Time-independent molecular properties

Trygve Helgaker

Hylleraas Centre, Department of Chemistry, University of Oslo, Norway and Centre for Advanced Study at the Norwegian Academy of Science and Letters, Oslo, Norway

European Summer School in Quantum Chemistry (ESQC) 2017 Torre Normanna, Sicily, Italy September 10–23, 2017

Sections

2 Energy Functions

- 3 Derivatives for Variational Wave Functions
- 4 Derivatives for Nonvariational Wave Functions
- 5 Examples of derivatives
- 6 Derivatives in second quantization

7 Geometrical Properties

Section 1

Introduction

Introduction

Table of Contents

Introduction

Energy Functions • Variational and nonvariational wave functions

Derivatives for Variational Wave Functions

- Molecular gradients
- Molecular Hessians

Derivatives for Nonvariational Wave Functions

- Nonvariational Wave Functions
- Lagrangian method

Examples of derivatives

Hartree–Fock Molecular Gradient

- FCI Lagrangian and Derivatives
- Derivatives in second quantization
- Second-quantization Hamiltonian
- Molecular gradients

Geometrical Properties

- Bond Distances
- Harmonic and Anharmonic Constants

Time-Independent Molecular Properties

When a molecular system is perturbed, its total energy changes

 $\mathcal{E}(\mu) = \mathcal{E}^{(0)} + \mathcal{E}^{(1)}\mu + \frac{1}{2}\mathcal{E}^{(2)}\mu^2 + \cdots$

The expansion coefficients are characteristic of the molecule and its quantum state

- we refer to these coefficients as molecular properties
- When the perturbation is static, the properties may be calculated by differentiation

$$\mathcal{E}^{(1)} = \left. \frac{\mathrm{d}\mathcal{E}}{\mathrm{d}\mu} \right|_{\mu=0}$$
$$\mathcal{E}^{(2)} = \left. \frac{\mathrm{d}^2\mathcal{E}}{\mathrm{d}\mu^2} \right|_{\mu=0}$$

- such properties are said to be time independent
- We do not here consider time-dependent molecular properties
 - ▶ if periodic, these can be calculated in similar way using the quasi-energy

Examples of Derivatives

- Responses to geometrical perturbations
 - forces and force constants
 - spectroscopic constants
- Responses to external electromagnetic fields
 - permanent and induced moments
 - polarizabilities and magnetizabilities
 - optical activity
- Responses to external magnetic fields and nuclear magnetic moments
 - NMR shielding and indirect spin-spin coupling constants
 - EPR hyperfine coupling constants and g values
- Responses to nuclear quadrupole moments
 - nuclear field gradients, quadrupole coupling constants
- Responses to molecular rotation
 - spin-rotation constants and molecular g values

Numerical vs. analytical differentiation

- Numerical differentiation (finite differences and polynomial fitting)
 - often simple to implement (at least for real singlet perturbations)
 - difficulties related to numerical accuracy and computational efficiency
- Analytical differentiation (derivatives calculated from analytical expressions)
 - considerable programming effort required
 - greater speed, precision, and convenience
- Implementations of analytical techniques
 - first-order properties (dipole moments and gradients)
 - second-order properties (polarizabilities and Hessians, NMR parameters)

Section 2

Energy Functions

Table of Contents

Energy Functions
 Variational and nonvariational wave functions

Derivatives for Variational Wave Functions

- Molecular gradients
- Molecular Hessians

Derivatives for Nonvariational Wave Functions

- Nonvariational Wave Functions
- Lagrangian method

Examples of derivatives

Hartree–Fock Molecular Gradient

- FCI Lagrangian and Derivatives
- Derivatives in second quantization
- Second-quantization Hamiltonian
- Molecular gradients
- Geometrical Properties
- Bond Distances
- Harmonic and Anharmonic Constants

Electronic Energy Function

> The electronic energy function contains the Hamiltonian and the wave function:

 $E(x,\lambda) = \langle \lambda | H(x) | \lambda \rangle$

It depends on two distinct sets of parameters:

x: external (perturbation) parameters (geometry, external field) λ : electronic (wave-function) parameters (MOs, cluster amplitudes)

The Hamiltonian (here in second quantization)

$$H(x) = \sum_{pq} h_{pq}(x) E_{pq} + \frac{1}{2} \sum_{pqrs} g_{pqrs}(x) e_{pqrs} + h_{nuc}(x)$$

depends explicitly on the external parameters:

 $h_{pq}(x) = \langle \phi_p(x) | h(x) | \phi_q(x) \rangle$

• The wave function $|\lambda\rangle$ depends implicitly on the external parameters $\lambda(x)$.

Electronic Energy and its Derivatives

• The electronic energy $\mathcal{E}(x)$ is obtained by optimizing the energy function $E(x, \lambda)$ with respect to λ for each value of x:

$$\mathcal{E}(x) = \mathbf{E}(x, \lambda^*)$$

- > note: the optimization is not necessarily a variational minimization
- Our task is to calculate derivatives of $\mathcal{E}(x)$ with respect to x:

- the implicit as well as explicit dependence must be accounted for
- The quantity $\partial \lambda / \partial x$ is the wave-function response
 - it tells us how the electronic structure changes when the system is perturbed
- To proceed, we need to make a distinction between
 - variationally determined wave functions
 - nonvariationally determined wave functions

Variational and Nonvariational Wave Functions

Variational wave functions

the optimized energy fulfils the stationary (variational) condition:

$$\frac{\partial E(x,\lambda)}{\partial \lambda} = 0 \quad \text{(for all } x\text{)}$$

the Hartree–Fock energy in an unconstrained exponential parameterization

$$|\mathsf{HF}\rangle = \exp(-\kappa)|0\rangle, \quad \kappa^{\dagger} = -\kappa$$

