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Geometry optimization

I Good standard methods are available for minimization

I Fletcher: “Practical Methods of Optimization” (2nd edn., 1987)
I Dennis and Schnabel: “Numerical Methods for Unconstrained Optimization

and Nonlinear Equations” (1983,1996)
I Gill, Murray, and Wright: “Practical Optimization” (1982)

I Methods for saddle points are much less developed

I less intuitive and experimental information available for saddle points
I many methods have been considered over the years but

Localization of a saddle point is easy to make only in laboratories
other than our own

Havlas and Zahradńık
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Introduction Smooth functions

Multivariate smooth functions

I Taylor expansion of a smooth function f about the current point xc:

f (x) = fc + s̃gc + 1
2
s̃Hcs + · · · , s = x − xc

I Multivariate function f in x with gradient gc and Hessian Hc at xc:

x =

x1

...
xn

 , gc =


∂f
∂x1

...
∂f
∂xn

 , Hc =


∂2f
∂x2

1
· · · ∂2f

∂x1∂xn

...
...

∂2f
∂xn∂x1

· · · ∂2f
∂x2

n


I Diagonal Hessian representation:

f (x) = fc +
∑
i

φiσi + 1
2

∑
i

λiσ
2
i + · · ·

I gradient in the diagonal representation φi

I Hessian eigenvalues λi

I Hessian index: the number of negative Hessian eigenvalues
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Introduction Minima and saddle points

Stationary points

I A smooth function f (x) has a stationary point at x∗ if the gradient vanishes:

g(x∗) = 0 (zero slope)

minimum

maximum

inflection point

I The function f (x) has a minimum at x∗ (the minimizer) if the Hessian index is zero:

small eigenvalue

large eigenvalue
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Introduction Minima and saddle points

Strong and weak minima

I At a minimum, all Hessian eigenvalues are nonnegative
I if, in addition, all eigenvalues are positive, we have a strong minimum
I if one or more eigenvalues are zero, we have a weak minimum
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Introduction Minima and saddle points

Local and global minima

I A minimum x∗ is global if f (x) ≥ f (x∗) for all x

I A minimum x∗ that is not global is said to be local

strong local
minimum

weak local
minimum

global
minimum

I Most practical methods do not discriminate between local and global minima
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Introduction Minima and saddle points

Saddle points

I A saddle point is a stationary point with one or more negative Hessian eigenvalues

I a kth-order saddle point has Hessian index k

I The gradient and Hessian are both needed to characterize a stationary point

I Potential-energy surfaces:

I minimum: stable molecular conformation
I first-order saddle point: transition state

I Electronic-structure energy functions:

I minimum: ground state
I saddle point: excited state
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Introduction Minima and saddle points

Minima and saddle points
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Introduction Strategies for optimization

Strategies for optimization: global and local regions
I Any optimization is iterative, proceeding in steps or iterations

I At each step, a local model m(x) is constructed of the surface f (x)
I this model must be (locally) accurate, flexible, and easy to determine

I A search proceeds in two regions: the global region and the local region
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global region 4

5

6

local region

Local region

I the local model m(x) represents f (x) accurately around the optimizer x∗

I take a step to the optimizer of the model m(x)

I this region usually presents few problems

Global region

I the local model m(x) does not represent f (x) accurately around the optimizer x∗

I the model cannot locate x∗ but must instead guide us in the right general direction

I relatively simple for minimizations, difficult in saddle-point searches
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Local region
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Local region Local region

Local region

I In the local region, the local model extends to the optimizer x∗ of the true function

I We can then proceed in a simple manner:
1 construct a local model mc(x) of f (x) around the current point xc

mc(xc) = f (xc)

mc(x∗) ≈ f (x∗)

2 determine the stationary point x+ of the local model

dmc(x)

dx

∣∣∣∣
x=x+

= 0

3 if x+ = x∗ (to some preset threshold), terminate;
otherwise, set xc = x+ and iterate again

I The convergence of the optimization depends on the quality of the local model

I We shall build the local model by expansion around the current point
I the linear model
I the quadratic model
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Local region Linear and quadratic models

