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Outline
● Why do we care about relativity in chemistry ?

● What are relativistic effects ?
● Relativistic effects in atoms
● Relativistic effects in molecules
● Dirac Hamiltonian

● How can we include relativity in calculations ?
● Perturbation theory of relativistic effects
● 2-component methods
● 4-component methods
● Effective Core Potentials

● Some recommendations / best practices
● Comparison light / heavy element calculations
● Importance of spin-orbit coupling



Assumptions in Quantum Chemistry

● Born-Oppenheimer approximation
● Electronic and nuclear motion can be decoupled
● Electronic energies for motion around clamped nuclei provide 

potential energy surfaces for nuclear motion
● Coupling between surfaces is studied by perturbation theory

● Nuclear charge distribution
● Point nucleus approximation
● Nuclear deformations are treated in perturbation theory

● Relativity
● The speed of electrons is always far below the speed of light
● Goal is to find time-independent wave functions (stationary states) 
● Magnetic fields can be neglected or treated in perturbation theory
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Dirac’s view on relativity
● Dirac (1929) 

● The general theory of quantum mechanics is now
almost complete, the imperfection that still remain
being in connection with the exact fitting in of the 
theory with relativistic ideas. These give rise to
difficulties only when high speed particles are 
involved, and are therefore of no importance in 
the consideration of atomic and molecular
structure and ordinary chemical reactions in wich
it is, indeed, usually sufficiently accurate if one
neglects relativity variation of mass with velocity
and assumes only Coulomb forces between the 
various electrons and atomic nuclei. 

● The fundamental laws necessary for the 
mathematical treatment of large parts of physics 
and the whole of chemistry are thus fully known, 
and the difficulty lies only in the fact that 
application of these laws leads to equations that 
are too complex to be solved.
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Later insights
● Pekka Pyykkö and Jean-Paul Desclaux (1979)

● The chemical difference between the fifth row and the 
sixth row seems to contain large, if not dominant, 
relativistic contributions which, however, enter in an 
individualistic manner for the various columns and 
their various oxidation states, explaining, for example, 
both the inertness of Hg and the stability of 
Hg2

2+.These relativistic effects are particularly strong 
around gold. A detailed understanding of the interplay 
between relativistic and shell-structure effects will form 
the impact of relativity on chemistry.

● Jan Almlöf & Odd Gropen (1996)
● While the incorporation of these effects sometimes 

increases the computation labor, the increase is 
generally reasonable, and certainly much less than in, 
e.g. the transition from semiempirical to ab initio 
methods for routine quantum chemistry applications. 
We predict, therefore, that relativistic corrections in 
one form or another will be included in the majority of 
all quantum chemistry calculations before the end of 
this decade.



The hydrogenic atom: Energies

● The exact non-relativistic energy

● The exact relativistic energy 

● Spin-orbit couping :
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The hydrogenic atom: Orbitals

● l and s are not separate quantum numbers for the relativistic 
atom: px, py and pz can not be chosen as eigenfunctions

● Correct eigenfunctions with spin-orbit coupling: pj,mj
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Hartree-Fock orbital energies
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Orbital stabilization of valence s-orbitals

H, Li, Na, K, Rb, Cs, Fr, 119 
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Orbital contraction

● The valence s-orbital shrinks
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Orbital destabilization and spin-orbit splitting
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Orbital expansion

● The outermost p- and d-orbitals expand
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Ln-An contraction

● Ln-An contraction is partly caused by relativistic effects
● Trend expected from the atomic calculations are 

validated with calculations on LnF, AnF, LnH3 and AnH3
molecules.
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Atomization energies

• Example: Halogen molecules
• Molecular energy is hardly affected by SO-

coupling (SO quenching) 
• First order perturbation theory
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Atomization energies

• Atomic asymptotes are lowered by SO-coupling
• First order perturbation theory

Nonrelativistic

px py pz

Relativistic

p1/2 p3/2 p3/2

Nonrelativistic
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SO-splitting

2P

2P3/2



Relativistic effect on atomization energies (kcal/mol)

Spin-Orbit effect on atomization energies is well-
reproduced by correcting only the separate atoms limit
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Relativistic effect on vibrational frequencies (cm-1)

Bond weakening by admixture of the antibonding sigma 
orbital in the pi bonding orbitals due to spin-orbit coupling.
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Relativistic effect on equilibrium distances (Å)

Important and slightly method dependent for 6p elements
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Make orbital diagram and identify possible
SOC effects. Always include scalar effects.

Relativistic effect on atomization energies (kcal/mol)

Slide: courtesy Erik van Lenthe, SCM



Ir(ppy)3 spinor magnetization densities

HOMO LUMO

Use spin-orbit coupling of iridium to increase OLED efficiency



Special relativity

Postulate 1: All inertial frames are equivalent

Postulate 2: The laws of physics have the same form in 
all inertial frames

Lorentz coordinate transformations mix time and space

Postulates hold for electromagnetism (Maxwell relations)
Postulates do not hold for Newtonian mechanics

Develop quantum theory from classical relativistic equations 
and make sure electron spin is described
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Non-relativistic quantization

The nonrelativistic Hamilton function
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Quantization
€ 

H =T +V =
p2

2m
+ qφ r( )

  

€ 

H → i ∂
∂t

 ;  p→−i∇  

ˆ H ψ(r, t) = i ∂
∂t
ψ(r,t)

ˆ H = − 
2m

ˆ ∇ 2 + q ˆ φ (r)



Non-relativistic quantum mechanics

The nonrelativistic Hamiltonian
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Usually only electric field via scalar potential f

Magnetic fields via vector potential A:

p	→𝜋 = p− 𝑞𝑨					(minimal coupling substitution)

Zeeman interaction, but no spin-orbit coupling.

H= T + 𝑉 = <#

4=
+ 𝑞𝜙

H = <#

4=
+ 𝑞𝜙 − ?

