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Time-Independent Molecular Properties
» When a molecular system is perturbed, its total energy changes
g(u) = 5(0) + S(l)ﬂ 4 %5(2)#2 4

» The expansion coefficients are characteristic of the molecule and its quantum state
> we refer to these coefficients as molecular properties

» When the perturbation is static, the properties may be calculated by differentiation

e _ 4
d,LL pn=0
e _ €
du?|,—o

P such properties are said to be time independent
» We do not here consider time-dependent molecular properties

> if periodic, these can be calculated in similar way using the quasi-energy
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Introduction

Examples of Derivatives

P> Responses to geometrical perturbations

> forces and force constants
> spectroscopic constants

» Responses to external electromagnetic fields

» permanent and induced moments
> polarizabilities and magnetizabilities
> optical activity

P> Responses to external magnetic fields and nuclear magnetic moments

» NMR shielding and indirect spin—spin coupling constants
» EPR hyperfine coupling constants and g values

» Responses to nuclear quadrupole moments
> nuclear field gradients, quadrupole coupling constants
» Responses to molecular rotation

P spin—rotation constants and molecular g values
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Introduction

Numerical vs. analytical differentiation

» Numerical differentiation (finite differences and polynomial fitting)

> often simple to implement (at least for real singlet perturbations)
» difficulties related to numerical accuracy and computational efficiency

> Analytical differentiation (derivatives calculated from analytical expressions)

> considerable programming effort required
> greater speed, precision, and convenience

» Implementations of analytical techniques

> first-order properties (dipole moments and gradients)
» second-order properties (polarizabilities and Hessians, NMR parameters)
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Energy Functions
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Energy Functions
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Energy Functions Energy and energy functions

Electronic Energy Function

» The electronic energy function contains the Hamiltonian and the wave function:
E(x, A) = (A[H()[A)
> It depends on two distinct sets of parameters:

x: external (perturbation) parameters (geometry, external field)
A: electronic (wave-function) parameters (MOs, cluster amplitudes)

» The Hamiltonian (here in second quantization)

thq x)Epq + 2ngqrs )epars + hnuc(x)

pars

depends explicitly on the external parameters:
hpqa(x) = (¢p(x) [h(x)| dq(x))

» The wave function |\) depends implicitly on the external parameters \(x).
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Energy Functions Energy and energy functions

Electronic Energy and its Derivatives

| 2

The electronic energy £(x) is obtained by optimizing the energy function E(x, \) with
respect to A for each value of x:

E(x) = E(x,\™)
» note: the optimization is not necessarily a variational minimization

Our task is to calculate derivatives of £(x) with respect to x:

dé(x)  OE(x,\*) " OE(x, \) oA
dx 0 N laoae Ox [y
X X A=2* OXx=x
explicit dependence implicit dependence

> the implicit as well as explicit dependence must be accounted for
The quantity O\/9x is the wave-function response
> it tells us how the electronic structure changes when the system is perturbed

To proceed, we need to make a distinction between

» variationally determined wave functions
» nonvariationally determined wave functions
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Variational and nonvariational wave functions
Variational and Nonvariational Wave Functions

Variational wave functions

P the optimized energy fulfils the stationary (variational) condition:
OE(x, \)
ox

P the Hartree—Fock energy in an unconstrained exponential parameterization

0 (forall x)

IHF) = exp(—r)[0), T = —r

> the energy of the full CI (FCI) wave function [FCl) = 37 ¢;|i) as an expectation value:

OErci(x,c) 0
dc
V.
Nonvariational wave functions
P the optimized energy does not fulfil the stationary (variational) condition:
OE(x, A
CEVN
OX
» the Hartree—Fock and Kohn—-Sham energies in a constrained LCAO parameterization (orthonormality)
[HF) = o det|o1, d2, . dwl,  dp(rix) =D Cupxpu(nix), {(dpléq) =4
VN » P2, > pr XX, plPq Pq
P the truncated Cl energy with respect to orbital rotations:
OEc|(x, ¢, Kk OEci(x, ¢, Kk
C|(77):0, a 7)#0
dc Ok
y
A B A [ ESQC 2019 12/51