• the energy of the full CI (FCI) wave function $|\text{FCI}\rangle = \sum_i c_i |i\rangle$ as an expectation value:

$$\frac{\partial E_{\mathsf{FCI}}(x,c)}{\partial c} = 0$$

Nonvariational wave functions

wave functions whose energy does not fulfil the stationary condition:

$$\frac{\partial E(x,\lambda)}{\partial \lambda} \neq 0$$

the Hartree–Fock and Kohn–Sham energies in a constrained LCAO parameterization (orthonormality)

$$|\mathsf{HF}\rangle = \frac{1}{\sqrt{N!}}\mathsf{det}|\phi_1,\phi_2,\ldots\phi_N|, \quad \phi_p(\mathbf{r};\mathbf{x}) = \sum_{\mu} C_{\mu\rho}\chi_{\mu}(\mathbf{r};\mathbf{x}), \quad \left\langle \phi_p | \phi_q \right\rangle = \delta_{\rho q}$$

the truncated CI energy with respect to orbital rotations:

$$\frac{\partial E_{\mathsf{CI}}(x, c, \kappa)}{\partial c} = 0, \quad \frac{\partial E_{\mathsf{CI}}(x, c, \kappa)}{\partial \kappa} \neq 0$$

Trygve Helgaker (University of Oslo)

Time-independent molecular properties

Section 3

Derivatives for Variational Wave Functions

Table of Contents

Geometrical Properties

Bond Distances

Harmonic and Anharmonic Constants

Molecular gradients

Molecular Gradients for Variational Wave Functions

• Applying the chain rule, we obtain for the total derivative of the energy:

$$\frac{\mathrm{d}\mathcal{E}(x)}{\mathrm{d}x} = \frac{\partial E(x,\lambda)}{\partial x} + \frac{\partial E(x,\lambda)}{\partial \lambda} \frac{\partial \lambda}{\partial x}$$

- the first term accounts for the explicit dependence on x
- the last term accounts for the implicit dependence on x
- We now invoke the stationary condition:

$$rac{\partial E(x,\lambda)}{\partial \lambda} = 0$$
 (zero electronic gradient for all x)

The molecular gradient then simplifies to

$$\frac{\mathrm{d}\mathcal{E}(x)}{\mathrm{d}x} = \frac{\partial E(x,\lambda)}{\partial x}$$

examples: HF/KS and MCSCF molecular gradients (exponential parameterization)

For variational wave functions, we do not need the response of the wave function $\partial \lambda / \partial x$ to calculate the molecular gradient $d\mathcal{E}/dx$.

Hellmann-Feynman Theorem

Assume that the (stationary) energy is an expectation value:

 $E(x,\lambda) = \langle \lambda | H(x) | \lambda \rangle$

▶ The gradient is then given by the expectation-value expression:

 $\frac{\mathrm{d}\mathcal{E}(x)}{\mathrm{d}x} = \frac{\partial E(x,\lambda)}{\partial x} = \left\langle \lambda \left| \frac{\partial H}{\partial x} \right| \lambda \right\rangle \quad \leftarrow \text{the Hellmann-Feynman theorem}$

Relationship to first-order perturbation theory:

 $E^{(1)} = \left\langle 0 \left| H^{(1)} \right| 0 \right\rangle$

▶ The Hellmann–Feynman theorem was originally stated for geometrical distortions:

$$\frac{\mathrm{d}\mathcal{E}}{\mathrm{d}\mathbf{R}_{K}} = -\left\langle\lambda\left|\sum_{i}\frac{Z_{K}\mathbf{r}_{iK}}{r_{iK}^{3}}\right|\lambda\right\rangle + \sum_{I\neq K}\frac{Z_{I}Z_{K}\mathbf{R}_{IK}}{R_{IK}^{3}}$$

Classical interpretation: integration over the force operator

Molecular Hessians for Variational Wave Functions

Differentiating the molecular gradient, we obtain the molecular Hessian:

$$\frac{\mathrm{d}^{2}\mathcal{E}(x)}{\mathrm{d}x^{2}} = \frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial E(x,\lambda)}{\partial x} = \left(\frac{\partial}{\partial x} + \frac{\partial\lambda}{\partial x}\frac{\partial}{\partial\lambda}\right)\frac{\partial E(x,\lambda)}{\partial x}$$
$$= \frac{\partial^{2}E(x,\lambda)}{\partial x^{2}} + \frac{\partial^{2}E(x,\lambda)}{\partial x\partial\lambda}\frac{\partial\lambda}{\partial x}$$

- we need the first-order response $\partial \lambda / \partial x$ to calculate the Hessian
- but we do not need the second-order response $\partial^2 \lambda / \partial x^2$ for stationary energies
- ► To determine the response, we differentiate the stationary condition:

$$\frac{\partial E(x,\lambda)}{\partial \lambda} = 0 \quad (\text{all } x) \implies \frac{d}{dx} \frac{\partial E(x,\lambda)}{\partial \lambda} = 0$$
$$\implies \frac{\partial^2 E(x,\lambda)}{\partial x \partial \lambda} + \frac{\partial^2 E(x,\lambda)}{\partial \lambda^2} \frac{\partial \lambda}{\partial x} = 0$$

These are the first-order response equations:

Molecular Hessians

Response Equations

The molecular Hessian for stationary energies:

$d^2 \mathcal{E}$	$\partial^2 E$	$\partial^2 E$	$\partial \lambda$
$\frac{dx^2}{dx^2}$ –	∂x^2 +	$\partial x \partial \lambda$	∂x

