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Electronic Hamiltonian Particle in a Conservative Force Field

Hamiltonian Mechanics

» In classical Hamiltonian mechanics, a system of particles is described in terms their
positions g; and conjugate momenta p;.

> For each such system, there exists a scalar Hamiltonian function H(q;, p;) such that the
classical equations of motion are given by:
__OH . oH

= —, pi=——(Hamilton's equations of motion)
opi aq;

qi
> Example: a single particle of mass m in a conservative force field F(q)

> the Hamiltonian function is constructed from the corresponding scalar potential:

H(q,p) = % +V(q), F(q)= —8\5‘(;’)

> Hamilton's equations are equivalent to Newton's equations:

g = OH(q.,p) _ p
B _gf,(q’p) _m_ av(q) = m§ = F(q) (Newton's equations of motion)
- dq - dq

> Note:
> Newton's equations are second-order differential equations
» Hamilton's equations are first-order differential equations
> the Hamiltonian function is not unique!
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Electronic Hamiltonian Particle in a Conservative Force Field

Quantization of a Particle in a Conservative Force Field

» The Hamiltonian formulation is more general than the Newtonian formulation:

> it is invariant to coordinate transformations
> it provides a uniform description of matter and field
> it constitutes the springboard to quantum mechanics

> The Hamiltonian function (the total energy) of a particle in a conservative force field:
P2
H(a,p) = 5+ V(a)
m

> Standard rule for quantization (in Cartesian coordinates):

> carry out the substitutions

b —ihV, H—inl
ot

> multiply the resulting expression by the wave function W(q) from the right:
() [ 2

o 2 V24 V(a)| W(a)

ih

> This approach is sufficient for a treatment of electrons in an electrostatic field

> it is insufficient for nonconservative systems
> it is therefore inappropriate for systems in a general electromagnetic field
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Electronic Hamiltonian Particle in a Lorentz Force Field

Lorentz Force and Maxwell's Equations

> In the presence of an electric field E and a magnetic field (magnetic induction) B,
a classical particle of charge z experiences the Lorentz force:

F=z(E+vxB)

> since this force depends on the velocity v of the particle, it is not conservative

> The electric and magnetic fields E and B satisfy Maxwell’s equations (1861-1868):

V- -E=p/ep < Coulomb's law
V x B —eopuo OE/Ot = pod <~ Ampere’s law with Maxwell's correction
V-B=0
V x E+ BB/at =0 <— Faraday'’s law of induction
> Note:

> when the charge and current densities p(r, t) and J(r, t) are known,
Maxwell’s equations can be solved for E(r, t) and B(r, t)

> on the other hand, since the charges (particles) are driven by the Lorentz force,
p(r, t) and J(r, t) are functions of E(r, t) and B(r, t)

> We here consider the motion of particles in a given (fixed) electromagnetic field

Trygve Helgaker (University of Oslo) Molecular Magnetic Properties ESQC 2017

7/54



Scalar and Vector Potentials

» The second, homogeneous pair of Maxwell's equations involves only E and B:

V-B=0

oB
VXE+ ——=0
X +8t

@ Eq. (1) is satisfied by introducing the vector potential A:

vV-B=0 — B=V xA <— vector potential

@ inserting Eq. (3) in Eq. (2) and introducing a scalar potential ¢, we obtain
OA

OA
V x (E + E) =0 — E+ ETi —Vo¢ <— scalar potential

» The second pair of Maxwell's equations is thus automatically satisfied by writing

oA
E=-Ve o

B=V xA
> The potentials (¢, A) contain four rather than six components as in (E, B).

»> They are obtained by solving the first, inhomogeneous pair of Maxwell's equations,
which contains p and J.
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Electronic Hamiltonian Particle in a Lorentz Force Field

Gauge Transformations

» The scalar and vector potentials ¢ and A are not unique.

> Consider the following transformation of the potentials:

4 ¢
A A

_ of
N %f } f = f(q, t) <— gauge function of position and time

» This gauge transformation of the potentials does not affect the physical fields:
IN/ 9 OA  OVFf
E/:fv¢'7%:fv¢+v%f%f%:s
B =VxA =Vx(A+Vf)=B+V xVf=B
> We are free to choose f(q, t) to make the potentials satisfy additional conditions
» Typically, we require the vector potential to be divergenceless:
V-AN=0= V.- (A+Vf)=0 = V?f=—-V-A <« Coulomb gauge
> We shall always assume that the vector potential satisfies the Coulomb gauge:
VxA=B, V-A=0 <+ Coulomb gauge
> Note: A is still not uniquely determined, the following transformation being allowed:

A =A+VFf, VFi=0
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Electronic Hamiltonian Particle in a Lorentz Force Field

Hamiltonian in an Electromagnetic Field

» We must construct a Hamiltonian function such that
Hamilton's equations are equivalent to Newton's equation with the Lorentz force:

_OH oH

L YR
gi Pi oa;

= <~ ma=2z(E+vxB)
opj

» To this end, we introduce scalar and vector potentials ¢ and A such that

A
E:—ng—%, B=V xA

> In terms of these potentials, the classical Hamiltonian function becomes

2
s
H=—+42z¢, m=p—2zA < kinetic momentum

2m

> Quantization is then accomplished in the usual manner, by the substitutions

b —ihV, H—ihl

ot
» The time-dependent Schrodinger equation for a particle in an electromagnetic field:
oV 1
ih— = — (—1hV — zA) - (—1hV — zA) ¥ + zpp ¥
ot 2m
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Electron Spin

» The nonrelativistic Hamiltonian for an electron in an electromagnetic field is then given by:

2

H=— —e¢p, w™=—ihV +eA
2m

> However, this description ignores a fundamental property of the electron: spin.

> Spin was introduced by Pauli in 1927, to fit experimental observations:

where o contains three operators, represented by the two-by-two Pauli spin matrices

(0 1 (0 —i (1 o0
=1 o0)TLi o) 7 0 -1

» The Schrodinger equation now becomes a two-component equation:

—ep+ 2B, g—f,(Bx—iBy) (wa)_ECu)
ﬁ(.'3X+1.'3y) T e B, ) \Vs Vs

> Note: the two components are only coupled in the presence of an external magnetic field
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Electronic Hamiltonian Electron Spin

Spin and Relativity

» The introduction of spin by Pauli in 1927 may appear somewhat ad hoc

» By contrast, spin arises naturally from Dirac’s relativistic treatment in 1928
> is spin a relativistic effect?

» However, reduction of Dirac's equation to nonrelativistic form yields the Hamiltonian
_(o-m)? eh 2

T T
H — =—+4+—B-0— — —
2m e¢ 2m + 2m oo 2m e¢

> in this sense, spin is not a relativistic property of the electron
> but we note that, in the nonrelativistic limit, all magnetic fields disappear. ..
> We interpret o by associating an intrinsic angular momentum (spin) with the electron

s =ho/2
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Electronic Hamiltonian Electronic F

Molecular Electronic Hamiltonian

» The nonrelativistic Hamiltonian for an electron in an electromagnetic field is therefore

2

H:—+EB-57€¢>, m=p+eA, p=-iV
2m  m

» expanding 72 and assuming the Coulomb gauge V - A = 0, we obtain
72U = (p+eA) - (p+eA) W = p?U 4+ ep- AV + eA - pV + 2 A%Y
=p?V +e(p- A)W + 2eA - pV¥ + AW = (p> + 2eA - p + € A*) ¥
> in molecules, the dominant electromagnetic contribution is from the nuclear charges:

Z
¢ = 471.60 ZK K4 Pext

K
> Summing over all electrons and adding pairwise Coulomb interactions, we obtain
Zy e? _ . .
H= E ,- 7 E — + 2 E ri 1 < zero-order Hamiltonian
meo S riK Teo =3

+ p= Z A -pi+ % Z B;-s; — ez ¢; < first-order Hamiltonian
1 I} 1

—- E AI? < second-order Hamiltonian
m “
1
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Magnetic Perturbations
> In atomic units, the molecular Hamiltonian is given by
H=Ho+ > _A(r)-pi + »_ B(r):si —> o(r)+ % > A (r)
i i i i

| —
orbital paramagnetic  spin paramagnetic diamagnetic

» There are two kinds of magnetic perturbation operators:

> the paramagnetic operator is linear and may lower or raise the energy
> the diamagnetic operator is quadratic and always raises the energy

» There are two kinds of paramagnetic operators:

> the orbital paramagnetic operator couples the field to the electron’s orbital motion
> the spin paramagnetic operator couples the field to the electron’s spin

> In the study of magnetic properties, we are interested in two types of perturbations:
> uniform external magnetic field B, with vector potential

1
Acxi(r) = 5B X r leads to Zeeman interactions

> nuclear magnetic moments Mg, with vector potential
My xr N .
Anc(r) = a? Z # leads to hyperfine interactions
K "k
where o & 1/137 is the fine-structure constant
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London Orbitals

Section 2

London Orbitals
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London Orbitals