Derivatives for Variational Wave Functions

Section 3

Derivatives for Variational Wave Functions
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Derivatives for Variational Wave Functions Molecular gradients

Molecular Gradients for Variational Wave Functions

» Applying the chain rule, we obtain for the total derivative of the energy:
d€(x)  OE(x,\) n OE(x,\) [22
dx — Ox o\ Ox

> the first term accounts for the explicit dependence on x
P the last term accounts for the implicit dependence on x

» We now invoke the stationary condition:
OE(x, A . .
% =0 (zero electronic gradient for all x)
» The molecular gradient then simplifies to
d€(x)  OE(x, )
dx ox
> examples: HF/KS and MCSCF molecular gradients (exponential parameterization)

For variational wave functions, we do not need the response of the wave function O\ /9x
to calculate the molecular gradient d€ /dx.
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Derivatives for Variational Wave Functions Molecular gradients

Hellmann—Feynman Theorem

> Assume that the (stationary) energy is an expectation value:
E(x,A) = (A[H()[N)
» The gradient is then given by the expectation-value expression:

) 06N _ (|0

= A < the Hellmann—-Feynman theorem
dx Ox Ox

» Relationship to first-order perturbation theory:

E® = (o ’H(l)‘ 0)

» The Hellmann—Feynman theorem was originally stated for geometrical distortions:

Zkrik Z1ZkRik
dRK < 'Z : > Z R3

I#£K IK
» Classical interpretation: integration over the force operator
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Derivatives for Variational Wave Functions Molecular Hessians

Molecular Hessians for Variational Wave Functions

> Differentiating the molecular gradient, we obtain the molecular Hessian:

RE(x) A OE(x,\) [ O . 0Ox D\ IE(x,N)
dx2  — dx  ox (5 55) Ox

_02E(x,A) N O?E(x,\) OX

Ox2 OxON  Ox

> we need the first-order response O\/9x to calculate the Hessian
> but we do not need the second-order response 92)\/dx> for stationary energies

» To determine the response, we differentiate the stationary condition:
OE(x, ) d 9E(x, )

———= =0 (all = ——— =0
E) (allx) dx  ox
O?E(x,\) N DPE(x,\) OX 0
AxON X2 ax
» These are the first-order response equations:

9%E oA _ 9%’E
ON2 Ox 9xOA
N~ ——

electronic right-hand
Hessian side
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Derivatives for Variational Wave Functions Molecular Hessians

Response Equations

» The molecular Hessian for stationary energies:
d?¢  0*E | O%E oA
dx2  9x2  OxI Ox

» The response equations:

electronic O2E || O O2E perturbed
Hessian — | — = — <— electronic gradient

N2 || Ox ONOx

> the electronic Hessian is a Hermitian matrix, independent of the perturbation
> its dimensions are usually large and it cannot be constructed explicitly
> the response equations are typically solved by iterative techniques

key step: multiplication of the Hessian with a trial vector

v

> Analogy with Hooke's law:

force constant— kx = —F < force

> the wave function relaxes by an amount proportional to the perturbation
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Derivatives for Variational Wave Functions Molecular Hessians

2n + 1 Rule

» For molecular gradients and Hessians, we have the expressions

d¢  OE
dx  dx

d’¢  0*E | O%E O
2 " o2 | oxonox

<+ zero-order response needed

< first-order response needed

» In general, we have the 2n + 1 rule:

For variational wave functions, the derivatives of the wave function to order n determine
the derivatives of the energy to order 2n + 1.

» Examples: wave-function responses needed to fourth order:

energy cO T @ T @ £0B) £@
wave function | A0 | A [ 2O AT [ 2O XD [ O, XD, \O
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Derivatives for Nonvariational Wave Functions

Section 4

Derivatives for Nonvariational Wave Functions
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Derivatives for Nonvariational Wave Functions Nonvariational Wave Functions

Nonvariational Wave Functions

» The 2n + 1 rule simplifies property evaluation for variational wave functions

» What about the nonvariational wave functions?
> any energy may be made stationary by Lagrange's method of undetermined multipliers
> the 2n + 1 rule is therefore of general interest