@
𝑨 A p+ ?#

@
𝐴4



Non-relativistic quantization 2

The nonrelativistic Hamilton function
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Quantization

€ 

H = T +V =
π 2

2m
+ qφ r( )

π = p− qA

H→ i ∂
∂t

 ; p→−i∇ 

Ĥψ(r, t) = i ∂
∂t
ψ(r, t)

Ĥ = −


2m
∇̂2 +

iq
2m

∇̂ ⋅ Â+ Â ⋅ ∇̂( )+ q2

2m
Â2 + qφ̂(r)

Mechanical (p) and canonical momentum (p)
Principle of minimal electromagnetic coupling

Coulomb gauge: ∇̂ ⋅ Â( ) = 0



Spin and non-relativistic quantization 1

We can, however, also write the the Hamilton function as
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Quantization

E = qφ +
σ ⋅ π( )2

2m
σ i,σ j
$% &'+ = 2δij

  

€ 

ˆ H = q ˆ φ +
1

2m
σ ⋅ −i ˆ ∇ + q ˆ A ( ){ }

2

= q ˆ φ −
2

2m
σ ⋅ ˆ ∇ ( )

2
+

q2

2m
σ ⋅ ˆ A ( )

2
+

iq
2m

σ ⋅ ˆ ∇ ( ), σ ⋅ ˆ A ( )[ ]+

Kronecker delta and Levi-Civita tensor, 
Summation over repeated indices

σ iσ j = δij + iεijkσ k

εxyz = εzxy = εyzx =1
εxzy = εzyx = εyxz = −1
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ˆ ∇ ×A r( ) f (r) = ˆ ∇ × f (r)A r( )( )
= ˆ ∇ f (r)( ) ×A r( ) + f (r) ˆ ∇ ×A r( )

= − ˆ A × ˆ ∇ f (r)( ) + Bf (r)

  

€ 

ˆ H = − 
2m

ˆ ∇ 2 + q ˆ φ +
q2

2m
ˆ A 2

+
iq
2m

ˆ ∇ ⋅ ˆ A + ˆ A ⋅ ˆ ∇ ( ) − q
2m

σ ⋅ ˆ ∇ × ˆ A + ˆ A × ˆ ∇ ( )

Spin and non-relativistic quantization 2
σ ⋅u( ) σ ⋅ v( ) = u ⋅ v( ) + iσ ⋅ u × v( )

€ 

ˆ H = ˆ T + q ˆ φ + iq ˆ A ⋅ ˆ ∇ +
q2

2
ˆ A 2 − q

2
σ ⋅B

A is a multiplicative operator

chain rule

Use definition of B

in atomic units



Spin in NR quantum mechanics

The Pauli Hamiltonian in two-component form
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Second derivatives w.r.t. position, first derivative w.r.t. time
Linear in scalar, quadratic in vector potential
® Is not Lorentz-invariant

L Ad hoc introduction of spin. No explanation for the 
anomalous g-factor (ratio of 2 between magnetic moment 
and intrinsic angular momentum)

L No interaction between angular momenta due to the 
orbital and spin: spin-orbit coupling is relativistic effect
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Relativistic quantization 1

Take the classical relativistic energy expression
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€ 

E − qφ = m2c 4 + c 2π 2[ ]
1/ 2

Quantization recipe gives

After series expansion of the square root this could provide 
relativistic corrections to the Schrödinger Equation

Disadvantage : Difficult to define the square root operator 
in terms of a series expansion (A and p do not commute). 
Not explored much.

€ 

"E = mc 2 "

  

€ 

i∂ψ
∂t

= qφψ + m2c4 + c2π 2 ψ

Without EM-fields



Relativistic quantization 2

Eliminate the square root before quantization
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€ 

E − qφ( )2 = m2c 4 + c 2π 2

Quantization

Klein-Gordon Equation

J Lorentz invariant
L No spin
L

The KG-equation can be used for spinless particles
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i ∂
∂t
− q ˆ φ 

% 

& 
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( 

) 
* 

2

ψ = m2c 4 + c 2 ˆ π 2( )ψ

€ 

ψ* r( )ψ r( )∫ dr = f (t) Charge is conserved, particle number is not



Relativistic quantization 3

Define a new type of “square root”

30

Quantization

The Dirac equation 

Suitable for description of one electron
- Relativistic kinematics
- Charged spin ½ particle

  

€ 

i∂ψ
∂t

= βmc 2 + cα ⋅ ˆ π + q ˆ φ ( )ψ€ 

E − qφ = βmc 2 + cα ⋅ π

α i,α j[ ]
+

= 2δij ∧ α i,β[ ]+
= 0 ∧ β 2 =1



The Dirac equation

J First derivatives with respect to time and position
J Linear in scalar and vector potentials

J Lorentz invariant

a and b are 4-component matrices
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The Dirac Hamiltonian

€ 

ˆ H = βmc 2 + cα ⋅ ˆ π + qφ

=

mc 2 + qφ 0 cπ z c(π x − iπ y )
0 mc 2 + qφ c(π x + iπ y ) −cπ z

cπ z c(π x − iπ y ) −mc 2 + qφ 0
c(π x + iπ y ) −cπ z 0 −mc 2 + qφ

( 

) 

* 
* 
* 
* 

+ 

, 

- 
- 
- 
- 

Four component wave function

1) Spin doubles the number of components

2) Relativity doubles the number of components again



Charge and current density

• Charge density

• Current density

• Continuity relation
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€ 

ρ r, t( ) = qψ† r, t( )ψ r, t( )

€ 

j r,t( ) = qψ† r,t( ) cα ψ r,t( )

€ 

∂ρ r, t( )
∂t

+∇ ⋅ j r,t( ) = 0

ca is the relativistic velocity operator
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Free particle Dirac equation 

● Take simplest case : f= 0 and A = 0
● Use plane wave trial function

  

€ 

Ψ(r) = eik⋅r

a1
a2
a3
a4

$ 
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) 
) 
) 
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E −mc2( )a1 − ckza3 − ck−a4 = 0

E −mc2( )a2 − ck+a3 + ckza4 = 0

−ckza1 − ck−a2 + E + mc2( )a3 = 0

−ck+a1 + ckza2 + E + mc2( )a4 = 0

€ 

k± = kx ± iky

Non-relativistic functional form with constants ai
that are to be determined

After insertion into time-independent
Dirac equation



Free particle Dirac equation 

● Two doubly degenerate solutions

● Compare to classical energy expression

● Quantization (for particles in a box) and prediction of 
negative energy solutions

