Molecules in Magnetic Fields

Trygve Helgaker

Hylleraas Centre, Department of Chemistry, University of Oslo, Norway
and
Centre for Advanced Study at the Norwegian Academy of Science and Letters, Oslo, Norway

European Summer School in Quantum Chemistry (ESQC) 2019
Torre Normanna, Sicily, Italy
September 8–21, 2019
Sections

1. Electronic Hamiltonian
2. London Orbitals
3. Paramagnetism and diamagnetism
Section 1

Electronic Hamiltonian
Hamiltonian Mechanics

- In classical Hamiltonian mechanics, a system of particles is described in terms of their positions q_i and conjugate momenta p_i.

- For each system, there exists a scalar Hamiltonian function $H(q_i, p_i)$ such that the classical equations of motion are given by:

$$
\dot{q}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial q_i} \quad \text{(Hamilton’s equations)}
$$

- note: the Hamiltonian H is not unique!

- Example: a single particle of mass m in a conservative force field $F(q)$

 - the Hamiltonian is constructed from the corresponding scalar potential:

$$
H(q, p) = \frac{p^2}{2m} + V(q), \quad F(q) = -\frac{\partial V(q)}{\partial q}
$$

- Hamilton’s equations of motion are equivalent to Newton’s equations:

$$
\begin{align*}
\dot{q} &= \frac{\partial H(q, p)}{\partial p} = \frac{p}{m} \\
\dot{p} &= -\frac{\partial H(q, p)}{\partial q} = -\frac{\partial V(q)}{\partial q}
\end{align*}
\implies m\ddot{q} = F(q) \quad \text{(Newton’s equations)}
$$

- Hamilton’s equations are first-order differential equations – Newton’s are second-order
Quantization of a Particle in a Conservative Force Field

- The Hamiltonian formulation is more general than the Newtonian formulation:
 - it is invariant to coordinate transformations
 - it provides a uniform description of matter and field
 - it constitutes the springboard to quantum mechanics

- The Hamiltonian function (total energy) of a particle in a conservative force field:

\[H(q, p) = \frac{p^2}{2m} + V(q) \]

- Standard rule for quantization (in Cartesian coordinates):
 - carry out the operator substitutions
 \[p \rightarrow -i\hbar\nabla, \quad H \rightarrow i\hbar\frac{\partial}{\partial t} \]

 - multiply the resulting expression by the wave function \(\Psi(q) \) from the right:

\[i\hbar \frac{\partial \Psi(q)}{\partial t} = \left[-\frac{\hbar^2}{2m} \nabla^2 + V(q) \right] \Psi(q) \]

- This approach is sufficient for a treatment of electrons in an electrostatic field
 - it is insufficient for nonconservative systems
 - it is therefore inappropriate for systems in a general electromagnetic field

Trygve Helgaker (University of Oslo)
Lorentz Force and Maxwell’s Equations

- In the presence of an electric field \(E \) and a magnetic field (magnetic induction) \(B \), a classical particle of charge \(z \) experiences the Lorentz force:

\[
F = z \left(E + v \times B \right)
\]

- since this force depends on the velocity \(v \) of the particle, it is not conservative

- The electric and magnetic fields \(E(r, t) \) and \(B(r, t) \) satisfy Maxwell’s equations (1861–1868):

\[
\nabla \cdot E = \rho / \varepsilon_0 \quad \leftarrow \text{Coulomb’s law}
\]

\[
\nabla \times B - \varepsilon_0 \mu_0 \partial E / \partial t = \mu_0 J \quad \leftarrow \text{Ampère’s law with Maxwell’s correction}
\]

\[
\nabla \cdot B = 0
\]

\[
\nabla \times E + \partial B / \partial t = 0 \quad \leftarrow \text{Faraday’s law of induction}
\]

where \(\rho(r, t) \) and \(J(r, t) \) are the charge and current densities, respectively

- Note:

 - when \(\rho \) and \(J \) are known, Maxwell’s equations can be solved for \(E \) and \(B \)
 - but the particles are driven by the Lorentz force, so \(\rho \) and \(J \) are functions of \(E \) and \(B \)

- We here consider the motion of particles in a given (fixed) electromagnetic field
Scalar and Vector Potentials

The second, homogeneous pair of Maxwell’s equations involves only E and B:

$$\nabla \cdot B = 0$$

$$\nabla \times E + \frac{\partial B}{\partial t} = 0$$

Eq. (1) is satisfied by introducing the vector potential A:

$$\nabla \cdot B = 0 \implies B = \nabla \times A \leftarrow \text{vector potential}$$