» Example: the Cl energy

» the Cl energy function is given by:

Cl parameters ¢

Ea(x,c,r) < orbital-rotation parameters x

> it is nonstationary with respect to the orbital-rotation parameters:
OEci(x, ¢, K)

Oc
8EC|(X7 c, “{)

Ok

=0 <« stationary
# 0 < nonstationary
» We shall now consider its molecular gradient:

© by differentiation of the Cl energy
@ by differentiation of the Cl Lagrangian

» In coupled-cluster theory, all parameters are nonvariationally determined
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Derivatives for Nonvariational Wave Functions

Nonvariational Wave Functions
Cl Molecular Gradients the Straightforward Way

> Straightforward differentiation of Ec|(x, ¢, k) gives the expression

dé&q __3Et|+735t|95 OEc Ok
dx ~ Ox dc Ox Ok Ox
E E
= @ + E% < k contribution does not vanish
Ox Ok Ox

> it appears that we need the first-order response of the orbitals

» The HF orbitals used in Cl theory fulfil the following conditions at all geometries:

OEqr

Ok

> we obtain the orbital responses by differentiating this equation with respect to x:
OEur Ok O%Enr

5 <— lst-order response equations
Ok? Ox Ox0k

=0 < HF stationary conditions

> one such set of equations must be solved for each perturbation

» Calculated in this manner, the Cl gradient becomes expensive
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Derivatives for Nonvariational Wave Functions Lagrangian method

Lagrange's Method of Undetermined Multipliers

» To calculate the Cl energy, we minimize Ec| with respect to ¢ and k:

8EH|:(X7 Ii) o

min Eci(x, ¢c,k) subject to the constraints
C,K BH

0
> Use Lagrange's method of undetermined multipliers:

> construct the Cl Lagrangian by adding these constraints with multipliers to the energy:
OE,
EC|(X7 c, ,{) + K (M — 0)
Ok

> adjust the Lagrange multipliers & such that the Lagrangian becomes stationary:

L(j|(X7 c, K,E)

oL OE

258 _ o a_ + ClI conditions

dc dc

oL OE 92E

oza _ 0 — —CI R — HE —_ 0+« linear set of equations for K
Ok Ok Or?
if' =0 — OEnr = < HF conditions

Ok Ok

> note the duality between x and &
» Note that Ec; = L¢) when the Lagrangian is stationary

> we now have a stationary Cl energy expression Lc)
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Derivatives for Nonvariational Wave Functions Lagrangian method

Cl Molecular Gradients the Easy Way

» The Cl Lagrangian is given by

OE . . .
Lcy=Eq+ & aHF < stationary with respect to all variables
K

> Since the Lagrangian is stationary, we may invoke the 2n + 1 rule:

dEcy dLc 0L OEq JrJVEHF
dta _ dka _ 9ta _ g=a | -

dx dx Ox Ox OKOX
_9’Eqr _ OEq

zero-order response equations — K

ok~ Ok
» This result should be contrasted with the original expression
dEcy  OEc | OEc Ok
dx  ox | om ox
0%EnF Ok _ O?Epr
ox2 Ox  Okdx

> We have greatly reduced the number of response equations to be solved

first-order response equations —
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Derivatives for Nonv: ional Wave Functions Lagrangian method

Lagrange's Method Summarized

> (1) Establish the energy function E(x,A) and identify conditions on the variables

e(x,A) =0
> (2) Set up the Lagrangian energy function:
LGAX) = E(6A) +  A(e(x,\)—0)
—— ~—— —
Lagrangian energy function constraints

> (3) Satisfy the stationary conditions for the variables and their multipliers:

ﬁ
OX
oL  OE — Oe

> o + A ™ 0 <+ condition for \ determines X

=e(x,\)=0 < condition for X\ determines A

> note the duality between X and Al
> (4) Calculate derivatives from the stationary Lagrangian

» The Lagrangian approach is generally applicable:
> it gives the Hylleraas functional when applied to a perturbation expression
> it may be generalized to time-dependent properties
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Derivatives for Nonv: ional Wave Functions Lagrangian method

2n+ 1 and 2n + 2 Rules

» For variational wave functions, we have the 2n + 1 rule:

A" determines the energy to order 2n + 1.