The response equations:

$$\begin{array}{c} \text{electronic} \\ \text{Hessian} \end{array} \rightarrow \begin{array}{c} \frac{\partial^2 E}{\partial \lambda^2} \end{array} \begin{array}{c} \frac{\partial \lambda}{\partial x} \end{array} = - \begin{array}{c} \frac{\partial^2 E}{\partial \lambda \partial x} \end{array} \leftarrow \begin{array}{c} \text{perturbed} \\ \text{electronic gradient} \end{array}$$

- the electronic Hessian is a Hermitian matrix, independent of the perturbation
- its dimensions are usually large and it cannot be constructed explicitly
- the response equations are typically solved by iterative techniques
- key step: multiplication of the Hessian with a trial vector
- Analogy with Hooke's law:

force constant $\rightarrow kx = -F \leftarrow$ force

the wave function relaxes by an amount proportional to the perturbation

2n + 1 Rule

- > For molecular gradients and Hessians, we have the expressions
 - $\frac{\mathrm{d}\mathcal{E}}{\mathrm{d}x} = \frac{\partial E}{\partial x} \qquad \leftarrow \text{zero-order response needed}$ $\frac{\mathrm{d}^2 \mathcal{E}}{\mathrm{d}x^2} = \frac{\partial^2 E}{\partial x^2} + \frac{\partial^2 E}{\partial x \partial \lambda} \frac{\partial \lambda}{\partial x} \qquad \leftarrow \text{first-order response needed}$
- ln general, we have the 2n + 1 rule:

For variational wave functions, the derivatives of the wave function to order n determine the derivatives of the energy to order 2n + 1.

Examples: wave-function responses needed to fourth order:

energy	$\mathcal{E}^{(0)}$	$\mathcal{E}^{(1)}$	$\mathcal{E}^{(2)}$	$\mathcal{E}^{(3)}$	$\mathcal{E}^{(4)}$
wave function	$\lambda^{(0)}$	$\lambda^{(0)}$	$\lambda^{(0)}, \lambda^{(1)}$	$\lambda^{(0)}, \lambda^{(1)}$	$\lambda^{(0)}$, $\lambda^{(1)}$, $\lambda^{(2)}$

Section 4

Derivatives for Nonvariational Wave Functions

Table of Contents

Energy FunctionsVariational and nonvariational wave functions

Derivatives for Variational Wave Functions
Molecular gradients
Molecular Hessians

Derivatives for Nonvariational Wave Functions • Nonvariational Wave Functions • Lagrangian method

Examples of derivatives • Hartree–Fock Molecular Gradient • FCI Lagrangian and Derivatives

Derivatives in second quantization

- Second-quantization Hamiltonian
- Molecular gradients

Geometrical Properties

Bond Distances

• Harmonic and Anharmonic Constants

Nonvariational Wave Functions

- ▶ The 2*n* + 1 rule simplifies property evaluation for variational wave functions
- What about the nonvariational wave functions?
 - any energy may be made stationary by Lagrange's method of undetermined multipliers
 - ▶ the 2n + 1 rule is therefore of general interest
- Example: the CI energy
 - the CI energy function is given by:

 $E_{CI}(x, c, \kappa) \leftarrow CI \text{ parameters } c \text{ orbital-rotation parameters } \kappa$

it is nonstationary with respect to the orbital-rotation parameters:

 $\begin{array}{l} \displaystyle \frac{\partial E_{\mathsf{CI}}(x,c,\kappa)}{\partial c} = 0 & \leftarrow \text{stationary} \\ \displaystyle \frac{\partial E_{\mathsf{CI}}(x,c,\kappa)}{\partial \kappa} \neq 0 & \leftarrow \text{nonstationary} \end{array}$

- We shall now consider its molecular gradient:
 - by straightforward differentiation of the CI energy
 - Ø by differentiation of the CI Lagrangian
- In coupled-cluster theory, all parameters are nonvariationally determined

CI Molecular Gradients the Straightforward Way

• Straightforward differentiation of $E_{CI}(x, c, \kappa)$ gives the expression

$$\begin{aligned} \frac{\mathrm{d}\mathcal{E}_{\mathsf{CI}}}{\mathrm{d}x} &= \frac{\partial E_{\mathsf{CI}}}{\partial x} + \frac{\partial E_{\mathsf{CI}}}{\partial c} \frac{\partial c}{\partial x} + \frac{\partial E_{\mathsf{CI}}}{\partial \kappa} \frac{\partial \kappa}{\partial x} \\ &= \frac{\partial E_{\mathsf{CI}}}{\partial x} + \frac{\partial E_{\mathsf{CI}}}{\partial \kappa} \frac{\partial \kappa}{\partial x} \quad \leftarrow \kappa \text{ contribution does not vanish} \end{aligned}$$

- it appears that we need the first-order response of the orbitals
- ▶ The HF orbitals used in CI theory fulfil the following conditions at all geometries:

 $\frac{\partial E_{\rm HF}}{\partial \kappa} = 0 \quad \leftarrow {\rm HF \ stationary \ conditions}$

we obtain the orbital responses by differentiating this equation with respect to x:

 $\frac{\partial^2 E_{\rm HF}}{\partial \kappa^2} \frac{\partial \kappa}{\partial x} = -\frac{\partial^2 E_{\rm HF}}{\partial x \partial \kappa} \quad \leftarrow \text{1st-order response equations}$

one such set of equations must be solved for each perturbation

Calculated in this manner, the CI gradient becomes expensive

Lagrange's Method of Undetermined Multipliers

• To calculate the CI energy, we minimize E_{CI} with respect to c and κ :