Inserting Eq. (3) in Eq. (2) and introducing a scalar potential ϕ, we obtain

$$\nabla \times \left(E + \frac{\partial A}{\partial t} \right) = 0 \implies E + \frac{\partial A}{\partial t} = -\nabla \phi \leftarrow \text{scalar potential}$$

The second pair of Maxwell’s equations is thus automatically satisfied by writing

$$E = -\nabla \phi - \frac{\partial A}{\partial t}$$

$$B = \nabla \times A$$

The potentials (ϕ, A) contain four rather than six components as in (E, B).

ϕ and A are obtained by solving the inhomogeneous pair of Maxwell’s equations, containing ρ and J.
Gauge Transformations

Consider the following gauge transformation of the potentials:

\[
\begin{align*}
\phi' &= \phi - \frac{\partial f}{\partial t} \\
A' &= A + \nabla f
\end{align*}
\]

with \(f = f(q, t) \) ← gauge function of position and time

Such a transformation of the potentials does not affect the physical fields:

\[
\begin{align*}
E' &= -\nabla \phi' - \frac{\partial A'}{\partial t} = -\nabla \phi + \nabla \frac{\partial f}{\partial t} - \frac{\partial A}{\partial t} - \frac{\partial \nabla f}{\partial t} = E \\
B' &= \nabla \times A' = \nabla \times (A + \nabla f) = B + \nabla \times \nabla f = B
\end{align*}
\]

Conclusion: the scalar and vector potentials \(\phi \) and \(A \) are not unique

we are free to choose \(f(q, t) \) to make the potentials satisfy additional conditions

typically, we require the vector potential to be divergenceless:

\[
\nabla \cdot A' = 0 \implies \nabla \cdot (A + \nabla f) = 0 \implies \nabla^2 f = -\nabla \cdot A \leftarrow \text{Coulomb gauge}
\]

We shall always assume that the vector potential satisfies the Coulomb gauge:

\[
\nabla \times A = B, \quad \nabla \cdot A = 0 \leftarrow \text{Coulomb gauge}
\]

note: \(A \) is still not uniquely determined, the following transformation being allowed:

\[
A' = A + \nabla f, \quad \nabla^2 f = 0
\]
We must construct a Hamiltonian function such that Hamilton’s equations are equivalent to Newton’s equation with the Lorentz force:

\[\dot{q}_i = \frac{\partial H}{\partial p_i} \quad \text{and} \quad \dot{p}_i = -\frac{\partial H}{\partial q_i} \iff ma = z(\mathbf{E} + \mathbf{v} \times \mathbf{B}) \]

To this end, we introduce scalar and vector potentials \(\phi \) and \(\mathbf{A} \) such that

\[\mathbf{E} = -\nabla \phi - \frac{\partial \mathbf{A}}{\partial t}, \quad \mathbf{B} = \nabla \times \mathbf{A} \]

In terms of these potentials, the classical Hamiltonian function becomes

\[H = \frac{\pi^2}{2m} + z\phi, \quad \pi = p - zA \quad \leftarrow \text{kinetic momentum} \]

Quantization is then accomplished in the usual manner, by the substitutions

\[p \rightarrow -i\hbar\nabla, \quad H \rightarrow i\hbar \frac{\partial}{\partial t} \]

The time-dependent Schrödinger equation for a particle in an electromagnetic field:

\[i\hbar \frac{\partial \Psi}{\partial t} = \frac{1}{2m} \left(-i\hbar\nabla - z\mathbf{A}\right) \cdot \left(-i\hbar\nabla - z\mathbf{A}\right) \Psi + z\phi \Psi \]
Electron Spin

The nonrelativistic Hamiltonian for an electron in an electromagnetic field is then given by:

\[H = \frac{\pi^2}{2m} - e\phi, \quad \pi = -i\hbar \nabla + eA \]

However, this description ignores a fundamental property of the electron: spin.