  

€ 

E2 −m2c4 − c22k2( ) = 0

E+ = + m2c4 + c22k2

E− = − m2c4 + c22k2

E = m2c4 + c2 p2



Free particle Dirac equation 
● Wave function for E = E+

● Upper components are the “Large components”
● Lower components are the “Small components”

  

€ 

a2 = 0  ; a3 = a1
ckz

E+ + mc2  ; a4 = a1
ck+

E+ + mc2

 k ≡ p << mc

a3 = a1
cpz

mc2 + m 2c4 + c2p2
≈ a1

pz
2mc

a4 ≈ a1
p+

2mc

For particles moving with “nonrelativistic” velocities



Free particle Dirac equation 

● Wave function for E = E-

● Role of large and small components is reversed
● Application of variational principle is more difficult

M Variational Collapse
• Minmax optimization instead of straight minimization 

  

€ 

a4 = 0

a1 = a3
ckz

E− −mc
2  ≈ a3

pz
−2mc

a2 = a3
ck+

E− −mc
2 ≈ a3

p+

−2mc
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Dirac sea of electrons
● Negative energy solutions are all 

occupied

● Pauli principle applies

J Holes in this sea of electrons are 
seen as particles with positive 
charge: positrons (1933)

L Infinite background charge

¤ QED (Quantum Electrodynamics) 
to properly account for 
contribution of negative energy 
states

¤ No-pair approximation

mc2

-mc2

2 e– 3 e– + 1 e+2mc2



39

The hydrogenic atom

● Starting point for the LCAO approach
● Can be solved by separating the radial and angular 

variables (see Dyall & Faegri or Reiher & Wolf)

● The exact solutions help in devising basis set 
approaches and in understanding the chemical 
bonding in the relativistic regime
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The hydrogenic atom: orbitals

● Write orbitals as product of radial and angular (2-spinor 
functions)

● Solutions to the radial equation
€ 

ψ L r( )
ψ S r( )
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( =
1
r

Pnκ r( )ξκ ,m ϑ ,ϕ( )
iQnκ r( )ξ−κ ,m ϑ ,ϕ( )
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$ 
% 

& 

' 
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Pnκ r( ) = Nnκ
P e−λrrγ F1 r( ) + F2 r( )( )

€ 

Qnκ r( ) = Nnκ
Q e−λrrγ F1 r( ) − F2 r( )( )

€ 

Rnl r( ) = Nnl
Re− −2E( )rrl+1F r( )

Large component 

Small component 

Nonrelativistic € 

λ = − −2E 1+
E

2mc 2
$ 

% 
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' 

( 
) 

€ 

γ = κ 2 −
Z 2

c 2
< κ

l 0 1 1 2 2 3 3
j 1/2 1/2 3/2 3/2 5/2 5/2 7/2
k -1 1 -2 2 -3 3 -4

s1/2 p1/2 p3/2 d3/2 d5/2 f5/2 f7/2



More than one electron

● General form of a time-independent Hamiltonian

● Wave function

● Difference between relativistic and non-relativistic calculations is 
in the calculation of integrals over h and g

● Second-quantized form of equations is identical to non-
relativistic theory when using the no-pair approximation

Ĥ = ĥi
i=1

N

∑ +
1
2

ĝij
j≠i

N

∑
i=1

N

∑

N x 4 componentsΨ 1,…,N( )
Ψ …, i,…, j,…( ) = −Ψ …, j,…, i,…( ) anti-symmetry
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Electron-electron interactions 

● In molecular calculations:

● Coulomb, Gaunt and retardation terms
● Zeroth order is the instantaneous electrostatic interactions
● First correction describes the magnetic interactions
● Second correction describes retardation of the interaction

g12
Coulomb−Breit =

1112
r12

=
1
r12

−
1
c2r12

cα1 ⋅cα2

−
1
2c2

cα1 ⋅∇1( ) cα2 ⋅∇2( )r12

Coulomb: diagonal operator

Gaunt: off-diagonal operator

Retardation



Outline
● Why do we care about relativity in chemistry ?

● What are relativistic effects ?
● Relativistic effects in atoms
● Relativistic effects in molecules
● Dirac Hamiltonian

● How can we include relativity in calculations ?
● Perturbation theory of relativistic effects
● 2-component methods
● 4-component methods
● Effective Core Potentials

● Some recommendations / best practices
● Comparison light / heavy element calculations
● Importance of spin-orbit coupling
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Expansion of the energy expression

● The exact Hydrogenic energy expression

● Can be expanded to
€ 

E = mc 2 / 1+
Z /c
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+
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Dirac-Coulomb equation

Hamiltonian:

● ℎD = 𝛽D
E𝑐4 + 𝛼⃗D A 𝑝⃗D + 𝑉D

● 𝑔DI =
&J&K
LJK

● Approximation methods focus on ℎD

● Decouple large and small components 

● Two-component equation: Schrödinger equation plus correction 
terms (scalar=diagonal and spin-orbit=off-diagonal)

Coulomb operator: does not couple different components

Ĥ = ĥi
i=1

N

∑ +
1
2

ĝij
j≠i

N

∑
i=1

N

∑

Couples spins and large and small components
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The extra dimension

Method

Hartree-Fock Full CI

Basisset

Minimal

Complete

Hamiltonian

Dirac-Coulomb-Breit

NR

Development of relativistic 
molecular electronic structure theory
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Approximate Hamiltonians

● Find 2-component operators that describe these scalar relativistic 
and spin-orbit coupling energy corrections in molecular systems

● Start by decoupling the large and small component equations

● Rewrite the lower equation as

€ 

Vψ L + cσ ⋅ pψ S = Eψ L

cσ ⋅ pψ L + V − 2mc 2( )ψ S = Eψ S

ψ S r( ) = 1+ E −V
2mc2

"

#
$

%

&
'
−1
σ ⋅p
2mc

ψ L r( )

= K E,r( )σ ⋅p
2mc

ψ L r( ) K E,r( ) = 1+ E −V
2mc2

"