 $\min_{c,\kappa} E_{Cl}(x,c,\kappa) \quad \text{subject to the constraints} \quad \stackrel{\diamond}{-}$

$$\frac{\partial E_{\mathsf{HF}}(x,\kappa)}{\partial \kappa} = 0$$

- Use Lagrange's method of undetermined multipliers:
 - construct the CI Lagrangian by adding these constraints with multipliers to the energy:

$$L_{\mathsf{CI}}(x, c, \kappa, \overline{\kappa}) = E_{\mathsf{CI}}(x, c, \kappa) + \overline{\kappa} \left(\frac{\partial E_{\mathsf{HF}}(x, \kappa)}{\partial \kappa} - 0 \right)$$

• adjust the Lagrange multipliers $\overline{\kappa}$ such that the Lagrangian becomes stationary:

$$\frac{\partial L_{CI}}{\partial c} = 0 \implies \frac{\partial E_{CI}}{\partial c} = 0 \qquad \leftarrow \text{ CI conditions}$$

$$\frac{\partial L_{CI}}{\partial \kappa} = 0 \implies \frac{\partial E_{CI}}{\partial \kappa} + \overline{\kappa} \frac{\partial^2 E_{HF}}{\partial \kappa^2} = 0 \qquad \leftarrow \text{ linear set of equations for } \overline{\kappa}$$

$$\frac{\partial L_{CI}}{\partial \overline{\kappa}} = 0 \implies \frac{\partial E_{HF}}{\partial \kappa} = 0 \qquad \leftarrow \text{ HF conditions}$$

- note the duality between κ and $\overline{\kappa}$
- Note that $E_{CI} = L_{CI}$ when the Lagrangian is stationary
 - we now have a stationary CI energy expression L_{CI}

CI Molecular Gradients the Easy Way

• The CI Lagrangian is given by

 $L_{\rm CI} = E_{\rm CI} + \overline{\kappa} \frac{\partial E_{\rm HF}}{\partial \kappa} \quad \leftarrow \text{stationary with respect to all variables}$

Since the Lagrangian is stationary, we may invoke the 2n + 1 rule:

$$\frac{\mathrm{d}E_{\mathrm{CI}}}{\mathrm{d}x} = \frac{\mathrm{d}L_{\mathrm{CI}}}{\mathrm{d}x} = \frac{\partial L_{\mathrm{CI}}}{\partial x} = \frac{\partial E_{\mathrm{CI}}}{\partial x} + \overline{\kappa} \frac{\partial^2 E_{\mathrm{HF}}}{\partial \kappa \partial x}$$
zero-order response equations $\rightarrow \overline{\kappa} \frac{\partial^2 E_{\mathrm{HF}}}{\partial \kappa^2} = -\frac{\partial E_{\mathrm{CI}}}{\partial \kappa}$

This result should be contrasted with the original expression

$$\frac{\mathrm{d}E_{\mathsf{CI}}}{\mathrm{d}x} = \frac{\partial E_{\mathsf{CI}}}{\partial x} + \frac{\partial E_{\mathsf{CI}}}{\partial \kappa} \frac{\partial \kappa}{\partial x}$$
first-order response equations $\rightarrow \frac{\partial^2 E_{\mathsf{HF}}}{\partial \kappa^2} \frac{\partial \kappa}{\partial x} = -\frac{\partial^2 E_{\mathsf{HF}}}{\partial \kappa \partial x}$

We have greatly reduced the number of response equations to be solved

Lagrange's Method Summarized

(1) Establish the energy function $E(x, \lambda)$ and identify conditions on the variables

 $e(x,\lambda) = 0$

(2) Set up the Lagrangian energy function:

• (3) Satisfy the stationary conditions for the variables and their multipliers:

 $\frac{\partial L}{\partial \overline{\lambda}} = e(x, \lambda) = 0 \qquad \leftarrow \text{ condition for } \overline{\lambda} \text{ determines } \lambda$ $\frac{\partial L}{\partial \lambda} = \frac{\partial E}{\partial \lambda} + \overline{\lambda} \frac{\partial e}{\partial \lambda} = 0 \quad \leftarrow \text{ condition for } \lambda \text{ determines } \overline{\lambda}$

- note the duality between λ and $\overline{\lambda}$!
- (4) Calculate derivatives from the stationary Lagrangian
- ▶ The Lagrangian approach is generally applicable:
 - it gives the Hylleraas functional when applied to a perturbation expression
 - it may be generalized to time-dependent properties

2n+1 and 2n+2 Rules

For variational wave functions, we have the 2n + 1 rule:

 $\lambda^{(n)}$ determines the energy to order 2n + 1.

- The Lagrangian technique extends this rule to nonvariational wave functions
- For the new variables—the multipliers—the stronger 2n + 2 rule applies:

 $\overline{\lambda}^{(n)}$ determines the energy to order 2n + 2.

Responses required to order 10:

$\mathcal{E}^{(n)}$	0	1	2	3	4	5	6	7	8	9	10
$\lambda^{(k)}$	0	0	1	1	2	2	3	3	4	4	5
$\overline{\lambda}^{(k)}$	0	0	0	1	1	2	2	3	3	4	4

Section 5

Examples of derivatives

Table of Contents

Energy Functions • Variational and nonvariational wave functions

Derivatives for Variational Wave Functions

- Molecular gradients
- Molecular Hessians

Derivatives for Nonvariational Wave Functions

Nonvariational Wave Functions

- Nonvariational vvave Functi
- Lagrangian method

Derivatives in second quantization • Second-quantization Hamiltonian • Molecular gradients

Geometrical Properties

- Bond Distances
- Harmonic and Anharmonic Constants

Hartree–Fock Molecular Gradient

Hartree–Fock Energy

The MOs are expanded in atom-fixed AOs

$$\phi_p(\mathbf{r};\mathbf{x}) = \sum_{\mu} C_{\mu p} \chi_{\mu}(\mathbf{r};\mathbf{x})$$