Spin was introduced by Pauli in 1927, to fit experimental observations:

\[H = \frac{(\sigma \cdot \pi)^2}{2m} - e\phi = \frac{\pi^2}{2m} + \frac{e\hbar}{2m} B \cdot \sigma - e\phi \]

where \(\sigma \) contains three operators, represented by the two-by-two Pauli spin matrices

\[
\begin{align*}
\sigma_x &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \\
\sigma_y &= \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \\
\sigma_z &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
\end{align*}
\]

The Schrödinger equation now becomes a two-component equation:

\[
\begin{pmatrix}
\frac{\pi^2}{2m} - e\phi + \frac{e\hbar}{2m} B_z \\
\frac{e\hbar}{2m} (B_x - iB_y)
\end{pmatrix}
\begin{pmatrix}
\psi_\alpha \\
\psi_\beta
\end{pmatrix}
= E
\begin{pmatrix}
\psi_\alpha \\
\psi_\beta
\end{pmatrix}
\]

Note: the two components are coupled only in the presence of an external magnetic field.
Spin and Relativity

- The introduction of spin by Pauli in 1927 may appear somewhat ad hoc
- By contrast, spin arises naturally from Dirac’s relativistic treatment in 1928
 - is spin a relativistic effect?
- However, reduction of Dirac’s equation to nonrelativistic form yields the Hamiltonian

\[
H = \frac{(\sigma \cdot \pi)^2}{2m} - e\phi = \frac{\pi^2}{2m} + \frac{e\hbar}{2m} B \cdot \sigma - e\phi \neq \frac{\pi^2}{2m} - e\phi
\]

- in this sense, spin is not a relativistic property of the electron
- on the other hand, in the nonrelativistic limit, all magnetic fields disappear...

- We interpret \(\sigma \) by associating an intrinsic angular momentum (spin) with the electron:

\[
s = \frac{\hbar \sigma}{2}
\]
The nonrelativistic Hamiltonian for an electron in an electromagnetic field is therefore

\[H = \frac{\pi^2}{2m} + \frac{e}{m} B \cdot s - e\phi, \quad \pi = p + eA, \quad p = -i\hbar \nabla \]

expanding \(\pi^2 \) and assuming the Coulomb gauge \(\nabla \cdot A = 0 \), we obtain

\[
\pi^2 \psi = (p + eA) \cdot (p + eA) \psi = p^2 \psi + ep \cdot A \psi + eA \cdot p \psi + e^2 A^2 \psi
\]

\[
= p^2 \psi + e(p \cdot A) \psi + 2eA \cdot p \psi + e^2 A^2 \psi = (p^2 + 2eA \cdot p + e^2 A^2) \psi
\]

in molecules, the dominant electromagnetic contribution is from the nuclear charges:

\[
\phi = -\frac{1}{4\pi\epsilon_0} \sum_K \frac{Z_K e}{r_K} + \phi_{\text{ext}}
\]

Summing over all electrons and adding pairwise Coulomb interactions, we obtain

\[
H = \sum_i \frac{1}{2m} p_i^2 - \frac{e^2}{4\pi\epsilon_0} \sum_{K_i} \frac{Z_K}{r_{iK}} + \frac{e^2}{4\pi\epsilon_0} \sum_{i>j} r_{ij}^{-1} \quad \leftarrow \text{zero-order Hamiltonian}
\]

\[
+ \frac{e}{m} \sum_i A_i \cdot p_i + \frac{e}{m} \sum_i B_i \cdot s_i - e \sum_i \phi_i \quad \leftarrow \text{first-order Hamiltonian}
\]

\[
+ \frac{e^2}{2m} \sum_i A_i^2 \quad \leftarrow \text{second-order Hamiltonian}
\]
Magnetic Perturbations

In atomic units, the molecular Hamiltonian is given by

$$H = H_0 + \sum_i A(r_i) \cdot p_i + \sum_i B(r_i) \cdot s_i - \sum_i \phi(r_i) + \frac{1}{2} \sum_i A^2(r_i)$$

- orbital paramagnetic
- spin paramagnetic
- diamagnetic

There are two kinds of magnetic perturbation operators:

- the paramagnetic operator is linear and may lower or raise the energy
- the diamagnetic operator is quadratic and always raises the energy

There are two kinds of paramagnetic operators:

- the orbital paramagnetic operator couples the field to the electron’s orbital motion
- the spin paramagnetic operator couples the field to the electron’s spin

In the study of magnetic properties, we are interested in two types of perturbations:

- uniform external magnetic field B, with vector potential
 $$A_{\text{ext}}(r) = \frac{1}{2} B \times r$$
 leads to Zeeman interactions

- nuclear magnetic moments M_K, with vector potential
 $$A_{\text{nuc}}(r) = \alpha^2 \sum_K \frac{M_K \times r_K}{r_K^3}$$
 leads to hyperfine interactions

where $\alpha \approx 1/137$ is the fine-structure constant
Section 2

London Orbitals
Hamiltonian in a Uniform Magnetic Field

- The nonrelativistic electronic Hamiltonian (implied summation over electrons):

\[H = H_0 + A(r) \cdot p + B(r) \cdot s + \frac{1}{2} A(r)^2 \]

- The vector potential of the uniform field \(B \) is given by:

\[B = \nabla \times A = \text{const} \implies A_0(r) = \frac{1}{2} B \times (r - O) = \frac{1}{2} B \times r_0 \]

 - note: the gauge origin \(O \) is arbitrary!