#
$

%

&
'
−1
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Approximate Hamiltonians

● Substitute in the upper equation

● Unnormalized Elimination of the Small Component (UESC)
● The full spinor is normalized to 1, so the large component only must 

have a norm < 1
● Large component spinors are not orthogonal to each other (only the full 

spinors are orthogonal)

● The UESC equation is exact: is used as starting point for 
approximations

€ 

1
2m

σ ⋅ p( )K E,r( ) σ ⋅ p( ) +V
$ 
% 
& 

' 
( 
) 
ψ L r( ) = Eψ L r( )
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Pauli Hamiltonian

● Crudest approximation :

● Take K=1 but include also a magnetic field
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1
2m

σ ⋅ p( ) σ ⋅ p( ) +V
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ψ L r( ) = Eψ L r( )

p2

2m
+V
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ψ L r( ) = Eψ L r( )
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K E,r( ) ≈1
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1
2m

σ ⋅ π( ) σ ⋅ π( ) +V
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ψ L r( ) = Eψ L r( )

Schrödinger equation

Pauli equation

K E,r( ) = 1+ E −V
2mc2
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#
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Breit-Pauli Hamiltonian

● Find an operator to normalize the wave function :

● Multiply the UESC equation by N-1

€ 

ψ = Nψ L

N = 1+
1

4m2c 2
σ ⋅ p( )K 2 σ ⋅ p( )

€ 

N −1 1
2m

σ ⋅ p( )K E,r( ) σ ⋅ p( ) +V
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& 
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* 
N −1Nψ L r( ) = N −1Eψ L r( )

€ 

N−1 1
2m

σ ⋅ p( )K E,r( ) σ ⋅ p( ) +V
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& 
' 
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) 
* 
N−1ψ r( ) = EN−2ψ r( )

€ 

ψS = K σ ⋅p
2mc

ψ L
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Breit-Pauli Hamiltonian

● Use series expansions and keep terms up to order c-2

  

€ 

ˆ N −1 = 1+
1

4m2c 2 σ ⋅p( )K 2 σ ⋅p( )
% 

& ' 
( 

) * 

−1/ 2

=1− 1
8m2c 2 σ ⋅p( )K 2 σ ⋅p( ) +…

=1− p2

8m2c 2 + O(c−4 )

€ 

ˆ N −2 = 1+
1

4m2c 2 σ ⋅p( )K 2 σ ⋅p( )
% 

& ' 
( 

) * 

−1

=1− p2

4m2c 2 + O(c−4 )

K 2 = 1+ E −V
2mc2

"

#
$

%

&
'
−2

=1+O c−2( )
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Breit-Pauli Hamiltonian

● Expansion of K

● Substitute everything and keep only terms to order c-2

€ 

K E,r( ) = 1+
E −V( )
2mc 2

# 
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−1

=1−
E −V( )
2mc 2

+O(c−4 )
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σ ⋅p( )K σ ⋅p( )
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ˆ N −1ψ = EN−2ψ
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ˆ V + ˆ T +
−Ep2 + σ ⋅p( )V σ ⋅p( )−Tp2 −

1
2

p2,V[ ]
+

4m2c2
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ψ = E − Ep2
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1 ψ
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● The energy dependent term on the lhs is cancelled by the rhs

● Further simplify the equation using

● Result : The Breit-Pauli equation

€ 

σ ⋅p( )V σ ⋅p( ) = pV( ) ⋅p+Vp2 + iσ ⋅ pV( ) ×p

−
1
2
p2,V[ ]

+
= −

1
2
p2V( ) − pV( ) ⋅p−Vp2

Breit-Pauli Hamiltonian

€ 

ˆ H BP = ˆ T + ˆ V +
σ ⋅p( )V σ ⋅p( ) −Tp2 −

1
2
p2,V[ ]

+

4m2c 2

Darwin    Mass-Velocity      Spin-Orbit

€ 

ˆ H BP = ˆ T + ˆ V − p2V
8m2c 2 −

p4

8m3c 2 +
iσ ⋅ pV( ) ×p

4m2c 2
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Breit-Pauli Hamiltonian applied to hydrogenic atom

€ 

< ˆ H Darwin >=
Z 4

2n3c 2 (l = 0)

€ 

< ˆ H Darwin >= 0 (l > 0)

€ 

< ˆ H MV >=
Z 4

2n4c 2
3
4
−

n

l +
1
2

# 

$ 
% 

& 
% 

' 

( 
% 

) 
% 

€ 

< ˆ H SO >=
Z 4

2n3c 2
l

l 2l +1( ) l +1( )
j = l +1/2( )

€ 

< ˆ H SO >=
Z 4

2n3c 2
−l −1

l 2l +1( ) l +1( )
j = l −1/2( )

Positive: reduces nuclear attraction

Always negative: decreases kinetic energy

Operator is delta-function for V = -Z/r

Splitting larger for small n and/or l and large Z

Darwin    Mass-Velocity      Spin-Orbit

€ 

ˆ H BP = ˆ T + ˆ V − p2V
8m2c 2 −

p4

8m3c 2 +
iσ ⋅ pV( ) ×p

4m2c 2
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Good relativistic Hamiltonians

The wish list for a relativistic Hamiltonian:

1. It should describe the scalar relativistic effects

2. It should describe the spin-orbit coupling effect

3. There should be a lowest eigenvalue (variational stability)

4. Interpretation: comparison with Schrödinger picture 

5. Implementation: easy integrals, efficient coding

6. Errors should be small and systematically improvable
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Regular Approximation
● What is wrong with the BP approach ?  The expansion parameter !

● E should be small relative to 2mc2

● Orbital energies vary over a range of -0.1 to 5,000 au
● Twice the rest mass energy is 37,558 au
● This difference should be large enough

● V should be small relative to 2mc2

● The potential is dominated by the nuclear attraction close to the nuclei

● Take r = 10-4 au and Z=6 (carbon) : V = 60,000 au
● Is this inside the nucleus ? No : the nuclear radius is 4.7 10-5 au for C.
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K E,r( ) = 1+
E −V( )
2mc 2

# 
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% 

& 

' 
( 

−1

=1−
E −V( )
2mc 2

+O(c−4 )

€ 

V ≈ −
Z
r
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0th order regular approximation: ZORA
● Can we use a better expansion parameter ? Yes !