Outline
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Hamiltonian in a Uniform Magnetic Field
> The nonrelativistic electronic Hamiltonian (implied summation over electrons):
H=Ho+A(r) - p+B(r)-s+ 1A(r)
» The vector potential of the uniform field B is given by:
B=VxA=const = Ag(r)=1iBx(r—0)=1Bxrg
> note: the gauge origin O is arbitrary!
» The orbital paramagnetic interaction:
Ao(r) p=3iBx(r—0) p=1iB-(r—0)xp=13B-Lg
where we have introduced the angular momentum relative to the gauge origin:

LO =roXp
» The diamagnetic interaction:

1A5 () =1 (Bxrg) (Bxro)=1%[Brg— (B ro)’]
> The electronic Hamiltonian in a uniform magnetic field depends on the gauge origin:
H:H0+%B-L0+B-s+% [B%3 — (B -r0)?]
> a change of the origin is a gauge transformation
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Gauge Transformation of Schrodinger Equation

» What is the effect of a gauge transformation on the wave function?
> Consider a general gauge transformation for the electron (atomic units):
of
A=A+ VT, d)':(i)—a

> |t can be shown this represents a unitary transformation of H — i9/9t:

(H' _ 1%) — exp (—if) (H - i%) exp (if)

> In order that the Schrodinger equation is still satisfied

19} 19}
H —i— v H—i— |V
( 181‘) <~ ( 181‘) s

the new wave function must undergo a compensating unitary transformation:

V' = exp (—if) ¥

> All observable properties such as the electron density are then unaffected:

P = (W)W = [Wexp(—if)]* [exp(—if) W] = V"W = p
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Gauge:Origin Transformations
Gauge-Origin Transformations
> Different choices of gauge origin in the external vector potential
Ag (r) = %BX (r—0)
are related by gauge transformations:
Ac (1) = Ao (r) — Ao (G) = A (1) + Vf, £ (r) = —Ag (G)-r
» The exact wave function transforms accordingly and gives gauge-invariant results:
WA = exp [—if (r)] WG = exp[iAg (G) - ] WE>*"  (rapid) oscillations
» |llustration: Hy on the z axis in a magnetic field B = 0.2 a.u. in the y direction
> wave function with gauge origin at O = (0,0, 0) (left) and G = (100, 0, 0) (right)

Wave funciion,y
Gauge fransformed wave function,

15 s 15

-1 05 o o5 1 105 0 o0s 1
Space coordinate, x (along the bond) Space coordinate, x (along the bond)
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London Orbitals

» The exact wave function transforms in the following manner:
WEeet = exp [i%B x (G —0)-r] wge
> this behaviour cannot easily be modelled by standard atomic orbitals

> Let us build this behaviour directly into the atomic orbitals:
wim(ri, B, G) = exp [13B x (G — K) - r] X/m(rk)

> xim(rk) is a normal atomic orbital centred at K and quantum numbers Im
> wim(rk, B, G) is a field-dependent orbital at K with field B and gauge origin G
» Each AO now responds in a physically sound manner to an applied magnetic field

> indeed, all AOs are now correct to first order in B, for any gauge origin G
> the calculations become rigorously gauge-origin independent
> uniform (good) quality follows, independent of molecule size

> These are the London orbitals after Fritz London (1937)
> also known as GIAOs (gauge-origin independent AOs or gauge-origin including AOs)
» Questions:

> are London orbitals needed in atoms?
> why not attach the phase factor to the total wave function instead?
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Dissociation With and Without London Orbitals

> Let us consider the FCI dissociation of Hy in a magnetic field

» full lines: with London atomic orbitals
> dashed lines: without London atomic orbitals

10- SISy
7 —-------"" ="
L .
L -
05
7 B=25
L L L L Il I I L L L L L 1 L L L i L ) ‘ ‘
L ! . 6 | m
-05}
7 B=10
7 B =00
-10}

» Without London orbitals, the FCI method is not size extensive in magnetic fields
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Zeeman and Hyperfine Interactions

Section 3

Zeeman and Hyperfine Interactions
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Zeeman and Hyperfine Intera
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Zeeman and Hyperfine Interactions

Hamiltonian in Magnetic Field

> In atomic units, the molecular Hamiltonian is given by
H=Ho+ A(r)-p + B(r)-s + %AZ(r)
—— N—— ——

orbital paramagnetic  spin paramagnetic  diamagnetic

» There are two kinds of magnetic perturbation operators:

> paramagnetic (may lower or raise energy) and diamagnetic (always raises energy)

» There are two kinds of paramagnetic operators:
» the orbital paramagnetic and spin paramagnetic