- The orbital paramagnetic interaction becomes:

\[A_0(r) \cdot p = \frac{1}{2} B \times (r - O) \cdot p = \frac{1}{2} B \cdot (r - O) \times p = \frac{1}{2} B \cdot L_0 \]

 where we have introduced the angular momentum relative to the gauge origin:

\[L_0 = r_0 \times p \]

- The diamagnetic interaction becomes:

\[\frac{1}{2} A_0^2 (r) = \frac{1}{8} (B \times r_0) \cdot (B \times r_0) = \frac{1}{8} \left[B^2 r_0^2 - (B \cdot r_0)^2 \right] \]

- The electronic Hamiltonian in a uniform magnetic field depends on the gauge origin:

\[H = H_0 + \frac{1}{2} B \cdot L_0 + B \cdot s + \frac{1}{8} \left[B^2 r_0^2 - (B \cdot r_0)^2 \right] \]

 - as we shall see, a change of the origin is a gauge transformation
Gauge Transformation of Schrödinger Equation

- What is the effect of a gauge transformation on the wave function?
- Consider a general gauge transformation for the electron (atomic units):
 \[A' = A + \nabla f, \quad \phi' = \phi - \frac{\partial f}{\partial t} \]
- It can be shown that this represents a unitary transformation of \(H - i \frac{\partial}{\partial t} \):
 \[
 \left(H' - i \frac{\partial}{\partial t} \right) = \exp(-if) \left(H - i \frac{\partial}{\partial t} \right) \exp(if)
 \]
- In order that the Schrödinger equation is still satisfied
 \[
 \left(H' - i \frac{\partial}{\partial t} \right) \Psi' \iff \left(H - i \frac{\partial}{\partial t} \right) \Psi,
 \]
 the wave function undergoes a compensating unitary transformation:
 \[\Psi' = \exp(-if) \Psi \]
- All observable properties such as the electron density are then unaffected:
 \[\rho' = (\Psi')^* \Psi' = [\Psi \exp(-if)]^* [\exp(-if)\Psi] = \Psi^* \Psi = \rho \]
Gauge-Origin Transformations

▶ Different choices of gauge origin in the external vector potential

\[A_0 (r) = \frac{1}{2} B \times (r - O) \]

are related by gauge transformations:

\[A_G (r) = A_0 (r) - A_0 (G) = A_0 (r) + \nabla f, \quad f (r) = -A_0 (G) \cdot r \]

▶ The exact wave function transforms accordingly and gives gauge-invariant results:

\[\psi_G^{\text{exact}} = \exp [-if (r)] \psi_0^{\text{exact}} = \exp [iA_0 (G) \cdot r] \psi_0^{\text{exact}} \quad \text{(rapid) oscillations} \]

▶ Illustration: H\(_2\) on the z axis in a magnetic field \(B = 0.2 \) a.u. in the y direction

▶ wave function with gauge origin at \(O = (0, 0, 0) \) (left) and \(G = (100, 0, 0) \) (right)
London Orbitals

The exact wave function transforms in the following manner:

\[\Psi_G^{\text{exact}} = \exp \left[i \frac{1}{2} \mathbf{B} \times (\mathbf{G} - \mathbf{O}) \cdot \mathbf{r} \right] \Psi_0^{\text{exact}} \]

- this behaviour cannot easily be modelled by standard atomic orbitals

Let us build this behaviour directly into the atomic orbitals:

\[\omega_{lm}(r_K, \mathbf{B}, \mathbf{G}) = \exp \left[i \frac{1}{2} \mathbf{B} \times (\mathbf{G} - \mathbf{K}) \cdot \mathbf{r} \right] \chi_{lm}(r_K) \]