● E should be small relative to 2mc2 - V
● V is negative which improves the expansion close to the nuclei

● Zeroth order in this expansion

J Zeroth order equation does describe SO-coupling and scalar 
relativistic corrections

L Gauge dependence of the energy
● Affects ionization energies, structures
● Can be avoided by keeping potential in the denominator fixed
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K E,r( ) = 1+
E −V( )
2mc 2

# 
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−1

= 1− V
2mc 2

) 

* 
+ 

, 

- 
. 
−1

1+
E

2mc 2 −V
) 

* 
+ 

, 

- 
. 
−1

€ 

1
2m

σ ⋅ p( ) 1− V
2mc 2

% 

& 
' 

( 

) 
* 
−1

σ ⋅ p( ) +V
+ 
, 
- 

. 
/ 
0 
ψ ZORA r( ) = Eψ ZORA r( )

€ 

V →V + C E → E + C − EC
2mc 2
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Approximations to K(E,r) for the 1s orbital of Fm99+
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Approximations to K(E,r) for the 7s orbital of Fm99+
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Four-component methods

● Idea
● Expand Dirac equation in basis set
● Use kinetic balance condition to prevent “variational 

collapse”

● Advantages-Disadvantages

J No approximations made
J Matrix elements over the operators are easily evaluated

L Many more two-electron integrals
L The Fock matrix is twice as large

J No picture change
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Basis set expansion

● Use different expansion sets for the large and small 
component parts of the wave function

● Kinetic balance condition

● Recovers the non-relativistic limit

€ 

ψi r( ) =
χµ
L r( )
0
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% 
& 

' 

( 
) 

µ=1

N L

∑ cµi
L +

0
χν
S r( )

$ 

% 
& 

' 

( 
) cνi

S

ν =1

N S

∑

€ 

χ S r( ) =
σ ⋅ p
2mc

χ L r( )

€ 

χκ
L* r( )T∫ χλ

L r( )dr =
1
2

χκ
L* r( ) σ ⋅p( )∫ χµ

S r( )dr
µ=1

N S

∑ × χµ
S* r( ) σ ⋅p( )∫ χλ

L r( )dr

€ 

TLL =
1
2
σ ⋅p( )LS σ ⋅p( )SL Resolution of identity

or {χ S r( )} =
∂χ L r( )
∂x

,
∂χ L r( )
∂y

,
∂χ L r( )
∂z

"
#
$

%$

&
'
$

($
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Choice of expansion functions

● Large component
● Atoms: Slaters or Gaussians
● Molecules: Gaussians

● Small component
● Same type as large component
● Should fulfill kinetic balance relation

€ 

χP
S{ } = σ ⋅p( )χP

L{ }

€ 

χP
S{ } =

∂χP
L

∂x
,
∂χP

L

∂y
,
∂χP

L

∂z

$ 
% 
& 

' 
( 
) 

Restricted KB Unrestricted KB



Kinetic Balance realizations
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s  p p  d d  f f

p  s d  p f  d g

Large component  s  p  d  f

Small component  s  p  d  f  g

Scalar functions 2-spinor functions

  

€ 

 
σ ⋅
 p ( )
 
σ ⋅
 p ( ) = p2 ⇒  

σ ⋅
 p ( )χ L{ }⊂ χ S{ }

Typically 4-5 times… Exactly 4 times …

…as many basisfunctions as in NR calculation

Conventional integral code Specialized integral code
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Self Consistent Field: Hartree-Fock

1. Construct Fock operator

2. Find eigensolutions 

3. Check convergence 

4. Compute energy

€ 

F = " β c 2 + cα ⋅p+V + J j −K j
j

occupied
orbitals

∑

€ 

Fψ r1( ) = εψ r1( )

€ 

ψ new{ } = ψ old{ }  ?

€ 

E HF = EKinetic + EPotential + EElec.Rep.

€ 

E HF = < i |
i

occupied
orbitals

∑  # β c 2 + cα ⋅p | i > + < i |
i

occupied
orbitals

∑  V | i > +
1
2

< i |
i, j

occupied
orbitals

∑  J j −K j | i >
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€ 

 F =

V + J j −K j
j
∑ c σ.p( ) − K j

j
∑

c σ.p( ) − K j
j
∑ V − 2c 2 + J j −K j

j
∑
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' 
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) 

* 
* 
* 

Fock operator

€ 

Jj r1( ) =
ψ j

L† r2( )ψ j
L r2( ) +ψ j

S † r2( )ψ j
S r2( )

r12
dr2 =∫

ρj r2( )
r12

dr2∫

€ 

Kjψ i
L r1( ) = Kj

LLψ i
L r1( ) + Kj

SLψ i
L r1( )

=
ψ j

L† r2( )ψ i
L r2( )

r12
dr2ψ j

L r1( ) +∫
ψ j

L† r2( )ψ i
L r2( )

r12
dr2ψ j

S r1( )∫

€ 

Kjψ i
S r1( ) = Kj

LSψ i
S r1( ) + Kj

SSψ i
S r1( )

=
ψ j

S † r2( )ψ i
S r2( )

r12
dr2ψ j

L r1( ) +∫
ψ j

S † r2( )ψ i
S r2( )

r12
dr2ψ j

S r1( )∫
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● The large component wave function resembles the 
non-relativistic wave function

● Exact relation between large and small component 
wave functions

The small component density

● Small component wave function is related to the first 
derivative of large component wave function

● The small component density is localized closed to 
the nuclei: can be easily expressed in fit functions

€ 

ψ S =
−i
2c

1+
E −V
2c 2

$ 

% 
& 

' 

( 
) 
−1

σ ⋅ ∇ψ L( )
K(E,r)



Electron Density of Uranyl

Large component Small component
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Modified and spinfree Dirac equation

● Define an auxilliary function such that

● Transform the Dirac equation accordingly

● Separate scalar and spin-dependent part and 
neglect the spin-dependent terms if desired