> First- and second-order Rayleigh—Schrédinger perturbation theory gives:

EWD =(0|A-p+B-s/0)

1 (0JA-p+B-s/n)(n|A-p+B-s/0)
E® = Z(0|A%|0) —
5 01470) =3 Ll

> In the study of magnetic properties, we are interested in two types of perturbations:

> externally applied uniform magnetic fields B
> fields generated internally by nuclear magnetic moments M

> Both fields are weak—uwell described by perturbation (response) theory
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Zeeman and Hyperfine Interactions Paramagnetic Operators

Orbital Paramagnetic Interactions: A - p

> Vector potentials corresponding to uniform fields and nuclear magnetic moments:

2MK><rK
0173 5

1
Ap = -B xrg, A=
2 ri

o~ 1/137

> the external field is typically about 10~* a.u. (NMR experiments)

> the nuclear vector potential is exceedingly small (about 1078 a.u.) since:
a?=c?~10"* a.u., Mg =~khlkx =~ 10~ a.u.

» We obtain the following orbital paramagnetic operators:

1 1 1
Ag - p= Eero~p: EB‘I’OXP: EB‘LO < orbital Zeeman

My X rg - My - rg X L
27K 3 K'P_ Pl 3K P_ aZMK . —3K < orbital hyperfine
r,

"k Tk K

Ac-p=a

> interactions depend on angular momenta Lo and Lk relative to O and Rk, respectively
> orbital hyperfine interaction expressed in terms of the paramagnetic spin—orbit operator:

Lk
Ak p =My hESO, KPS0 — g25K

,
K
» These are imaginary singlet operators

> they have zero expectation values of closed-shell states
> they generate complex wave functions
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Zeeman and Hyperfine Interactions Paramagnetic Operators

Spin Paramagnetic Interactions: B -s

»> The spin interaction with the external uniform field B is trivial:

B-s < spin Zeeman interaction
> should be compared with the orbital Zeeman interaction %B - Lo (different prefactor!)
» Taking the curl of Ak, we obtain the nuclear magnetic field:

53k (ric - My) — rEMg

5
"k

8 2
Bx =V x Ak = %(;UK)MK + «

> the first term is a contact interaction and contributes only at the nucleus
> the second term is a classical dipole field and contributes at a distance

» This magnetic field Bk thus gives rise to two spin hyperfine interactions:

2
FC o Lsp hfC = 87rTO‘(;(I’K) s Fermi contact (FC)
Bx-s=Mg - -(ho +h T 2
K - (hic k) hf(D = a23”<rKr75rKl35 spin—dipole (SD)

K

> the FC operator contributes when the electron passes through the nucleus
> the SD operator is a classical dipolar interaction, decaying as r;3

» These are real triplet operators, which change the spin of the wave function

> they have zero expectation values of closed-shell states
> they couple closed-shell states to triplet states
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Perturbation Theory with Zeeman and Hyperfine Operators

» Hamiltonian with a uniform external field and with nuclear magnetic moments:
H = Ho+ HW + H®) = Ho + HY + HD + 142
» Zeeman interactions with the external magnetic field B:
Hz(l):%B-LojLB-leo*“

> hyperfine interactions with the nuclear magnetic moments M :

HY = Z My - hBSO ¢ Z My - (hiE +hiP) ~ 10°°

L 8 3rirl — r21
W0 —a?H e = BT s, P = 02 2k Tkl
K K
» Second-order Rayleigh—Schrédinger perturbation theory:
1 1
D= (0] + Hi o)
Yt HP n)(n| KV + HP|0)

(
2y _ 1 20\ (0[H; hf
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Zeeman and Hyperfine Interactions Hamiltonian with Zeeman and Hyperfine Operators

Zeeman and Hyperfine Interactions

Zeeman

1

T12

SS, SO, 00

MK 3 LK

= { FC+SD hyperfine
K

AR
Rkp
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Zeeman and Hyperfine Interactions Diamagnetic Operators

: : . 1p2
Diamagnetic Operators: 5A

» From Ag and Ak, we obtain three diamagnetic operators:

A=Ap+Ax — A2=Ag-Ag +2Ag-Ax + Ak - Ak

> Their explicit forms and typical magnitudes (atomic units) are given by

1
A0~A0:Z(B><r0)-(B><ro) ~ 1078
Ao-AK:Oﬁ(BX"O)'gMKX"K) ~10-12

2 rg

M (M
Ax-A; = o KXngs( LX) qp-16
e

> These are all real singlet operators

> their expectation values contribute to second-order magnetic properties
> they are all exceedingly small but nonetheless all observable
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Molecular Magnetic Properties

