also by giving the smallest number of essential charge
orders possible. By investigating the quantity &, one can therefore
easily estimate how much improvement one can expect in the
convergence of a given configurational interaction series by intro-
ducing the natural spin-orbitals.



Most Compact Expansion: Natural Orbitals
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Pseudonatural Orbitals as a Basis for the Superposition of Configurations. I. He.*

C. EpmisTon*
University of Wyoming, Laramie, Wyoming
AND
M. Kravss
Nalional Bureau of Standords, Washingion, D. C.
(Received 1 Decemhber 1963)

The uge of pseudonatural orbitals (PNO) iz proposed to improve the rate of convergence in the super-
position of configurations (SOC). Natural orbitals are determined for selected electron pairs in the Hartree-
Fock field of the n—2 eiectron corc and are then used as the basis for the total SOC calculation. Since
these natural orbitals are not natural for the n-electron system they are considered false or pseudonatural
orbitals when used in the n-electron problem.

The PNO basis has been applied to He.* and H; to test the convergence. Complete results are reported here
only for Hes*. The PNO’s are quite successful in speeding up the convergence of the SOC and rendering
the calculation of correlation energy quite practical in general. Gaussian-type orbitals (GTO) are used
throughout and were not a serious impediment to obtaining quantitative accuracy, In fact the large number
of unoccupied Hartree-Fock orbitals consequent upon the use of a GTO basis permit a straightforward
determination of the PNO orbitals.



Pair Natural Orbitals (PNOs)

> Small number of significant PNOs per electron pair
> Vanishing (0-5) PNOs for weak pairs

\\(\ > Located in the same region of space as the internal pair
t n=0.0003 but as delocalized as necessary
&

> Orthonormal within one pair, non-orthogonal between

&(\ n=0.0010 pairs

o

. ' *
' Nn=0.0011 !‘N
w Qe n=00002

>._

’gj n=0.0030

6\/ n=0.0035

o' &

w n=0.0004
m n=0.0011

n=0.0002

*xral

FN; Wennmohs, F.; Hansen, A. J. Chem. Phys. 2009, 130, 114108

o &




Approximate PNO Construction

Problem:
» Have to know the pair amplitudes to make the pair densities and hence the PNOs!

» Fortunately, approximate NOs and exact NOs typically behave similarly
K7
Easiest approach: Use the MP2 amplitudes T =— 2

- . - .
£ —& — 5 — &
4

G & 3

1+

D-g'j w (;Tx."j_T".j + rings'j+) '_t“':-'" — ﬁ {4ng — QTN—} k{\r = | + {Tf | Tﬁ :}j

= 5

Normalization subject to
The PNOs are obtained as the eigenfunctions of the virtual pair density ~ @ePate. presently dropped

@)

- ) o -a _g“.\,' . ‘.J. . . ng
Dzjdﬁj — na?di? ‘a ;= zgfw a'} w} =S Z:a&i

PNOs with occupation numbers below T ,pno are Neglected

Refined approach: Construct pair specific orbitals which lead to nearly diagonal intra-
pair (IEPA) Cl matrices (Meyer):

G* =F+K*— J*

G'=F+K" +K"—1J° - 1J*

Ly
&



Domain Based Local Pair Natural Orbital Coupled
Cluster Theory



The DLPNO-CCSD Approach

The DLPNO approach to CCSD follows as a natural extension to MP2 (although
historically, DLPNO-CCSD was much earlier than DLPNO-MP2)

The cluster operator is written in the PNO basis:

T +1T —Ztaa + 1L thﬂaa a.a,

ija b 2] Zj z

» PNO'’s for doubles are made from DLPNO-MPZ2 and cut with Tcuepno

» PNO's for singles are identical to the PNOs of the diagonal pairs and cut
with 0. 01 T'cut PNO

The PNOs are expanded in large PAO domains (using Tcutpo) for domain construction
and Tcuemxy fOr aux-domain construction)
i

a> ~- S
ij fid

pe{ij}




PNO based Correlation Equations

PNO-CIl Wavefunction:

V=V 0yt ) ) T

é"'{"f wb

T? — 4o T

/S;*l

:> very compact Linear, scaling number of doubles amplitudes (reduction >

factor > 1 07)

PNO-CI Doubles Residual:
0¥ = K7 4 K(T%)_ + (d¥'Fd'T7 + TYdFd? ) ; _
E ( 1_,::\ l::h-q'r-;‘,'-'m‘rllws i 4t :)ab | f;k(s’:';";-"?;"rlv# S\Z Z ifs | J{ )( H rlw (U ‘1‘) .
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Meyer, W.; IJQC, 1971, 5, 341; FN, Wennmohs, F.; Hansen, A. 2009, J. Chem. Phys. 130, 114108