€ 

ψ S =
1
2mc

σ ⋅p( )φ L

€ 

V T

T
σ ⋅p( )V σ ⋅p( )
4mc 2

−T
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φ L
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) 
* = E

1 0
0 T

2mc 2

% 

& 
' 
' 

( 

) 
* 
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ψ L

φ L
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( 

) 
* 

Relation holds by definition
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Direct perturbation theory

● Consider the modified Dirac equation

● Non-relativistic limit is related to the Lévy-Leblond equation

● Define perturbation theory with as first order perturbations
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V T
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4mc 2

−T

% 

& 

' 
' 

( 

) 

* 
* 
ψ L

φ L

% 

& 
' 

( 

) 
* = E

1 0
0 T

2mc 2

% 

& 
' 
' 

( 

) 
* 
* 
ψ L

φ L

% 

& 
' 

( 

) 
* 

€ 

V T
T −T
# 

$ 
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Foldy-Wouthuysen transformations

● Define energy-independent unitary transformation to 
decouple the large and small component equations

● Exact operator expressions are only known for the free 
particle problem 

€ 

UH DU−1Uψi
D = EUψ i

D

H FW = U ˆ H DU−1 =
H + 0
0 H−

$ 
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ψi
FW 4(+) = Uψ i

D(+) =
ψ i

FW

0

$ 

% 
& 

' 

( 
) 

ˆ U =
1+ X †X( )

−
1
2 1+ X †X( )

−
1
2 X †

− 1+ XX †( )
−

1
2 X 1+ XX †( )

−
1
2

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 

Picture change

€ 

X =
1
2mc

K σ.p( )
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Iterative decoupling schemes

● Write Foldy-Wouthuysen decoupling transformation (U) as product of 
normalization (V) and decoupling (W)

● The decoupling requirement provides equations for X

€ 

ˆ U =
1+ ˆ X † ˆ X ( )

−
1
2 1+ ˆ X † ˆ X ( )

−
1
2 ˆ X †

− 1+ ˆ X ̂  X †( )
−

1
2 ˆ X 1+ ˆ X ̂  X †( )

−
1
2

# 

$ 
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% 
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( 
( 
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=
1+ ˆ X † ˆ X ( )

−
1
2 0

0 1+ ˆ X ̂  X †( )
−

1
2

# 

$ 

% 
% 
% 
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' 

( 
( 
( 

1 ˆ X †

− ˆ X 1

# 

$ 
% 

& 

' 
( 

= ˆ V ˆ W 

€ 

ˆ W ˆ H D ˆ W †( )
SL

= 0

ˆ h SL + ˆ h SS ˆ X − ˆ X ̂  h LL − ˆ X ̂  h LS ˆ X = 0 Quadratic equation for X
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Iterative decoupling schemes
● All Foldy-Wouthuysen transformed solutions should only have two non-zero 

components

● Equation for X can be solved if all analytical solutions of the Dirac equation can 
be written in a simple form. This  was possible in the free-particle case .

● For atoms and molecules the potential operator is too complicated to work with 
the exact solutions, but it is possible to derive iterative decoupling schemes 
(Barysz, Reiher, Hirao) that provide nearly exact (but very complicated) operator 
expressions based on solutions of the hydrogenic atom.

● Popular realization: Douglas-Kroll-Hess (second order expansion for 1-electron 
part Hamiltonian, zeroth order for 2-electron part)
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− ˆ X 1

# 

$ 
% 

& 

' 
( 
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L ψ−
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ψ+
S ψ−

S
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φ+ 0
0 φ−

# 
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& 

' 
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ψ+
S − ˆ X ψ+

L = 0

ψ−
L + ˆ X †ψ−

S = 0
Linear equations for X
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eXact 2-Component (X2C) theory

1. Define a 4-component basis and compute matrix 
elements over the one-electron operators

2. Find exact solution to the Dirac equation in this 
matrix representation

3. Use the eigenvectors to construct an exact 
decoupling operator in matrix form

4. Transform all other one-electron operators to this 
decoupled representation

5. Add two-electron Coulomb operator in unmodified 
form (accept picture change error for this operator)

Idea: Decouple a matrix representation of the Dirac equation
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Exact two-component theory
● A matrix representation of the Dirac matrix is formed and diagonalized: 

eigenvectors gives access to the exact decoupling matrix X in this basis

● Write the equations for X in matrix form

● Manipulate to get an equation of the form  AX = B that can be solved by 
Cholesky decomposition (A is Hermitian and positive definite)

● See Ilias & Saue (JCP 126 (2006) 064102) for details
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y+
S −Xy+

L = 0
y−
L + X†y−

S = 0
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y−
Sy−

S†[ ]X = y−
Sy−

L†[ ]
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Matrix-based X2C approaches

K Fully equivalent to the matrix Dirac equation in the 
no-pair approximation

J 2-component picture is easily compared to the non-
relativistic Schrödinger picture

J Errors made by neglecting corrections to the 2-
electron operators are small

K The necessary diagonalization and other matrix 
manipulations are done before the SCF procedure

K Decoupling from molecular Hartree-Fock solutions: 
molecular mean-field (X2C-MMF) approach 

K 4-component property matrices can be readily 
transformed to the 2-c picture
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Discussed on Day 2

Two-component methods 

Breit-Pauli perturbation theory

Regular approach (ZORA)

Douglas-Kroll-Hess method (DKH)

4-component methods (DC/DCG/DCB)

Exact 2-Component theory (X2C)

€ 

1
2m

σ ⋅ p( )K E,r( ) σ ⋅ p( ) +V
$ 
% 
& 

' 
( 
) 
ψ L r( ) = Eψ L r( )

Method

Hartree-Fock Full CI

Basisset

Minimal

Complete

Hamiltonian

Dirac-Coulomb-Breit

NR
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Chemistry of heavy elements

● A different world….
Au2 C20N20H12

electrons 178 160

total energy -36,870 Hartree -987 Hartree

basis functions 48s38p24d18f2g
426 functions

240s108p24d
684 functions

chemical bonds 1 40

Bond energy 0.1 Hartree
2.3 eV

10 Hartree
272 eV
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Spectroscopy of f-elements

● Low-lying electronic states

● Lanthanides: 4f is shielded from environment
● Actinides: 5f can participate in chemical bonding