» The Lagrangian technique extends this rule to nonvariational wave functions
» For the new variables—the multipliers—the stronger 2n + 2 rule applies:
X(n) determines the energy to order 2n + 2.

» Responses required to order 10:
EMlo]1]2|3]4]5]6]|7]|8]9]10
MO ToJo[1]1]2
2 Tololol1]1
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Examples of derivatives

Section 5

Examples of derivatives
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Hartree—Fock Energy
» The MOs are expanded in atom-fixed AOs
Pp(rix) = Z Cupxp(rix)

» The HF energy may be written in the general form

ZxZ,
— 1 K4L
Epyr = qu Dpghpg + 5 qurs dpgrs8pars + ZK>L Rre
where the one- and two-electron integrals are given by
Z
hpq(x /¢p(" X ZK ,::) ¢q(r,x)dr
/ ¢P(r17 ¢q("17 )(f),—(l’Q,X)(bs(rz,X)

rn2

gpqrs dridr;

> note: all integrals depend explicitly on the geometry

» In closed-shell restricted HF (RHF) theory, the energy is given by

ZxZ,
Erur =2 Z,' hi + Zij (2giij — &iji) + ZK>L ;KLL

» summations over doubly occupied orbitals
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Examples of derivatives Hartree—Fock Molecular Gradient

Hartree—Fock Equations

» The HF energy is minimized subject to orthonormality constraints
Sj = (¢ilo;) = 8
» We therefore introduce the HF Lagrangian:

Luyr = Epyr — Zij eij (Sy — 85)

%4
=2, Dihi+ 3> dingin =3 e (S5 = 05) + 3, ,;(KLL

» The stationary conditions on the Lagrangian become:

oL

HE —5;—6;=0
88,']'
OLur _ OEnr

OSy
= — Z Ekl —=— = 0
0C,; 9C,; K0 Cyi
> Note:

» the multiplier conditions are the orthonormality constraints
» the MO stationary conditions are the Roothaan—Hall equations

OEyF OSk AO AO
= —_— S F*YC =S"C
9C, D 9C,.; €

Trygve Helgaker (University of Oslo) Time-independent molecular properties ESQC 2019 31/51



Hartree—Fock Molecular Gradient

»> From the 2n + 1 rule, we obtain the RHF molecular gradient:

dEnr _ dLyr _ OLur _ OEnF _ ZE“ aSj;
dx dx ox Ox ; Y ox

> In terms of MO integrals and density-matrix elements, we obtain the expression

= Z 8/7,] + - Z dUkI dgljkl - Z 65” + I:nuc

ox ' ox
P> We then express the gradlent in terms of AO integrals:

dEHF

dEnr ano 8g oSpo
dx = ZDAO =+ Z dﬁgﬂff HV’W - €ﬁ9 ox + Fouc
v yu[)a nv

P density matrices transformed to AO basis
> derivative integrals added directly to gradient elements

» Important points:

> the gradient does not involve MO differentiation because of the 2n + 1 rule
> the time-consuming step is integral differentiation
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FCI Energy

» Consider a normalized Cl wave function:
oo
T
= =1 =
) ano cnln), c'c ,» {mln) = 0mn
» The basis functions |n) are the normalized Cl eigenstates of the unperturbed problem:
<m|H‘n>:6mnEn7 EOSEI §E2"‘

> We assume that the ground-state energy function depends on two external parameters:
2
(clHGo)IE) =3 em(mlH(x,Y)Imen, 32 =
n

> We construct a variational Cl Lagrangian:

L(x,y,c,pu) = Zcm m|H(x,y)| (Zc )

» The stationary conditions are given by

L
W =0 = 2(n|H(x,y)lc) —2pcn =0 = H(x,y)c= Ey(x,y)c
Cn
78L(x,y,c,,u):0 = Zcz—lzo — cfe=1
op "

P the first condition is the Cl eigenvalue problem with ground-state energy Eo(x,y) =
P the second condition is the Cl normalization condition
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Examples of derivatives FCI Lagrangian and Derivatives