- \(\chi_{lm}(r_K) \) is a normal atomic orbital centred at \(\mathbf{K} \) and quantum numbers \(lm \)
- \(\omega_{lm}(r_K, \mathbf{B}, \mathbf{G}) \) is a field-dependent orbital at \(\mathbf{K} \) with field \(\mathbf{B} \) and gauge origin \(\mathbf{G} \)

Each AO now responds in a physically sound manner to an applied magnetic field

- indeed, all AOs are now correct to first order in \(\mathbf{B} \), for any gauge origin \(\mathbf{G} \)
- the calculations become rigorously gauge-origin independent
- uniform (good) quality follows, independent of molecule size

These are the London orbitals after Fritz London (1937)
- also known as GIAOs (gauge-origin independent AOs or gauge-origin including AOs)

Questions:
- are London orbitals needed in atoms?
- why not attach the phase factor to the total wave function instead?
Dissociation With and Without London Orbitals

- Let us consider the FCI dissociation of H$_2$ in a magnetic field
 - full lines: with London atomic orbitals
 - dashed lines: without London atomic orbitals

Without London orbitals, the FCI method is not size extensive in magnetic fields
Section 3

Paramagnetism and diamagnetism
Paramagnetism

▶ Hamiltonian for a molecule in a uniform magnetic field in the z direction:

\[H = H_0 + \frac{1}{2} B L_z + B s_z + \frac{1}{8} B^2 (x^2 + y^2) \]

▶ a paramagnetic, linear dependence on the magnetic field
▶ a diamagnetic, quadratic dependence on the magnetic field

▶ The linear paramagnetic Zeeman terms are easily understood:
▶ the angular momenta \(L_z \) and \(s_z \) set up a magnetic moment:

\[m_z = -\frac{1}{2} L_z - s_z \]

▶ this magnetic moment interacts with the field \(B \) in a dipolar fashion:

\[-B m_z = \frac{1}{2} B L_z + B s_z \]

▶ Important consequences of the paramagnetic Zeeman terms:
▶ they reduce symmetry and split energy levels
▶ energy is raised or lowered, depending on orientation
Diamagnetism

- Hamiltonian for a molecule in a uniform magnetic field in the z direction:

$$H = H_0 + \frac{1}{2}BL_z + Bs_z + \frac{1}{8}B^2(x^2 + y^2)$$

- The quadratic diamagnetic term may be understood in the following manner:
 1. the field B induces a precession of the electrons with Larmor frequency $B/4\pi$
 2. this precession generates an induced magnetic moment proportional to the field

$$\text{charge} \times \text{frequency} \times \text{area} = -\frac{B}{4\pi}\pi(x^2 + y^2)$$

- this induced magnetic moment interacts with B, raising the energy quadratically

- Important consequences of the diamagnetic term
 1. it raises the energy of all systems
 2. it squeezes all systems

 - ground-state helium atom
 - transversal size $\propto 1/\sqrt{B}$
 - longitudinal size $\propto 1/\log B$
Open-shell systems – the quadratic Zeeman effect

- For open-shell atoms, we observe the **quadratic Zeeman effect**
 - initial energy lowering by Zeeman terms counteracted by the diamagnetic term

\[
H = H_0 + B s_z + \frac{1}{2} B L_z + \frac{1}{8} B^2 \left(x^2 + y^2 \right)
\]

- Lowest states of the fluorine atom (left) and sodium atom (right) in a magnetic field

- CCSD(T) calculations in uncontracted aug-cc-pCVQZ basis (atomic units)
Closed-shell diamagnetism

- In a closed-shell system, ground-state energy should increase diamagnetically:

\[\langle 0|H|0 \rangle = \langle 0|H_0|0 \rangle + \frac{1}{8} B^2 \langle 0|x^2 + y^2|0 \rangle, \quad \langle 0|L_z|0 \rangle = \langle 0|S_z|0 \rangle = 0 \]

- Energy of benzene in a perpendicular magnetic field (atomic units):

![Graph showing energy as a function of magnetic field for different systems. Triangles represent finite-field calculations, and solid lines are predictions.](image-url)
Closed-shell paramagnetism

- Nevertheless, closed-shell paramagnetic molecules such as C_{20} do exist

![Graph showing paramagnetic behavior](Graph)

- Paramagnetism results from Zeeman coupling of ground and excited states in the field
 - in the absence of coupling, the diamagnetic diabatic ground and excited states cross
 - the Zeeman interaction generates adiabatic states with an avoided crossing
 - a sufficiently strong coupling creates a double minimum (cmp. Renner–Teller)