Eu3+ C6H6

electrons 6 f-electrons 6 π-electrons

orbitals 7 6

energies < 0.125 Hartree 3 (with SOC: 8) 1

states < 0.125 Hartree 159 (with SOC:58) 1
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Valence-Only approaches

● All-electron calculations are not always feasible or necessary

● Hierarchy of approximations for “core” electrons
1. Correlate core electrons at a lower level of theory (e.g. MP2)
2. Do not correlate core electrons at all (HF-only)
3. Use atomic orbitals for core electrons (Frozen Core)
4. Model frozen core by a Model Potential (AIMP)
5. Model frozen core by a Effective Core Potential (ECP)
6. Model frozen core by a Local Pseudopotential (LPP)

● Error correction and additional features
1. Estimate higher order correlation effects in another basis set
2.
3. Use a core polarization potential
4.
5. Include valence relativistic effects in RECP
6. Suitable for orbital-free DFT calculations
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● Consider the Fock operator

● Identify localized (atomic) core orbitals and partition

● Coulomb potential goes to zero at large distance, contains correction 
due to imperfect screening of nuclei at short distance

● Exchange potential depends on the overlap with the frozen atomic 
orbitals: short range

● Approximation made: atomic core orbitals are not allowed to change 
upon molecule formation, other orbitals stay orthogonal to these AOs
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F = hkinetic − ZA

rAA

Nuclei

∑ + Jc
A −Kc

A
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core

∑
A

Nuclei

∑ + Jv −Kv
v

valence

∑

F = hkinetic − ZA
*
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∑ + Jv −Kv
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∑ + −
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core

∑
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A

Nuclei

∑ − Kc
A

c

core

∑
A

Nuclei

∑

Frozen Core approximation

F = hkinetic − ZA

rAA

Nuclei

∑ + J j −K j( )
j

occupied
orbitals

∑

€ 

ZA
* = ZA − ZCore

VCoulomb VExchange
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Core polarization and overlap

● Polarizability of the core can modeled by a classical core 
polarization correction (see also book II, formula 41.9)

● Need a cut-off factor in the field since the multipole expansion is 
only valid outside the core

● Can be extended to model core-correlation and core-valence 
correlation as well

● The overlap between cores is assumed to be zero : the Pauli 
repulsion and Coulomb attraction between neighboring cores 
should be small

● For “large core” calculations an additional correction may be 
added

ECP
A = −

1
2

EA
TαAEA

A
∑ Field from the electrons and the other nuclei

at the position of core A

Polarizability of core A
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Ab Initio Model Potentials

Replace the exact, non-local, frozen core potential by a model 
potential plus a projection operator

Density fit of spherical density, can be done to
arbitrary precision
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VFrozen core
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Resolution of identity with non-orthogonal functions
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∑

Level shift that shifts the core solutions to high energies
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Ab Initio Model Potentials

K No freely adjustable parameters
K Core solutions present but shifted to the virtual space
J Relativistic effects can be included in the reference 

Fock operator
● Cowan-Griffin Hamiltonian (scalar)
● Wood-Boring Hamiltonian (spin-orbit)
● Douglas-Kroll-Hess Hamiltonian
● X2C Hamiltonian

J Can also be used to generate “no-valence” MPs
● Improves description of ions in crystals
● May require iterative generation scheme
● Good results for e.g. calculations of lanthanide spectra by 

Seijo and coworkers
K Keeps nodal structure of the valence orbitals
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Nodal structure

Radon ZORA-LDA TZP
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Valence density

Radon ZORA-LDA TZP
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Valence  orbitals

Radon ZORA-LDA TZP
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Pseudo  orbitals

Radon ZORA-LDA TZP
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Pseudopotentials in DFT

Easier to consider pseudo-orbitals in Density Functional Theory

PP depends on a specific e and f
Representation in terms of grid in r

Reference atomic calculation

€ 

ˆ T − ZA

rA

+ JA ρA[ ] + ˆ V A
xc ρA[ ]

$ 

% 
& 

' 

( 
) ψ i

A r( ) = εi
Aψ i

A r( )

€ 

ˆ T + ˆ V A
eff( )ψ i

A r( ) = εi
Aψ i

A r( ) Orbitals are solution of a local effective potential

€ 

ˆ V A
eff r( ) = εi

A −
∇2ψ i

A r( )
2ψ i

A r( )
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Nonlocal normconserving pseudopotentials

Define a local and a nonlocal potential

To use more than one pseudo orbital one can introduce a generalized 
norm-conserving condition Q that should be fulfilled 
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L r( ) + ˆ V A

NL( ) φi
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VL takes care of the  long range (screened) nuclear 
attraction, is identical to Veff for r > R

VNL serves to model short range repulsive interactions, 
is zero for r > R
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Wavefunction that is only non-zero for r < R (because
f matches y at r > R)  
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PPs in plane-wave expansions
• Required in condensed matter DFT calculations that employ a plane-

wave basis. Need to smoothen (soften) wave function and potentials as 
much as possible.

• Abandon normalization 
condition and work with 
generalized eigenvalue 
problem.

• The more complicated 
formalism pays off since the 
number of plane-wave 
basis functions can be 
drastically reduced

• Common to also 
“pseudoize” the lowest 
solutions of a given 
symmetry (e.g. 2p)
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Effective Core Potentials

Effective Core Potentials allow reduction of the basis set used to 
describe the valence orbitals by creating smoother orbitals

These nonlocal pseudopotentials are determined via a fitting procedure 
that optimizes the potential for each l-value. Takes care of Coulomb 
and Exchange and core-valence orthogonality. 
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Shape consistent ECPs

● “American school” : Christiansen, Ermler, Pitzer
● “French school” : Barthelat, Durand, Heully, Teichteil
● Make nodeless pseudo-orbitals that resemble the 

true valence orbitals in the bonding region

● Fit is sometimes done to the large component of Dirac wave 
function (picture change error) 

● Creating a normalized shape consistent orbital necessarily 
mixes in virtual orbitals

● Intermolecular overlap integrals are well reproduced
● Gives rather accurate bond lengths and structures