The HF energy may be written in the general form

$$E_{\mathsf{HF}} = \sum_{pq} D_{pq} h_{pq} + \frac{1}{2} \sum_{pqrs} d_{pqrs} g_{pqrs} + \sum_{K>L} \frac{Z_K Z_L}{R_{KL}}$$

where

$$h_{pq}(\mathbf{x}) = \int \phi_p(\mathbf{r}, \mathbf{x}) \left(-\frac{1}{2} \nabla^2 - \sum_K \frac{Z_K}{r_K} \right) \phi_q(\mathbf{r}, \mathbf{x}) \, \mathrm{d}\mathbf{r}$$
$$g_{pqrs}(\mathbf{x}) = \iint \frac{\phi_p(\mathbf{r}_1, \mathbf{x}) \phi_q(\mathbf{r}_1, \mathbf{x}) \phi_r(\mathbf{r}_2, \mathbf{x}) \phi_s(\mathbf{r}_2, \mathbf{x})}{r_{12}} \, \mathrm{d}\mathbf{r}_1 \mathrm{d}\mathbf{r}_2$$

- the integrals depend explicitly on the geometry
- ▶ In closed-shell restricted HF (RHF) theory, the energy is given by

$$E_{\mathsf{RHF}} = 2\sum_{i} h_{ii} + \sum_{ij} \left(2g_{iijj} - g_{ijji} \right) + \sum_{K > L} \frac{Z_K Z_L}{R_{KL}}$$

summations over doubly occupied orbitals

Hartree–Fock Equations

The HF energy is minimized subject to orthonormality constraints

$$S_{ij} = \left\langle \phi_i | \phi_j \right\rangle = \delta_{ij}$$

We therefore introduce the HF Lagrangian:

$$L_{\rm HF} = E_{\rm HF} - \sum_{ij} \varepsilon_{ij} \left(S_{ij} - \delta_{ij} \right)$$
$$= \sum_{ij} D_{ij} h_{ij} + \frac{1}{2} \sum_{ijkl} d_{ijkl} g_{ijkl} - \sum_{ij} \varepsilon_{ij} \left(S_{ij} - \delta_{ij} \right) + \sum_{K>L} \frac{Z_K Z_L}{R_{KL}}$$

The stationary conditions on the Lagrangian become:

$$\frac{\partial L_{\text{HF}}}{\partial \varepsilon_{ij}} = S_{ij} - \delta_{ij} = 0$$
$$\frac{\partial L_{\text{HF}}}{\partial C_{\mu i}} = \frac{\partial E_{\text{HF}}}{\partial C_{\mu i}} - \sum_{kl} \varepsilon_{kl} \frac{\partial S_{kl}}{\partial C_{\mu i}} = 0$$

- the multiplier conditions are the orthonormality constraints
- the MO stationary conditions are the Roothaan–Hall equations

$$\frac{\partial E_{\mathsf{HF}}}{\partial C_{\mu i}} = \sum_{kl} \varepsilon_{kl} \frac{\partial S_{kl}}{\partial C_{\mu i}} \quad \Longrightarrow \quad \mathsf{F}^{\mathsf{AO}}\mathsf{C} = \mathsf{S}^{\mathsf{AO}}\mathsf{C}\varepsilon$$

Hartree–Fock Molecular Gradient

From the 2n + 1 rule, we obtain the RHF molecular gradient:

$$\frac{\mathrm{d}E_{\mathsf{HF}}}{\mathrm{d}\mathbf{x}} = \frac{\mathrm{d}L_{\mathsf{HF}}}{\mathrm{d}\mathbf{x}} = \frac{\partial L_{\mathsf{HF}}}{\partial \mathbf{x}} = \frac{\partial E_{\mathsf{HF}}}{\partial \mathbf{x}} - \sum_{ii} \varepsilon_{ij} \frac{\partial S_{ij}}{\partial \mathbf{x}}$$

▶ In terms of MO integrals and density-matrix elements, we obtain the expression

$$\frac{\mathrm{d}E_{\mathsf{HF}}}{\mathrm{d}\mathbf{x}} = \sum_{ij} D_{ij} \frac{\partial h_{ij}}{\partial \mathbf{x}} + \frac{1}{2} \sum_{ijkl} d_{ijkl} \frac{\partial g_{ijkl}}{\partial \mathbf{x}} - \sum_{ij} \varepsilon_{ij} \frac{\partial S_{ij}}{\partial \mathbf{x}} + \mathbf{F}_{\mathsf{nuc}}$$

We then transform to the AO basis:

$$\frac{\mathrm{d}E_{\mathsf{HF}}}{\mathrm{d}\mathbf{x}} = \sum_{\mu\nu} D^{\mathsf{AO}}_{\mu\nu} \frac{\partial h^{\mathsf{AO}}_{\mu\nu}}{\partial \mathbf{x}} + \frac{1}{2} \sum_{\mu\nu\rho\sigma} d^{\mathsf{AO}}_{\mu\nu\rho\sigma} \frac{\partial g^{\mathsf{AO}}_{\mu\nu\rho\sigma}}{\partial \mathbf{x}} - \sum_{\mu\nu} \varepsilon^{\mathsf{AO}}_{\mu\nu} \frac{\partial S^{\mathsf{AO}}_{\mu\nu}}{\partial \mathbf{x}} + \mathbf{F}_{\mathsf{nuc}}$$

- density matrices transformed to AO basis
- derivative integrals added directly to gradient elements
- Important points:
 - the gradient does not involve MO differentiation because of the 2n + 1 rule
 - the time-consuming step is integral differentiation