Linear model

I The local linear or affine model arises by truncation after the first-order term:

mA(x) = f (xc) + g̃cs

I The linear model is typically constructed from the exact gradient

I The linear model is not very useful since
I it is unbounded
I it has no curvature information
I it has no stationary points

I The linear model forms the basis for the steepest-descent method
I it is often used in combination with line search (vide infra)
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Local region Linear and quadratic models

Second-order model

I In the second-order (SO) model, we truncate the expansion after second order:

mSO(x) = f (xc) + g̃cs + 1
2
s̃Hcs

I requires the exact gradient gc and Hessian Hc at the current point
I The SO models contains full information about local slope and curvature

I Unlike the first-order (linear) model, the SO model has a stationary point
I this point may or may not be close to the true stationary point
I in the local region, the SO stationary point is close to the true stationary point
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Local region Newton’s method

Newton’s method
I The SO model is given by

mSO(x) = f (xc) + g̃cs + 1
2
s̃Hcs

I Differentiating the SO model and setting the result to zero, we obtain

dmSO(s)

ds
= 0 ⇒ gc + Hcs = 0 ⇒ s = −H−1

c gc

I The new point x+ and the current point xc are related as

x+ = xc − H−1
c gc ← Newton step

I When iterated, we obtain Newton’s method

I Note: the Newton step does not discriminate between minima and maxima
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Local region Newton’s method

Convergence of Newton’s method

I The relation between the new and old points is given by

x+ = xc − H−1
c gc ← Newton step

I Subtracting the true optimizer x∗, we obtain a relation between new and old errors

e+ = ec − H−1
c gc, e+ = x+ − x∗, ec = xc − x∗

I We next expand the gradient and inverted Hessian around the true optimizer x∗:

gc = g∗ + H∗ec +O(e2
c ) = H∗ec +O(e2

c ) (since g∗ = 0)

H−1
c = H−1

∗ +O(ec)

I Inserted in the error expression above, these expansions give

e+ = ec − H−1
c gc = ec −

(
H−1
∗ +O(ec)

)(
H∗ec +O(e2

c )
)

= O(e2
c )

I We conclude that Newton’s method converges quadratically

e+ = O(e2
c )

I close to the optimizer, the number of correct digits doubles at each iteration
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Local region The quasi-Newton method

The quasi-Newton method

I If the exact Hessian is unavailable or expensive, use an approximate Hessian
I this gives the more general quadratic model

mQ(x) = f (xc) + g̃cs + 1
2
s̃Bcs, Bc ≈ Hc

I the associated quasi-Newton step is given by

x+ = xc − B−1
c gc

I In the quasi-Newton method, B is iteratively improved upon
I at each iteration, the exact Hessian satisfies the relation

(g+ − gc) = H+ (x+ − xc) +O((x+ − xc)2)

I by analogy, we require the new approximate Hessian to satisfy the relation

(g+ − gc) = B+ (x+ − xc) ← the quasi-Newton condition

I the new Hessian is updated in a simple manner from Bc, g+ − gc and x+ − xc

B+ = f (Bc, g+ − gc, x+ − xc)

I several update schemes are available
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Local region The quasi-Newton method

Hessian updates

I Apart from the quasi-Newton condition, other conditions are often imposed

I Hereditary symmetry:

Bc symmetric⇒ B+ symmetric

I Powell–symmetric–Broyden (PSB) update:

B+ = Bc +
(s̃csc)Tcs̃c + (s̃csc)scT̃c − (T̃csc)scs̃c

(s̃csc)2

Tc = (g+ − gc)− Bcsc

I simple matrix and vector manipulations
I Hereditary positive definiteness:

Bc positive definite⇒ B+ positive definite

I Broyden–Fletcher–Goldfarb–Shanno (BFGS) update:

B+ = Bc +
ycỹc

ỹcsc
− Bcscs̃cBc

s̃cBcsc

yc = g+ − gc

I Many other schemes exist
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Local region Convergence and stopping criteria

Convergence in local region

I Consider a sequence xk that converges to x∗

lim
k→∞

xk = x∗ ← convergent sequence

ek = xk − x∗ ← error vector

I Linear, superlinear and quadratic rates of convergence:

lim
k→∞

|ek+1|
|ek |

= a ← linear convergence (steepest descent, gradient)

lim
k→∞

|ek+1|
|ek |

= 0 ← superlinear convergence (quasi-Newton, updated Hessian)

lim
k→∞

|ek+1|
|ek |2

= a ← quadratic convergence (Newton, exact Hessian)