FCI Molecular Gradient and Hessian

> Using the CI Lagrangian, we calculate Cl energy derivative in the usual way:

dE oL  d’E 9L 5 DL Ocy 5 9L Ocy ?L

dx  ox’ dxdy  Oxdy | A~ OxOcy Ox 4= dcmdcn Ox | Oxdcm

» By inverting the electronic Hessian, we obtain the more compact expression:

PE &L Y 2L { &L }*1 2L
dxdy — 0xdy 4= OxOcm | OcmOch dcndy

> We next evaluate the various partial derivatives at x = y = 0 where |c) = |0):

e O1819) 55, = llo): g, =2(ell)
PL_ 5 (m|H — Eol n) = 2(En — Eo)omn
ocmOch

» Inserted above, we recover Rayleigh—Schrodinger perturbation theory to second order:

5 e (ol o)
dxdy

H g\ _ o Z
Ixdy E, — E
n n 0
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Derivatives in second quantization

Section 6

Derivatives in second quantization
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Second-Quantization Hamiltonian
» In second quantization, the Hamiltonian operator is given by:

H= Z hpqazaq + Z gpqrsa‘ﬁalL asag + hnuc
Pq pars

hpg = (& (1) h(r)|éq(r))
8rars = (b (r1) ] (12) |17 [ b (r1)bs(r2)
> Its construction assumes an orthonormal basis of MOs ¢p:
[ap,ag]+ =0, [a},ally =0, [ap,al]ls = dpq

» The MOs are expanded in AOs, which often depend explicitly on the perturbation

> such basis sets are said to be perturbation-dependent:
ép(r) = Z Cop Xu(r, )
"

> we must make sure that the MOs remain orthonormal for all x
> this introduces complications as we take derivatives with respect to x
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Derivatives in second quantization Second-quantization Hamiltonian

MOs and Hamiltonian at Distorted geometries

1. Orthonormal MOs at the reference geometry:
B(x0) = COx(x0)
S(x0) = (¢(x0) | ¢'(x0)) =
2. Geometrical distortion x = xp + Ax:
B(x) = COx(x)
S(x) = (¢(x) | ¢(x)) #1
note: this basis is nonorthogonal and not useful for setting up the Hamiltonian.
3. Orthonormalize the basis set (e.g., by Léwdin orthonormalization):
P(x) = STH2(x)$(x)
§(x) = S™V2(x)S(x)S7H3(x) =1

4. From these orthonormalized MOs (OMOs) 9, construct Hamiltonian in the usual manner
H= Z hpqa ag +Z gpq,sa af rasag + hnuc
hpq = <1/)p(r)|h(r)\1/)q(r)>
Zpars = (W} (r1)w} (r2) |5 W (r1 ) s (r2))
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Derivatives in second quantization Second-quantization Hamiltonian

Hamiltonian at all Geometries

» The Hamiltonian is now well defined at all geometries:

H(x) = Z qu(X)qu(X +3 ngqrs )epgrs(x) + hnuc(x)
pq pars
» The OMO integrals are given by
Fpa(x) = 3~ B ()[S ™2 mp(x)[S /2] q ()

mn

in terms of the usual MO integrals
Bimn(x Z O CIAO(x),  Smn(x Z i) shO(x)

and similarly for the two-electron integrals.

» What about the geometry dependence of the excitation operators?

> this may be neglected when calculating derivatives since, for all geometries,

[ap(X)v aZ(X)] = §pq(X) = 0pq
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Derivatives in second quantization Molecular gradients

HF Molecular Gradients in Second Quantization

» The molecular gradient now follows from the Hellmann—Feynman theorem:

EW — (o|HY) Z Dpahbe) + 35" doarsiits + hok
pars

> We need the derivatives of the OMO |ntegra|s:

A = > [han(S ™) mp(S72)ng] W = ) — 37 SEIAGY = 3> H)SE)

mn

» The gradient may therefore be written in the form
¢
Z qu pq 2 Z dpqrsgpqrs Z F 5 ) + hr(lu)m
pars pq

where the generalized Fock matrix is given by:

qu - Z Dpnhqn + Z dpnrsgans

nrs

» For RHF theory, this result is equivalent to that derived in first quantization
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Geometrical Properties