FCI Energy

Consider a normalized CI wave function:

$$|\mathbf{c}
angle = \sum_{n=0}^{\infty} c_n |n
angle, \quad \mathbf{c}^{\mathrm{T}}\mathbf{c} = 1, \quad \langle m|n
angle = \delta_{mn}$$

• The basis functions $|n\rangle$ are the normalized CI eigenstates of the unperturbed problem:

$$\langle m|H|n \rangle = \delta_{mn}E_n, \quad E_0 \leq E_1 \leq E_2 \cdots$$

▶ We assume that the ground-state energy function depends on two external parameters:

$$\langle \mathbf{c}|H(x,y)|\mathbf{c}\rangle = \sum_{mn} c_m \langle m|H(x,y)|n \rangle c_n, \quad \sum_n c_n^2 = 1$$

We construct a variational CI Lagrangian:

$$L(x, y, \mathbf{c}, \mu) = \sum_{mn} c_m \langle m | H(x, y) | n \rangle c_n - \mu \left(\sum_n c_n^2 - 1 \right)$$

The stationary conditions are given by

$$\frac{\partial L(x, y, \mathbf{c}, \mu)}{\partial c_n} = 0 \implies 2\langle n | H(x, y) | \mathbf{c} \rangle - 2\mu c_n = 0 \implies \mathbf{H}(x, y) \mathbf{c} = E_0(x, y) \mathbf{c}$$
$$\frac{\partial L(x, y, \mathbf{c}, \mu)}{\partial \mu} = 0 \implies \sum_n c_n^2 - 1 = 0 \implies \mathbf{c}^{\mathrm{T}} \mathbf{c} = 1$$

- the first condition is the CI eigenvalue problem with ground-state energy $E_0(x, y) = \mu$
- the second condition is the CI normalization condition

FCI Molecular Gradient and Hessian

• Using the CI Lagrangian, we calculate CI energy derivative in the usual way:

$$\frac{\mathrm{d}E}{\mathrm{d}x} = \frac{\partial L}{\partial x}, \quad \frac{\mathrm{d}^2 E}{\mathrm{d}x\mathrm{d}y} = \frac{\partial^2 L}{\partial x\partial y} + \sum_n \frac{\partial^2 L}{\partial x\partial c_n} \frac{\partial c_n}{\partial x}, \quad \sum_n \frac{\partial^2 L}{\partial c_m \partial c_n} \frac{\partial c_n}{\partial x} = -\frac{\partial^2 L}{\partial x\partial c_m}$$

▶ By inverting the electronic Hessian, we obtain the more compact expression:

$$\frac{\mathrm{d}^2 E}{\mathrm{d}x\mathrm{d}y} = \frac{\partial^2 L}{\partial x \partial y} - \sum_{mn} \frac{\partial^2 L}{\partial x \partial c_m} \left[\frac{\partial^2 L}{\partial c_m \partial c_n} \right]^{-1} \frac{\partial^2 L}{\partial c_n \partial y}$$

• We next evaluate the various partial derivatives at x = y = 0 where $|\mathbf{c}\rangle = |0\rangle$:

$$\frac{\partial L}{\partial x} = \left\langle 0 \left| \frac{\partial H}{\partial x} \right| 0 \right\rangle, \quad \frac{\partial^2 L}{\partial x \partial y} = \left\langle 0 \left| \frac{\partial^2 H}{\partial x \partial y} \right| 0 \right\rangle, \quad \frac{\partial^2 L}{\partial x \partial c_n} = 2 \left\langle n \left| \frac{\partial H}{\partial x} \right| 0 \right\rangle$$
$$\frac{\partial^2 L}{\partial c_m \partial c_n} = 2 \left\langle m \left| H - E_0 \right| n \right\rangle = 2(E_n - E_0) \delta_{mn}$$

Inserted above, we recover Rayleigh–Schrödinger perturbation theory to second order:

$$\frac{\mathrm{d}E}{\mathrm{d}x} = \left\langle 0 \left| \frac{\partial H}{\partial x} \right| 0 \right\rangle, \quad \frac{\mathrm{d}^2 E}{\mathrm{d}x \mathrm{d}y} = \left\langle 0 \left| \frac{\partial^2 H}{\partial x \partial y} \right| 0 \right\rangle - 2 \sum_n \frac{\left\langle 0 \left| \frac{\partial H}{\partial x} \right| n \right\rangle \left\langle n \left| \frac{\partial H}{\partial y} \right| 0 \right\rangle}{E_n - E_0}$$

Section 6

Derivatives in second quantization

Table of Contents

Energy Functions

Variational and nonvariational wave functions

Derivatives for Variational Wave Functions

- Molecular gradients
- Molecular Hessians

Derivatives for Nonvariational Wave Functions

- Nonvariational Wave Functions
- Lagrangian method

Examples of derivatives Hartree–Fock Molecular Gradient FCI Lagrangian and Derivatives

Derivatives in second quantization
 Second-quantization Hamiltonian
 Molecular gradients

Geometrical Properties

Bond Distances

• Harmonic and Anharmonic Constants

Second-Quantization Hamiltonian

▶ In second quantization, the Hamiltonian operator is given by:

$$H = \sum_{pq} h_{pq} a_p^{\dagger} a_q + \sum_{pqrs} g_{pqrs} a_p^{\dagger} a_r^{\dagger} a_s a_q + h_{nuc}$$
$$h_{pq} = \langle \phi_p^*(\mathbf{r}) | h(\mathbf{r}) | \phi_q(\mathbf{r}) \rangle$$
$$g_{pqrs} = \langle \phi_p^*(\mathbf{r}_1) \phi_r^*(\mathbf{r}_2) | r_{12}^{-1} | \phi_q(\mathbf{r}_1) \phi_s(\mathbf{r}_2) \rangle$$