Section 4

Molecular Magnetic Properties
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Molecular Magnetic Properties

Outline
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Taylor Expansion of Energy

» Expand the energy in the presence of an external magnetic field B and nuclear magnetic

moments My around zero field and zero moments:

perm. magnetic moments hyperfine coupling
(01)
— T (10 T
E(B,M)=E+ BTE!  +3 " MKE
K

1 1 1
+ SBTEB 4 0 ST BTE M+ S MEERIM, -
KL

N — K

— magnetizability

shieldings + 1 spin—spin couplings
> First-order terms vanish for closed-shell systems because of symmetry
> they shall be considered only briefly here
> Second-order terms are important for many molecular properties

> magnetizabilities

> nuclear shieldings constants of NMR

> nuclear spin—spin coupling constants of NMR

> electronic g tensors of EPR (not dealt with here)

» Higher-order terms are negligible since the perturbations are tiny:

1) the magnetic induction B is weak (~ 107* a.u.)

2) the nuclear magnetic moments My couple weakly (popun =~ 10~
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Molecular Magnetic Properties First-Order Magnetic Properties

First-Order Molecular Properties

> The first-order properties are expectation values of H()

» Permanent magnetic moment
M = (0] H]0) = (0] Lo + s[o)

> permanent magnetic moment dominates the magnetism of molecules
> the molecule reorients itself and enters the field
> such molecules are therefore paramagnetic

» Hyperfine coupling constants
A = (0] H{P[0) = £ (016 (1) s[0) - M + -

> measure spin density at the nucleus
> important in electron paramagnetic resonance (EPR)
> recall: there are three hyperfine mechanisms: FC, SD and PSO

> Note: there are no first-order Zeeman or hyperfine couplings for closed-shell molecules

> all expectation values vanish for imaginary operators and triplet operators:

<C-C- ‘ Qimaginary

c.c.> = <c.c. ’ﬁmplet

c.c.> =0
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Molecular Magnetic Properties Molecular Magnetizabilities

Molecular Magnetizabilities
» Expand the molecular electronic energy in the external magnetic field:
1
Em%:&fBTMfiﬁ%B+n-

» The magnetizability describes the second-order energy:

oy 0L sl

T
= =3 (oo —rorB o) +1 5 Oltol) (r1510)

diamagnetic term

2 2
£:7dE_7<w8H

dB2 B2

paramagnetic term
» The magnetizability describes the curvature at zero magnetic field:

0

o1 -0.002
-0.004
0.08 -0.006
-0.008
0.05 -001
0012
o004 0014
-001

0,02
-0.018
-0.02)

005 o1

B 005 o1 005 o

> left: diamagnetic dependence on the field (§ < 0); right: paramagnetic dependence on the field (£ > 0)
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Molecular Magnetic Properties Molecular Magnetizabilities

Basis-Set Convergence of Hartree—Fock Magnetizabilities

> London orbitals are correct to first-order in the external magnetic field

> For this reason, basis-set convergence is usually improved

» RHF magnetizabilities of benzene:

basis set

Xxx Xyy Xzz

London STO-3G -8.1 —-8.1 —23.0
6-31G —8.2 —8.2 —-231

cc-pVDZ -8.1 -8.1 —22.3
aug-cc-pVDZ —38.0 —38.0 —22.4

origin CM STO-3G —35.8 —35.8 —48.1
6-31G —31.6 —31.6 —39.4

cc-pvVDZ —15.4 —15.4 —26.9
aug-cc-pVDZ —-9.9 —-9.9 —25.2

origin H STO-3G —368 —176.3 —116.7
6-31G —31.6 —14438 —88.0

cc-pVDZ —15.4 —48.0 —41.6
aug-cc-pVDZ —9.9 —20.9 —33.9
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Molecular Magnetic Properties Molecular Magnetizabilities

Mean Absolute Errors for Magnetizabilities

MRE / %

0-B97-2
0-B97-3

O-PBEO
O-B3LYP

O-CAM-B3LYP

CCSD(T)

HF

-2t
> Mean relative errors (MREs, %) in magnetizabilities of 27 molecules relative to the CCSD(T)/aug-cc-pCV[TQ]Z values.
The DFT results are grouped by functional type. The heights of the bars correspond to the largest MRE in each category.
(Lutnaes et al., JCP 131, 144104 (2009))
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Cpp in a Perpendicular Magnetic Field

» All systems become diamagnetic in sufficiently strong fields:
—756.680
—756.685
—756.690
—756.695
—756.700
—756.705

—756.710

! L o
-0.04 -0.02 0.02 0.04
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High-Resolution NMR Spin Hamiltonian

» Consider a molecule in an external magnetic field B along the z axis and with nuclear
spins lkrelated to the nuclear magnetic moments Mg as:
My = vrhlk = 10~% a.u.
where vy is the magnetogyric ratio of the nucleus.