I The local region presents few problems for methods based on the quadratic model
I convergence to weak or near-weak minima will still be slow
I such minima require a quartic model for fast convergence

I As our model improves, fewer but more expensive steps are needed for convergence
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Local region Convergence and stopping criteria

Stopping criteria
I An optimization is terminated when one or several convergence criteria are satisfied

I Typically, the following criteria are used

I the gradient norm:
‖gc‖ ≤ εg

I the norm of the predicted second-order change in the function:

1
2
|g̃cH

−1
c gc| ≤ εf

I the norm of the (quasi-)Newton step:

‖H−1
c gc‖ ≤ εs

I In addition, we should always check the structure of the Hessian (the Hessian index)

I Finally, inspect the solution and use common sense!
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Global strategies for minimization

Section 3

Global strategies for minimization
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Global strategies for minimization Global region

Global region
I Optimization in the local region is fairly simple

I We shall now consider the more difficult global region . . .

0
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global region 4
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local region

Local region

I the local model m(x) represents f (x) accurately around the optimizer x∗

I take a step to the optimizer of the model m(x)

I the same method works for minima and saddle points

Global region

I the local model m(x) does not represent f (x) accurately around the optimizer x∗

I the model must guide us in the right general direction

I this is relatively simple in minimizations but difficult in saddle-point searches
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Global strategies for minimization Global region

Strategies for minimization
I Global strategies are needed when the local model represents f (x) poorly around x∗

x*

xc

Newton step

I The Newton step above leads us away from the minimizer, increasing f (x)

I The following is a useful global strategy for the minimization method:
I the function f (x) must be (sufficiently) reduced at each step

I In addition, the method we seek should be globally convergent:
I it should converge to some (possibly local) minimum from any starting point
I however, we cannot ensure that the minimum is global

I There are two standard global strategies:
I the trust-region method
I the line-search method
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Global strategies for minimization The trust-region method

The trust region and the RSO model
I In the trust-region method, we recognize that the second-order model is good only

in some region around xc: the trust region (TR)

I The trust region cannot be specified in detail, we assume that it is a hypersphere
√
s̃s ≤ h ← trust radius h

I the trust radius is updated by a feedback mechanism

I This gives us the restricted second-order (RSO) model

mSO(x) = f (xc) + g̃cs + 1
2
s̃Hcs, s̃s ≤ h2

I At each iteration, we minimize mSO(x) subject to the constraint that s̃s ≤ h2
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Global strategies for minimization The trust-region method

Stationary points in the trust region
I The trust region may or may not have a stationary point in the interior

I However, there are always two or more stationary points on the boundary
I Consider f (x , y) below expanded about (12, 8) in sx = x − 12 and sy = y − 8:

f (x , y) = 8(x − y)2 + (x + y)2 = 528 +
[
sx , sy

] [104
−24

]
+

1

2
+

[
sx , sy

] [18,−14
−14, 18

] [
sx
sy

]
I with trust radius h = 10, there are four stationary points on the boundary
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I In the global region, we minimize f globally on the boundary and go to point A
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Global strategies for minimization The trust-region method

The level-shifted Newton step
I To determine stationary points on the boundary, we use Lagrange’s method

L(s, µ) = mSO(s)− 1
2
µ(s̃s − h2) ← Lagrangian

I The stationary points are now obtained by setting the gradient to zero

dL/ds = gc + Hcs − µs = 0 ⇒ s(µ) = −(Hc − µI )−1gc

I We obtain a level-shifted Newton step s(µ) that depends on µ
I we select µ such that the step is to the boundary
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I Note: we have always at least two stationary points on the boundary
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Global strategies for minimization The trust-region method

The trust-region algorithm
1 Construct a restricted second-order model of the surface at xc:

mRSO(s) = f (xc) + g̃cs + 1
2
s̃Hcs, ‖s‖ ≤ hc

2 Take the Newton step if ‖s(0)‖ < hc and if Hc has correct structure

s(0) = −H−1
c gc

3 Otherwise, take the level-shifted Newton step to the minimum on the boundary

s(µ) = −(Hc − µI )−1gc, µ < min(0, λ1), ‖s(µ)‖ = hc

I The Levenberg–Marquardt trajectory: the step s(µ) as a function of µ:
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0