• Its construction assumes an orthonormal basis of MOs ϕ_p :

$$[a_{p},a_{q}]_{+}=0, \quad [a_{p}^{\dagger},a_{q}^{\dagger}]_{+}=0, \quad [a_{p},a_{q}^{\dagger}]_{+}=\delta_{pq}$$

- > The MOs are expanded in AOs, which often depend explicitly on the perturbation
 - such basis sets are said to be perturbation-dependent:

$$\phi_{p}(\mathbf{r}) = \sum_{\mu} C_{p\mu} \, \chi_{\mu}(\mathbf{r}, x)$$

- we must make sure that the MOs remain orthonormal for all x
- this introduces complications as we take derivatives with respect to x

MOs and Hamiltonian at Distorted geometries

1. Orthonormal MOs at the reference geometry:

$$egin{aligned} \phi(\mathbf{x}_0) &= \mathbf{C}^{(0)} oldsymbol{\chi}(\mathbf{x}_0) \ \mathbf{S}(\mathbf{x}_0) &= ig\langle \phi(\mathbf{x}_0) \,|\, \phi^\dagger(\mathbf{x}_0) ig
angle = \mathbf{I} \end{aligned}$$

2. Geometrical distortion $x = x_0 + \Delta x$:

$$\phi(x) = \mathbf{C}^{(0)} \boldsymbol{\chi}(x)$$
$$\mathbf{S}(x) = \langle \phi(x) \, | \, \phi^{\dagger}(x) \rangle \neq \mathbf{I}$$

note: this basis is nonorthogonal and not useful for setting up the Hamiltonian.

3. Orthonormalize the basis set (e.g., by Löwdin orthonormalization):

$$\psi(x) = \mathbf{S}^{-1/2}(x)\phi(x)$$

$$\tilde{\mathbf{S}}(x) = \mathbf{S}^{-1/2}(x)\mathbf{S}(x)\mathbf{S}^{-1/2}(x) = \mathbf{I}$$

4. From these orthonormalized MOs (OMOs) ψ_p , construct Hamiltonian in the usual manner

$$\begin{split} H &= \sum_{pq} \tilde{h}_{pq} a_p^{\dagger} a_q + \sum_{pqrs} \tilde{g}_{pqrs} a_p^{\dagger} a_r^{\dagger} a_s a_q + h_{\text{nuc}} \\ \tilde{h}_{pq} &= \langle \psi_p^*(\mathbf{r}) | h(\mathbf{r}) | \psi_q(\mathbf{r}) \rangle \\ \tilde{g}_{pqrs} &= \langle \psi_p^*(\mathbf{r}_1) \psi_r^*(\mathbf{r}_2) | r_{12}^{-1} | \psi_q(\mathbf{r}_1) \psi_s(\mathbf{r}_2) \rangle \end{split}$$

Hamiltonian at all Geometries

The Hamiltonian is now well defined at all geometries:

$$H(x) = \sum_{pq} \tilde{h}_{pq}(x) E_{pq}(x) + \frac{1}{2} \sum_{pqrs} \tilde{g}_{pqrs}(x) e_{pqrs}(x) + h_{nuc}(x)$$

• The OMO integrals are given by

$$\tilde{h}_{pq}(x) = \sum_{mn} h_{mn}(x) [S^{-1/2}]_{mp}(x) [S^{-1/2}]_{nq}(x)$$

in terms of the usual MO integrals

$$h_{mn}(x) = \sum_{\mu\nu} C^{(0)}_{m\mu} C^{(0)}_{n\nu} h^{AO}_{\mu\nu}(x), \quad S_{mn}(x) = \sum_{\mu\nu} C^{(0)}_{m\mu} C^{(0)}_{n\nu} S^{AO}_{\mu\nu}(x)$$

and similarly for the two-electron integrals.

- What about the geometry dependence of the excitation operators?
 - this may be neglected when calculating derivatives since, for all geometries,

$$\left[a_p(x), a_q^{\dagger}(x)
ight]_+ = ilde{S}_{pq}(x) = \delta_{pq}$$

HF Molecular Gradients in Second Quantization

▶ The molecular gradient now follows from the Hellmann–Feynman theorem:

$$E^{(1)} = \langle 0|H^{(1)}|0\rangle = \sum_{pq} D_{pq}\tilde{h}_{pq}^{(1)} + \frac{1}{2}\sum_{pqrs} d_{pqrs}\tilde{g}_{pqrs}^{(1)} + h_{nuc}^{(1)}$$

We need the derivatives of the OMO integrals:

$$\tilde{h}_{pq}^{(1)} = \sum_{mn} \left[h_{mn} (S^{-1/2})_{mp} (S^{-1/2})_{nq} \right]^{(1)} = h_{pq}^{(1)} - \frac{1}{2} \sum_{m} S_{pm}^{(1)} h_{mq}^{(0)} - \frac{1}{2} \sum_{m} h_{pm}^{(0)} S_{mq}^{(1)}$$

The gradient may therefore be written in the form

$$E^{(1)} = \sum_{pq} D_{pq} h_{pq}^{(1)} + \frac{1}{2} \sum_{pqrs} d_{pqrs} g_{pqrs}^{(1)} - \sum_{pq} F_{pq} S_{pq}^{(1)} + h_{nuc}^{(1)},$$

where the generalized Fock matrix is given by:

$$F_{pq} = \sum_{n} D_{pn} h_{qn} + \sum_{nrs} d_{pnrs} g_{qnrs}$$

▶ For RHF theory, this result is equivalent to that derived in first quantization