» Assuming free molecular rotation, the nuclear magnetic energy levels can be reproduced by
the following high-resolution NMR spin Hamiltonian:

Humr = = > vkl — k) Bl + > vk veh* Kl - It
K K>L

nuclear Zeeman interaction nuclear spin—spin interaction
where we have introduced

> the nuclear shielding constants oy
> the (reduced) indirect nuclear spin—spin coupling constants Ky

» This is an effective nuclear spin Hamiltonian:

> it reproduces NMR spectra without considering the electrons explicitly
> the spin parameters ok and Ky, are adjusted to fit the observed spectra
> we shall consider their evaluation from molecular electronic-structure theory
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Simulated 200 MHz NMR spectra of Vinyllithium 2CyH3OLi

experiment RHF |
1] 100 200 1] 100 200
MCSCF BILYP
] 100 200 (] 100 200
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Molecular Magnetic Properties Nuclear Shielding Constants

Nuclear Shielding Constants

» Expansion of closed-shell energy in an external field B and nuclear magnetic moments M:

_ 1oTE(0 1 TE(11) 1 TE(02)
E(B,M)=E+ B E( )B+§2K:B E} MK+§;MKEKL Mg+

describes the coupling between the applied field and the nuclear moments:

» Here E%l)
> in the absence of electrons (i.e., in vacuum), this coupling is identical to —I3:

HYC = —-B- E My < the purely nuclear Zeeman interaction
K

> in the presence of electrons (i.e., in a molecule), the coupling is modified slightly:

11 . .
EE< ) = —I3+ 0K < the nuclear shielding tensor

> Shielding constants arise from a hyperfine interaction between the electrons and the nuclei
> they are of the order of a® ~ 5- 107> and are measured in ppm
» The nuclear Zeeman interaction does not enter the electronic problem

> compare with the nuclear—nuclear Coulomb repulsion
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Molecular Magnetic Properties Nuclear Shielding Constants

Zeeman and Hyperfine Interactions
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Molecular Magnetic Properties Nuclear Shielding Constants

Ramsey's Expression for Nuclear Shielding Tensors

> Ramsey's expression for nuclear shielding tensors of a closed-shell system:

rom SEEL (o] o) 2Z<°1as! >< AL

dBdMy 0BOM

- Eo
_a? 0 rngI3—rorE Z<O}LO‘”>< ’ ;3LE‘O>
) rﬁ Eq

diamagnetic term paramagnetic term

> The (usually) dominant diamagnetic term arises from differentiation of the operator:
Ao-Ax = ~a?r%(B M
0" K—EarK( xrg) - (Mk X rk)

> As for the magnetizability, there is no spin contribution for singlet states:
S|0) =0 < singlet state

> For 1S systems (closed-shell atoms), the paramagnetic term vanishes completely and the
shielding is given by (assuming gauge origin at the nucleus):

1 _
OlLamb = 5042 <15 ‘I’K 1‘ IS> <— Lamb formula
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Benchmark Calculations of BH Shieldings (ppm)

o(I'B) Ac('B) o(fH) Ac(TH)
HF —261.3 690.1 24.21 14.15
MP2 —220.7 629.9 24.12 14.24
CCSD —166.6 549.4 24.74 13.53
CCSD(T) | —1715 555.2  24.62  13.69
CCSDT —171.8 557.3 24.59 13.72
CCSDTQ —170.1 554.7 24.60 13.70
CISD —182.4 572.9 24.49 13.87
CISDT —191.7 587.0 24.35 14.06
CISDTQ —170.2 554.9 24.60 13.70
FCI —170.1 554.7 24.60 13.70

» TZP+ basis, Rgy = 123.24 pm, all electrons correlated

> J. Gauss and K. Ruud, Int. J. Quantum Chem. S29 (1995) 437

> M. Killay and J. Gauss, J. Chem. Phys. 120 (2004) 6841

Trygve Helgaker (University of Oslo)

Molecular Magnetic Properties

ESQC 2017

43 / 54



Coupled-Cluster Convergence of Shielding Constants in CO (ppm)

CCSD  CCSD(T) CCSDT  CCSDTQ  CCSDTQ5 FCI
a(BC) 32.23 35.91 35.66 36.10 36.14  36.15
Ac(C) | 361.30 356.10  356.47 355.85 355.80  355.79
a(}"0) | —13.93 —13.03 —13.16 —12.81 —1291 —12.91
Ac(T70) | 636.01 634.55  634.75 634.22 634.52  634.35

P All calculations in the cc-pVDZ basis and with a frozen core.