Section 7

Geometrical Properties

Trygve Helgaker (University of Oslo) Time-independent molecular properties ESQC 2019 41 /51



Table of Contents

e Geometrical Properties
@ Bond distances
@ Harmonic and anharmonic constants

Trygve Helgaker (University of Oslo) Time-independent molecular properties ESQC 2019 42 /51



Geometrical Properties

Geometrical Derivatives

» In the Born—Oppenheimer approximation, the nuclei move on the electronic potential-energy
surface £(x), which is a function of the nuclear geometry:

E(x) =& + EWAx + %S(Z)AXZ + -+- <« expansion around the reference geometry

» The derivatives of this surface are therefore important:

d&é
5(1) = d— <— molecular gradient
X
daze
5‘(2) = ﬁ <— molecular Hessian
X

» The geometrical derivatives are

» used for locating and characterizing critical points
> related to spectroscopic constants, vibrational frequencies, and intensities

» Usually, only a few terms are needed in the expansions

P in some cases low-order expansions are inadequate or useless
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Uses of Geometrical Derivatives

»> To explore molecular potential-energy surfaces (3N — 6 dimensions)

> localization and characterization of stationary points

> localization of avoided crossings and conical intersections

» calculation of reaction paths and reaction-path Hamiltonians
> application to direct dynamics

P> To calculate spectroscopic constants

molecular structure

quadratic force constants and harmonic frequencies

cubic and quartic force constants; fundamental frequencies
partition functions

dipole gradients and vibrational infrared intensities
polarizability gradients and Raman intensities

VyVVVYYVYY
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Geometrical Properties Bond distances

Bond Distances

» Mean and mean abs. errors for 28 distances at the all-el. cc-pVXZ level (pm)

- MP4 _
Fmeses-m=seseemesa CCSD(T) |A| ‘ Dz TZ QZ
12 CCSD I2 06 038
o ccsp CCSD(T) | 1.7 02 0.2
MP3
c1sD
-2 pVTZ
\\W
HF
» Bonds shorten with increasing basis:
> HF: DZ — TZ 08pm; TZ — QZ 0.1pm
» corr.. DZ — TZ 1.6pm; TZ — QZ 0.1-0.2pm
» Bonds lengthen with improvements in the N-electron model:
P singles < doubles < triples < - - -
» There is considerable scope for error cancellation: CISD/DZ, MP3/DZ
Time-independent molecular properties ESQC 2019
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Bond Distances Re of BH, CO, Ny, HF, and F (pm)

Bond distances

cesp(T) 2.1 ccsp(T) 0.2 cesp(T) 0.1 ccsp(T) 0.1
cc-pCvDz . cc-pCvTZ . cc-pCvoz . cc-pCv5z .
-6 6 -6 6 -6 6
ccsp ccsD ccsp ccsD
cc-pCvDZ 1.2 cc-pCVTZ 0.6 cc-pCvoz 0.9 cc-pCv5z 1.
A > W
6 6 -6 3 6 6 6 3
MP2 MP2 MP2 MP2
cc-pcvpz 1.5 cc-pCvVTZ 0.9 cc-pCvQz 0.8 cc-pCv5z 0.8
=6 6 =6 3 =6 3 =6 3
SCF SCF SCF SCF
cC-pCvDZ 2.5 CC-pCVTZ 3.4 cc-pCvQz 3.5 cc-pCvV5Z 3.5
6 3 =6 3 ~6 6 =6 3
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Geometrical Properties Bond distances

Contributions to Equilibrium Bond Distances (pm)

RHF SD T Q 5 rel. adia. theory | exp. err.
HF 89.70 1.67 0.29 0.02 0.00 0.01 0.0 91.69 91.69 0.00
Y 106.54 2.40 0.67 0.14 0.03 0.00 0.0 109.78 109.77 0.01
F> 132.64 6.04 2.02 0.44 0.03 0.05 0.0 141.22 141.27 —0.05
Cco 110.18 1.87 0.75 0.04 0.00 0.00 0.0 112.84 112.84 0.00