10

Newton

-20 0 20 40
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Global strategies for minimization The trust-region method

Trust-radius update

I The trust radius hc is updated by a feedback mechanism:

Rc =
actual change

predicted change
=

f+ − fc

g̃cs + 1
2
s̃Hcs

= 1 +O(s3)

reject 0 1
Rc

h+=hc�4 h+=hc h+=2hc

I Important safety measure:
I always reject the step if the function increases
I calculate new step with reduced radius

I Typically implemented with the exact Hessian: an updated Hessian may not be
accurate enough for an unbiased search in all directions
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Global strategies for minimization The line-search method

The line-search method

I If the Newton step must be rejected, it may still provide a direction for a line search

I In the line-search method, such searches form the basis for the global optimization

Line search

a one-dimensional search along a descent direction until an acceptable reduction in the
function is obtained

I A descent direction is a vector z such that g̃cz < 0

I examples of descent directions:

I steepest-descent step:

z = −gc since − g̃cgc < 0

I Newton step with a pos. def. Hessian:

z = −B−1
c gc since − g̃cB

−1
c gc < 0

I the BFGS step guarantees p. d. Hessian

I the Newton step is usually better than
the steepest-descent step

gc

descent directions
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Global strategies for minimization The line-search method

Line searches

I Exact line search:
I expensive, unnecessary

I Inexact or partial line search:
I try Newton step first
I if necessary, backtrack until an acceptable step is found

I Line searches are often used with updated Hessians: quasi-Newton methods
I relatively stable
I efficient

I Backtracking does not make full use of available information
I the Hessian is used to generate the direction of the step but not its length
I the coupling between direction and length is ignored

trust-region method line-search method

first step size, next direction first direction, next step size

handles indefinite Hessians naturally handles indefinite Hessians poorly

less suited for updated Hessians well suited for updated Hessians

“guaranteed” convergence no guarantee of convergence

conservative risky
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Global strategies for minimization The line-search method

Coordinate systems for geometry optimizations

I A judicious choice of coordinates may improve convergence by reducing

I quadratic couplings
I higher-order (anharmonic) terms

Cartesian coordinates

I simple to set up and to automate

I provides universal and uniform quality

I yields strong couplings and large anharmonicities

I contains rotations and translations

Internal coordinates

I primitive internal coordinates: bond lengths, bond angles, dihedral angles

I physically well motivated: small couplings and anharmonicities

I nonredundant system difficult to set up

I solution: use redundant internal coordinates

I redundancies controlled by projections
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Global strategies for minimization The line-search method

The initial Hessian
I The efficiency of update methods depends on the quality of the initial Hessian

I The exact initial Hessian gives fewest iterations but is expensive

I A more efficient scheme may be to use a less accurate but cheaper initial Hessian

I A good approximate Hessian is easiest to set up in primitive internal coordinates

I diagonal harmonic model Hessian

Bpp =


0.45 ρij bond length

0.15 ρijρjk bond angle

0.005 ρijρjkρkl dihedral angle

I here ρij is a decaying model function for each atom pair ij

ρij(rij) = exp
[
αij(R

2
ij−r 2

ij )
]

αij and Rij tabulated
for all atom pairs

1 2

1

Rij
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Global strategies for minimization The line-search method

Numerical comparisons

I Total number of iterations/timings for 30 representative molecules (Baker set)

I 1st-order quasi-Newton (BFGS) with different initial Hessians

I 2nd-order Newton method

I Optimizations in Cartesian and redundant internal coordinates

quasi-Newton Newton

Cart. diagonal int. diagonal exact

1.0 0.4 1.0 hmh

Cart. coor. iter. 768 619 318 309 210 123
time 2261 1873 931 911 907 1163

inter. coor. iter. 503 363 269 208 158 113
time 1475 1064 781 664 757 1491

I The best method:
the BFGS quasi-Newton method in redundant internal coordinates with initial
harmonic model Hessian (hmh)
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Global strategies for saddle points