> Kaillay and Gauss, J. Chem. Phys. 120 (2004) 6841.
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Calculated and Experimental Shielding Constants (ppm)

HF CAS MP2 _ CCSD _ CCSD(T) exp.
HF F 7136 7196 1242 7181 7186 210 £ 6 (300K)
H 28.4 28.5 28.9 20.1 292 28.5+ 0.2 (300K)
H,0 O 328.1 335.3 346.1 336.9 337.9  323.6 + 6 (300K)
H 30.7 30.2 30.7 30.9 30.9 30.05 + 0.02
NH; N 262.3 269.6 276.5 269.7 270.7 264.5
H 317 31.0 31.4 316 31.6 31.2+1.0
CHy C 194.8 200.4 201.0 198.7 198.9 198.7
H 31.7 31.2 31.4 31.5 31.6 30.61
Fa F| —167.9 —136.6 —170.0 —171.1 —186.5 —192.8
N> N | —112.4  —53.0 —416  —63.9 —58.1  —61.6 4 0.2 (300K)
cO Cc| -255 8.2 10.6 0.8 5.6 3.0 4 0.9 (eq)
O | —87.7 —389 —465 —56.0 —52.9 —56.8 = 6 (eq)

> For references and details, see Chem. Rev. 99 (1999) 293.
» for exp. CO and H,O values, see Wasylishen and Bryce, JCP 117 (2002) 10061
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Molecular Magnetic Properties Nuclear Shielding Constants

NMR: Mean Absolute Errors Relative to Experiment

> Mean absolute errors relative to experimental (blue) and empirical equilibrium values (red)

MAE / ppm

MAE (Exp.)
= MAE (Emp. Eq.)

» Kohn—Sham calculations give shielding constants of uneven quality
> errors increase when vibrational corrections are applied
> Teale et al. JCP 138, 024111 (2013)
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Indirect Nuclear Spin-Spin Coupling Constants
Direct and Indirect Nuclear Spin—Spin Couplings
» The last term in the expansion of the molecular electronic energy in B and Mg
E(B,M) = E + 1BTE®B + 1 3, BTE{IMy + 1 50, MEEXPIM, + -
describes the coupling of the nuclear magnetic moments in the presence of electrons

» There are two distinct contributions to the coupling:
the direct and indirect contributions

E(;?f) =Dk + Kk

» The direct coupling occurs by a classical dipole mechanism:
-5 —
DKL = a2RKL (Rf(LI3 - 3RKLREL) ~ 10 12 a.u.
> it is anisotropic and vanishes in isotropic media such as gases and liquids

» The indirect coupling arises from hyperfine interactions with the surrounding electrons:

— it is exceedingly small: Kyx; ~ 10710 a.u. ~ 1 Hz
— it does not vanish in isotropic media
— it gives the fine structure of high-resolution NMR spectra

> Experimentalists usually work in terms of the (nonreduced) spin—spin couplings

J = h;{—g%KKL <— isotope dependent
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Molecular Magnetic Properties Indirect Nuclear Spin-Spin Coupling Constants

Zeeman and Hyperfine Interactions
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Ramsey’s Expression for Indirect Nuclear Spin—Spin Coupling Tensors
» The indirect nuclear spin—spin coupling tensors of a closed-shell system are given by:

o ) )

- Eo

d2E, 02H
o~ = (]

dMygdM; OMKOM,

» Carrying out the differentiation of the Hamiltonian, we obtain Ramsey's expression:

Kk =t <0 0>_2Q4Z<0"E3|—Kn><n)rL_3Lﬂ0>
n 0

T T
ricrels —rgrf

3.3 _
retf
diamagnetic spin-orbit (DSO) paramagnetic spin-orbit (PSO)
ek —r2 I3 3r rT7r2I3
0 8%5(”()54-7‘( K—iSsin)(n 8%6(rL)sT+ ] ) Lot sT|0
—2a* E L
~ E, — Ey

Fermi contact (FC) and spin—dipole (SD)

the isotropic FC/FC term often dominates short-range coupling constants
the FC/SD and SD/FC terms often dominate the anisotropic part of Kk,
the orbital contributions (especially DSO) are usually but not invariably small
for large internuclear separations, the DSO and PSO contributions cancel

vyvyyy
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Molecular Magnetic Properties Indirect Nuclear Spin-Spin Coupling Constants

Relative Importance of Contributions to Spin—Spin Coupling Constants

» The isotropic indirect spin—spin coupling constants can be uniquely decomposed as:
D! P FC D
Jo =IO + 9850 9S4 03D
»> The spin—spin coupling constants are often dominated by the FC term

> Since the FC term is relatively easy to calculate, it is tempting to ignore the other terms.