Section 7

Geometrical Properties

Table of Contents

Energy Functions • Variational and nonvariational wave functions

Derivatives for Variational Wave Functions

- Molecular gradients
- Molecular Hessians

Derivatives for Nonvariational Wave Functions

- Nonvariational Wave Functions
- Lagrangian method

Examples of derivatives

- Hartree–Fock Molecular Gradient
- FCI Lagrangian and Derivatives
- Derivatives in second quantization • Second-quantization Hamiltonian • Molecular gradients

- Bond Distances
- Harmonic and Anharmonic Constants

Geometrical Derivatives

In the Born–Oppenheimer approximation, the nuclei move on the electronic potential-energy surface E(x), which is a function of the nuclear geometry:

 $\mathcal{E}(x) = \mathcal{E}_0 + \mathcal{E}^{(1)} \Delta x + \frac{1}{2} \mathcal{E}^{(2)} \Delta x^2 + \cdots \leftarrow$ expansion around the reference geometry

The derivatives of this surface are therefore important:

$$\begin{split} \mathcal{E}^{(1)} &= \frac{\mathrm{d}\mathcal{E}}{\mathrm{d}x} & \leftarrow \text{molecular gradient} \\ \mathcal{E}^{(2)} &= \frac{\mathrm{d}^2 \mathcal{E}}{\mathrm{d}x^2} & \leftarrow \text{molecular Hessian} \end{split}$$

- The geometrical derivatives are
 - used for locating and characterizing critical points
 - related to spectroscopic constants, vibrational frequencies, and intensities
- Usually, only a few terms are needed in the expansions
 - in some cases low-order expansions are inadequate or useless

Uses of Geometrical Derivatives

- To explore molecular potential-energy surfaces (3N 6 dimensions)
 - Iocalization and characterization of stationary points
 - Iocalization of avoided crossings and conical intersections
 - calculation of reaction paths and reaction-path Hamiltonians
 - application to direct dynamics
- To calculate spectroscopic constants
 - molecular structure
 - quadratic force constants and harmonic frequencies
 - cubic and quartic force constants; fundamental frequencies
 - partition functions
 - dipole gradients and vibrational infrared intensities
 - polarizability gradients and Raman intensities

Bond Distances

Mean and mean abs. errors for 28 distances at the all-el. cc-pVXZ level (pm):

Bonds shorten with increasing basis:

- ▶ HF: $DZ \rightarrow TZ$ 0.8 pm; $TZ \rightarrow QZ$ 0.1 pm
- corr.: DZ \rightarrow TZ 1.6 pm; TZ \rightarrow QZ 0.1–0.2 pm
- Bonds lengthen with improvements in the N-electron model:
 - singles < doubles < triples < \cdots
- There is considerable scope for error cancellation: CISD/DZ, MP3/DZ

Bond Distances R_e of BH, CO, N₂, HF, and F₂ (pm)

Contributions to Equilibrium Bond Distances (pm)

	RHF	SD	т	Q	5	rel.	adia.	theory	exp.	err.
HF	89.70	1.67	0.29	0.02	0.00	0.01	0.0	91.69	91.69	0.00
N_2	106.54	2.40	0.67	0.14	0.03	0.00	0.0	109.78	109.77	0.01
F ₂	132.64	6.04	2.02	0.44	0.03	0.05	0.0	141.22	141.27	-0.05
CO	110.18	1.87	0.75	0.04	0.00	0.00	0.0	112.84	112.84	0.00

We have agreement with experiment to within 0.01 pm except for F₂

- ▶ Hartree–Fock theory underestimates bond distances by up to 8.6 pm (for F₂)
- All correlation contributions are positive
 - approximately linear convergence, slowest for F₂
 - triples contribute up to 2.0, quadruples up to 0.4, and quintuples 0.03 pm
 - sextuples are needed for convergence to within 0.01 pm
- Relativistic corrections are small except for F₂ (0.05 pm)
 - of the same magnitude and direction as the quintuples

Harmonic Constants ω_e of BH, CO, N₂, HF, and F₂ (cm⁻¹)

Contributions to Harmonic Frequencies ω_{e} (cm⁻¹)

	RHF	SD	Т	Q	5	rel.	adia.	theory	exp.	err.
HF	4473.8	-277.4	-50.2	-4.1	-0.1	-3.5	0.4	4138.9	4138.3	0.1
N_2	2730.3	-275.8	-72.4	-18.8	-3.9	-1.4	0.0	2358.0	2358.6	-0.6
F_2	1266.9	-236.1	-95.3	-15.3	-0.8	-0.5	0.0	918.9	916.6	2.3
CO	2426.7	-177.4	-71.7	-7.2	0.0	-1.3	0.0	2169.1	2169.8	0.7

- We have agreement with experiment to within 1 cm^{-1} except for F₂
- ▶ Hartree–Fock theory overestimates harmonic frequencies by up to 38% (in F₂).
- All correlation contributions are large and negative
 - ▶ triples contribute up to 95 cm⁻¹, quadruples 20 cm⁻¹, and quintuples 4 cm⁻¹
 - sextuples are sometimes needed for convergence to within 1 cm⁻¹
- The relativistic corrections are of the order of 1 cm⁻¹
 - of the same magnitude and direction as the quadruples or quintuples

Higher-Order Connected Contributions to ω_e in N₂ (cm⁻¹)

There are substantial higher-order corrections:

- connected triples relaxation contributes 9.7 cm⁻¹ (total triples -70.5 cm⁻¹)
- connected quadruples contribute -18.8 cm⁻¹
- connected quintuples contribute -3.9 cm⁻¹

Anharmonic Constants $\omega_e x_e$ of BH, CO, N₂, HF, and F₂ (cm⁻¹)