Section 4

Global strategies for saddle points
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Global strategies for saddle points Saddle points

Saddle points

I Saddle-point optimizations are more difficult than minimizations
I less experimental and intuitive information available
I less developed and stable

I There are a large number of methods in use

I The local region presents few problems provided a second-order model is used
I the Newton step is always to the stationary point of the second-order model,

be it a minimum, a maximum or a saddle point

I All difficulties with saddle-point optimizations are in the global region
I it is hard to measure progress in saddle-point optimizations
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Global strategies for saddle points Saddle points

Minima and saddle points
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Global strategies for saddle points Levenberg–Marquardt trajectories

Levenberg–Marquardt trajectories

I A simple approach is to explore other solutions to the restricted 2nd-order problem

s(µ) = −(Hc − µI )−1gc

0 20

0

20

0 20

0

20

-20 0 20 40 60

I Select walks to reduce or increase the function along the various modes
I note: the trajectories depend on the expansion point
I this approach has been used with some success
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Global strategies for saddle points Gradient extremals

Gradient extremals

I Levenberg–Marquardt trajectories are dependent on the expansion point

I Are there well-defined lines connecting stationary points of a smooth function?

I Steepest-descent paths:

I follow gradient down from the saddle point
I not locally defined (not recognizable)
I intrinsic reaction coordinate

I Gradient extremals:

I connect stationary points
I locally defined (recognizable) by the condition

H(x)g(x) = λ(x)g(x)

I The gradient is an eigenvector of the Hessian at gradient extremals
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Global strategies for saddle points Gradient extremals

From stationary points to gradient extremals

I Consider the gradient in the diagonal representation of the Hessian
I at a stationary point, all elements are zero
I at a gradient extremal, all elements except one are zero

φ(xsp) =



0
...
0
...
0

 → φ(xge) =



0
...

φ(t)
...
0


I Gradient extremals are therefore points where we have relaxed just one of the

conditions for a stationary point
I 3N − 6 conditions specify a point
I 3N − 7 conditions specify a line

I Only one nonzero gradient component in the eigenvector basis implies the condition

H(x)g(x) = λ(x)g(x)

I It should be possible to follow gradient extremals between stationary points
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Global strategies for saddle points Gradient extremals

Gradient extremals as optimum ascent paths
I A gradient extremal corresponds to an optimum ascent path

-4 -2 0 2 4 6

-4

-2

0

2

4

6

I Optimize the gradient norm on a contour line f (x) = k

d

dx
[g̃g − 2µ(f (x)− k)] = 0 ⇒ H(x)g(x) = µ(x)g(x)

I Some properties of gradient extremals:
I locally defined, intersect at stationary points
I not necessarily tangent to gradient, curves a lot and difficult to follow
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Global strategies for saddle points Image functions

Image functions

I Imagine a function f̄ (x) with the following properties

f (x) f̄ (x)

minimum ↔ saddle point
saddle point ↔ minimum

I the function f̄ (x) is said to be the image function of f (x)

I We may locate a saddle point of f (x) by minimizing f̄ (x)!

I a trivial example:

I In general, we cannot construct an image function—it may not even exist

I however, we know its gradient and Hessian
I this is sufficient for second-order optimizations
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Global strategies for saddle points Image functions

Trust-region image minimization
I The gradient and Hessians of a function f and its image f̄ are related as

φ(x) =

[
φ1

φ2

]
, λ(x) =

[
λ1 0
0 λ2

]
φ̄(x) =

[
−φ1

φ2

]
, λ̄(x) =

[
−λ1 0

0 λ2

]
I To minimize f̄ (x), we must use the trust-region method—line search is impossible

I The level-shifted Newton step for the image function is now given by

s(µ) = −(H̄c − µ1)−1ḡc = − φ̄1

λ̄1 − µ
~v1 −

φ̄2

λ̄2 − µ
~v2

= − φ1

λ1 + µ
~v1 −

φ2

λ2 − µ
~v2

I a simple sign change in the level-shift parameter µ for one mode
I the level-shifted Newton method maximizes this mode and minimize all others

I Trust-region image minimization is typically applied to the lowest Hessian mode

I robust but not selective
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