€ 

ψv r( )→ ˜ ψ v r( ) =
ψv r( ) r ≥ R( )
fv r( ) r < R( )

% 
& 
' 

Original orbital in the outer region

Smooth polynomial expansion in the inner region
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ECPs and electron correlation

● Integrals are calculated over pseudospinors
● Consider the MP2 valence energy expression

● Orbital energy spectrum is compressed and in particular the intra-atomic 2-
electron integrals will be different from the reference all-electron calculation

● Absolute correlation energy may be overestimated relative to correlation 
calculations done with the unmodified orbitals

● Example : for Pt the radial maximum of the 5d is very close to a node of the 
6s. Pseudoizing the 6s will remove this node and overestimate the 
correlation energy. Remedy (small core PP) : takes also the 5s in the 
valence

€ 

EMP 2 =
ij ab

2

εi + εi −εa −εba,b

virtual

∑
i, j

occupied

∑
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ij ab pseudo
− ij ab original

≠ 0
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εi
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pseudo −εa
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Energy consistent ECPs

● “German school” : Stoll, Preuss, Dolg
● Initially semi-empirical, later ab initio approach that tries to 

reproduce the low-energy atomic spectrum (using correlated 
calculations)

● Provides good accuracy for many elements and bonding 
situations
● Difference in correlation energy due to the nodeless valence 

orbitals is automatically included in the fit
● Small cores may still be necessary to obtain stable results
● Cheap core description allows for good valence basis sets
● Available in many program packages (a.k.a. “SDD”)
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ECPs and molecular properties

● Valence electric and/or magnetic properties (multipoles, 
polarizabilities, circular dichroisms, etc.)
● Unmodified operators can be used

● NMR shielding and spin-spin couplings
● ECPs are valid for the neighboring atoms, not for the ones 

for which the shielding or couplings are to calculated

● Reconstruction of original wave function
● Allows calculation of core properties or excitations (mostly 

applied in solid-state approaches, but some molecular 
applications have also been reported) 

● Spin-Orbit coupling between states
● Apply SOC-operator that is derived for the ECP that is 

employed (usually AREP and SOREP)
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1. First order quasi-degenerate perturbation theory (inclusion after CI step)
J Can also be used with unbound operators (Pauli form)
J Is computationally efficient (one step procedure)
J Offers convenient (conventional) interpretation scheme
L Important couplings to excited states may be missed

2. Limited variational theory (inclusion in CI step)
K Unbound operators (Pauli form) are acceptable
K Does only increase the CI effort, no influence on HF and MO-transformation 
K Interpretation is non-conventional
L Accuracy is limited when orbital relaxation effects are important

3. Variational theory (inclusion in SCF step)
L Can only be used with bound operators 
L Is computationally demanding (symmetry change already in SCF)
K Interpretation is non-conventional
J Should be the most accurate theory

SO-operator in CI (CC) approaches



2-Step treatment of SO-coupling

● Use the proper spin-orbit integrals !
● 2-electron integrals are usually not explictly considered: atomic 

mean field integrals (AMFI)
● ECPs: come with SO-operators suitable for evaluation over 

pseudo-orbitals

● Basis for perturbative treatment
● CI/CASSCF: select limited set of wave functions and form 

effective Hamiltonian. Diagonalization of this small matrix 
provides the final wave function

● CASPT2: shift diagonal matrix elements of effective Hamiltonian 
matrix by adding PT2 correction prior to the diagonalization
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Outline
● Why do we care about relativity in chemistry ?

● What are relativistic effects ?
● Relativistic effects in atoms
● Relativistic effects in molecules

● How can we include relativity in calculations ?
● Perturbation theory of relativistic effects
● 2-component methods
● 4-component methods
● Effective Core Potentials

● Some recommendations / best practices
● Comparison light / heavy element calculations
● Importance of spin-orbit coupling
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Some recommendations

● “Best” method depends on system and property that is calculated !

● Closed shells and simple open shells 
● Use a size-extensive and economical method
● SOC-inclusive method may be required

● Complicated open shells, bond breaking
● CASSCF, DMRG followed by PT2, Multi-Reference CI or  MR-CC
● SOC-inclusive methods are usually required
● Mean-field description of SO (AMFI) is usually sufficient

● Use “best practice” and experience from calculations on light 
elements to decide on the electronic structure method

● Two examples in which spin-orbit coupling is important



Fine structure splitting in radicals

Fine structure splittings XO molecules 
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NMR: 1H shielding trends
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NMR spin-spin couplings
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Why are SOC effects so important for NMR

● Shielding and sin-spin couplings can be written as a second 
derivative of the energy relative to the external/internal magnetic 
fields

● Programs that can handle third derivatives (a.k.a quadratic response) 
can handle such higher order contributions.
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Why are SOC effects so important for NMR

● Shielding and sin-spin couplings can be written as a second 
derivative of the energy relative to the internal/external magnetic 
fields

● Programs that can handle third derivatives (a.k.a quadratic response) 
can handle such higher order contributions.
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Indirect nuclear spin-spin coupling
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∑
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∑
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Further reading

Textbooks on relativistic quantum chemistry / mechanics
● M. Reiher and A. Wolf, Relativistic Quantum Chemistry, (Wiley, 2009)    
● K. G. Dyall and K. Faegri Jr, Relativistic Quantum Chemistry, (Oxford 

University Press, 2007)
● R. E. Moss, Advanced molecular quantum mechanics. (Chapman & Hall, 

London, 1973).
● P. Strange, Relativistic Quantum Mechanics. (Cambridge University Press, 

Cambridge, 1998).

Reviews on methods
● Primer: T. Saue, ChemPhysChem. 12 (2011) 3077–3094. 
● Correlation methods: T. Fleig, Chem Phys. 395 (2012) 2–15. 
● Including QED: W. Liu, Natl Sci Rev. 3 (2016) 204–221.
● ECPs: M. Dolg, X. Cao, Chem Rev. 112 (2012) 403–480. 

Relativistic effects in chemistry
● P. Pyykkö, Chem Rev. 112 (2012) 371–384. 
● P. Pyykkö, Annu Rev Phys Chem. 63 (2012) 45–64. 