> We have agreement with experiment to within 0.01 pm except for F;
» Hartree—Fock theory underestimates bond distances by up to 8.6 pm (for F3)
» All correlation contributions are positive

> approximately linear convergence, slowest for Fp
> triples contribute up to 2.0, quadruples up to 0.4, and quintuples 0.03 pm
> sextuples are needed for convergence to within 0.01 pm

> Relativistic corrections are small except for F» (0.05 pm)

> of the same magnitude and direction as the quintuples
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Harmonic and anharmonic constants

Harmonic Constants we of BH, CO, N5, HF, and F» (cm_l)

cesp(T) 0 ccsp(T) 1 cesp(T) 5 ccsp(T) 10
cc-pCvDz cc-pCvTZ cc-pCvoz cc-pCv5z
- .
=250 250 =250 250 =250 250 =250 250
ccsp ccsp ccsp ccsp
GC-pCVDZ 34 cC-pCVTZ 64 cc-pCvQz 71 cc-pCv5z 72
V'
~250 250 ~250 250 ~250 250 -250 250
MP2 MP2 MP2 Mp2
cc-pcvpz 68 cc-pCvVTZ 81 cc-pCvQz 73 cc-pCv5z 71
=250 250 =250 250 =250 250 =250 250
SCF SCF SCF SCF
cC-pCvDZ 269 CC-pCVTZ 288 cc-pCvQz 287 cc-pCvV5Z 287
=250 250 =250 250 =250 250 ~250 250
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Geometrical Properties Harmonic and anharmonic constants

Contributions to Harmonic Frequencies we (cm™1)

| RHF SD T Q 5 rel.  adia.  theory |  exp. err.
HF 4473.8 —277.4 —50.2 —4.1 —0.1 =35 0.4 4138.9 4138.3 0.1
N> 2730.3 —275.8 —72.4 —18.8 -39 —1.4 0.0 2358.0 2358.6 —0.6
Fa 1266.9 —236.1 —95.3 —15.3 —0.8 —0.5 0.0 918.9 916.6 2.3
cO 2426.7 —177.4 —71.7 —7.2 0.0 —1.3 0.0 2169.1 2169.8 0.7

1

> We have agreement with experiment to within 1cm™" except for F»

» Hartree—Fock theory overestimates harmonic frequencies by up to 38% (in F3).

P All correlation contributions are large and negative

> triples contribute up to 95cm—1, quadruples 20cm ™1, and quintuples 4cm~—1

> sextuples are sometimes needed for convergence to within 1cm™!

» The relativistic corrections are of the order of 1cm~—1!

> of the same magnitude and direction as the quadruples or quintuples
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Higher-Order Connected Contributions to we in Ny (cm™1)

» There are substantial higher-order corrections:

371.9
84.6
——
13.8 235
4.1 = 4.7 0.8
TE——S—________ ——
HF CCSD/FC CCSD(T)/FC CCSD(T) CCSDT CCSDTQ CCSDTQ5

> connected triples relaxation contributes 9.7cm™! (total triples —70.5cm™1!)
> connected quadruples contribute —18.8cm—1
» connected quintuples contribute —3.9cm™!
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Anharmonic Constants wexe of BH, CO, N», HF, and F» (cm_l)

Harmonic and anharmonic constants

ccsp(T) 1 ccsD(T) 1 ccsD(T) ccsp(T) o
cc-pCvDz cc-pCvTZ cc-pCvoz cc-pCv5z
-6 6 -6 6 -6 -6 6
ccsp ccsD ccsp ccsD
cc-pCvDZ 2 cc-pCVTZ 2 cc-pCvoz cc-pCv5z 1
- AL
-6 3 -6 3 -6 -6 3
MP2 MP2 MP2 MP2
cc-pcvpz 3 cc-pCvVTZ 3 cc-pCvQz cc-pCv5z 3
——
-6 6 -6 3 -6 -6 3
SCF SCF SCF SCF
cc-pCvDZ 4 cc-pCVTZ 5 cc-pCvoz cc-pCvsz 4
_a-;a 0 | 0 _ i | _ | 00
-6 3 -6 3 -6 -6 3
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