Natural Triple Excitations

Our suggestion: Natural triples orbitals (TNO’s)
v Three-pair density: D" =1(D” 4+ D" + D*)

(The operator D" =S"|a Wa |+

AR | ‘.‘ AR
/ |

i, \a,|+> |a,)(a,| projects onto the joint PNO
- - space of the three pairs)
v Formation of the three pair density in the PAO basis is linear scaling:

v Eigenfunctions: D%x" = p"x" (cut-off below a given nik(min) just as for PNOs)
v Recanonicalize: x”" Fx"

v Amplitudes are projected into the TNO basis: Tfﬂ;NO = TfﬁgNOSgﬂ“’g
Gt Vit Qi Ciy - Cjoy il 1%

= |[ntegrals over TNOs must be generated for each triple
(bookkeeping complicated but linear scaling) avoiding projection

= Linear scaling implementation achieved (Dr. Christoph
Riplinger)

Riplinger, Sandhdfer, Hansen, FN, JCP, 2013,139(13):134101



Convergence of DLPNO-CCSD(T)
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CutPNO

v’ Typically 99.8-99.9% of the canonical correlation energy

V' Energetics of the canonical counterpart methods is reproduced to a few tenth of
kcal/mol. Maximum achievable accuracy ~0.1 kcal/mol of the canonical result.

v' The methods are robust and completely black box in character

Riplinger, C. FN J. Chem. Phys, 2013, 138, 034106; FN; A. Hansen, D.G. Liakos,, J. Chem. Phys., 2009 131, 064103



Scaling of L

PNO-CCS
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Riplinger, C. FN J. Chem. Phys, 2013, 138, 034106



Scaling of DLPNO-CCSD(T)
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Riplinger, Sandhdéfer, Hansen, FN, JCR,
2013,139(13):134101 Number of Atoms



CCSD(T) Calculations on Entire Proteins

Crambin

644 atoms
def2-SV(P)/6187 basis functions

The Journal of
Chemical Physics

Canonical computation time
~5 Million Years

DLPNO-CCSD(T)
~3 weeks/1 Core

Riplinger, Sandhéfer, Hansen, FN, JCP, 2013,139(13):134101

http://www.physicstoday.org/daily edition/physics update/coupled cluster theory tackles a protein



http://www.physicstoday.org/daily_edition/physics_update/coupled_cluster_theory_tackles_a_protein
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No sign of artifacts anywhere. Agreement of CCSD(T), CEPA/1
and L-RI-PNO-CEPA/1 is excellent



DL

PNO

Potential Energy Surfaces
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Structures from a PBE-D/TZVP relaxed surface scan; other calculations at the optimized geometries with SV(P)

Riplinger, C. FN J. Chem. Phys, 2013, 138, 034106



(In)sensitivity to the Nature of the Localized Orbitals

Benzene/aug-cc-pVDZ

Foster-Boys Pipek-Mezey
AN x
Et (LPNO-CEPA/1)-Eo«(CEPA/1)
e [En] [kcal/mol]
Method Molecule Fo ster—B‘@\Ks Foster-Boys Pil\ek—Mezey
LPNO-CEPA/1 benzene -231.555559 0.51
(cc-pVDZ) octahedran -463.079091 1.46
LPNO-CEPA/1benzene -231.586412 @

(aug-cc-pVDZ)octahedran -463.145835 1.63 1.79




Basis Set Dependence of DLPNO Methods

< s || Il PNO expansion
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DLPNO-CCSD(T): Summary

(relative) Simplicity. Only one critical cut-off (T pne); l0Cal approximations

only ,boost’ efficiency. Tcutpno can be use to control the absolute desired accuracy
No real-space cut-offs and no fragmentation necessary

No redundant integral generation or amplitude optimizations

No reliance on sparsity (e.g. not linear scaling ,by construction’)

Correlation space for each electron pair is optimal: a) very small for weak pairs, b) as
delocalized as necessary

Excellent behavior with basis set size

Only local method with proven accuracy (better than 1 kcal/mol) and proven
efficiency (approaching SCF/DFT times) for real life applications.

Very weak or no dependence on the localization method. Well localized internal

space not even required Canonical:
. _ , ! cc-pVTZ CCSD
Very smooth error; no kinks and jumps in PESs LPNO:

! cc-pVTZ cc-pVTZ/C DLPNO-CCSD(T)

Black box character |
T ... |