> However, none of the contributions can be a priori neglected (N2 and CO)!

200
. I I I I I I
0
-100
H2 HF H20 NH3 CH4 C2H4 HCN N2 CO C2H2
O-H N-H C-H C-C N-C Cc-C
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Calculation of Indirect Nuclear Spin—-Spin Coupling Constants

> The calculation of spin—spin coupling constants is a challenging task
> Spin—spin coupling constants depend on many coupling mechanisms:

> 3 singlet response equations and 7 triplet equations for each nucleus
» for shieldings, only 3 equations are required, for molecules of all sizes

> Spin—spin coupling constants require a proper description of static correlation

> the Hartree—Fock model fails abysmally
> MCSCEF theory treats static correlation properly but is expensive

> Spin—spin couplings are sensitive to the basis set

> the FC contribution requires an accurate electron density at the nuclei
> steep s functions must be included in the basis

> Spin—spin couplings are sensitive to the molecular geometry

> equilibrium structures must be chosen carefully
> large vibrational corrections (often 5%-10%)

> For heavy elements, a relativistic treatment may be necessary.

> However, there is no need for London orbitals since no external magnetic field is involved.
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Restricted Hartree—Fock Theory and Triplet Instabilities

> The correct description of triplet excitations is important for spin—spin coupling constants

> In restricted Hartree—Fock (RHF) theory, triplet excitations are often poorly described

> upon H» dissociation, RHF does not describe the singlet ground state correctly
> but the lowest triplet state dissociates correctly, leading to triplet instabilities
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» Near such instabilities, the RHF description of spin interactions becomes unphysical

Trygve Helgaker (Univ

CaHy /Hz T "Jen ZJcn Zhn s O Jerans
exp. 68 156 —2 2 12 19
RHF 1270 755 —572 —344 360 400
CAS 76 156 —6 —2 12 18
B3LYP 75 165 -1 3 14 21
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Reduced Spin—Spin Coupling Constants by Wave-Function Theory

RHF CAS RAS SOPPA  CCSD CC3 exp” vib
HF TKur 59.2 48.0 48.1 46.8 46.1 46.1 476 —3.4
co 'Keo 13.4 —28.1 —39.3 —454 383 —37.3 | —383 —1.7
Na Ky 175.0 —5.7 -9.1 —23.9 —204 —204 | —193 —1.1
H,O  'Kon 63.7 51.5 47.1 49.5 48.4 48.2 52.8 —3.3
2Kun -1.9 —0.8 —0.6 —0.7 —0.6 —0.6 —0.7 0.1
NH; L Knn 61.4 48.7 50.2 51.0 48.1 50.8 —0.3
2Kim -1.9 —-0.8 —0.9 —0.9 -1.0 —0.9 0.1
CoHys  YKee 1672.0 99.6 90.5 92.5 92.3 87.8 1.2
'Ken 249.7 51.5 50.2 52.0 50.7 50.0 1.7
2Ken | —189.3 -1.9 —0.5 —-1.0 —-1.0 —0.4 —0.4
2K —28.7 —0.2 0.1 0.1 0.0 0.2 0.0
3Keis 30.0 1.0 1.0 1.0 1.0 0.9 0.1
3 Kins 33.3 1.5 1.5 1.5 1.5 1.4 0.2
[A] abs. 180.3 33 1.6 1.8 1.2 1.6 | "at R
% 5709 60 14 24 23 6

» SOPPA: second-order polarization-propagator approximation
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Molecular Magnetic Properties Indirect Nuclear Spin-Spin Coupling Constants

Comparison of Density-Functional and Wave-Function Theory

» Normal distributions of errors for indirect nuclear spin—spin coupling constants
> for the same molecules as on the previous slides

HF LDA BLYP B3LYP
=30 30 =30 30 -30 30 =30 30
x RAS
=30 30

SOPPA ‘ CCSD

-30 30 -30 30

CAS

VN

-30 30

» Some observations:

> LDA underestimates only slightly, but has a large standard deviation
BLYP reduces the LDA errors by a factor of two

B3LYP errors are similar to those of CASSCF

The CCSD method is slightly better than the SOPPA method

vvyy
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