Molecular Magnetic Properties

Trygve Helgaker

Hylleraas Centre, Department of Chemistry, University of Oslo, Norway and Centre for Advanced Study at the Norwegian Academy of Science and Letters, Oslo, Norway

European Summer School in Quantum Chemistry (ESQC) 2019 Torre Normanna, Sicily, Italy September 8-21, 2019

UiO : Universitetet i Oslo

Sections

- 2 The Hamiltonian Zeeman and Hyperfine Interactions
- 3 First-Order Magnetic Properties
- 4 Molecular Magnetizabilities
- 5 High-Resolution NMR Spectra
- 6 NMR Shielding Constants

Section 1

Introduction

Taylor Expansion of Energy

Expand the energy in the presence of an external magnetic field B and nuclear magnetic moments M_K around zero field and zero moments:

First-order terms vanish for closed-shell systems because of symmetry

they shall be considered only briefly here

- Second-order terms are important for many molecular properties
 - magnetizabilities
 - nuclear shieldings constants of NMR
 - nuclear spin-spin coupling constants of NMR
 - electronic g tensors of EPR (not dealt with here)
- Higher-order terms are negligible since the perturbations are tiny:
 - 1) the magnetic induction **B** is weak ($\approx 10^{-4}$ a.u.)
 - 2) the nuclear magnetic moments M_K couple weakly ($\mu_0 \mu_N \approx 10^{-8}$ a.u.)

Derivatives and Perturbation Theory I

Consider a normalized CI wave function:

$$|\mathbf{c}
angle = \sum_{n=0}^{\infty} c_n |n
angle, \quad \mathbf{c}^{\mathrm{T}}\mathbf{c} = 1, \quad \langle m|n
angle = \delta_{mn}$$

• The basis functions $|n\rangle$ are the normalized CI eigenstates of the unperturbed problem:

$$\langle m|H|n\rangle = \delta_{mn}E_n, \quad E_0 \leq E_1 \leq E_2 \cdots$$

We here assume that the ground-state energy function depends on two external parameters:

$$\langle \mathbf{c}|H(x,y)|\mathbf{c}\rangle = \sum_{mn} c_m \langle m|H(x,y)|n \rangle c_n, \quad \sum_n c_n^2 = 1$$

We construct a variational CI Lagrangian:

$$L(x, y, \mathbf{c}, \mu) = \sum_{mn} c_m \langle m | H(x, y) | n \rangle c_n - \mu \left(\sum_n c_n^2 - 1 \right)$$

The stationary conditions are given by

$$\frac{\partial L(x, y, \mathbf{c}, \mu)}{\partial c_n} = 0 \implies 2\langle n | H(x, y) | \mathbf{c} \rangle - 2\mu c_n = 0 \implies \mathbf{H}(x, y) \mathbf{c} = E_0(x, y) \mathbf{c}$$
$$\frac{\partial L(x, y, \mathbf{c}, \mu)}{\partial \mu} = 0 \implies \sum_n c_n^2 - 1 = 0 \implies \mathbf{c}^{\mathrm{T}} \mathbf{c} = 1$$

• the first condition is the CI eigenvalue problem with ground-state energy $E_0(x, y) = \mu$

the second condition is the CI normalization condition

Derivatives and Perturbation Theory II

Using the CI Lagrangian, we calculate CI energy derivative in the usual way:

$$\frac{\mathrm{d}E}{\mathrm{d}x} = \frac{\partial L}{\partial x}, \quad \frac{\mathrm{d}^2 E}{\mathrm{d}x\mathrm{d}y} = \frac{\partial^2 L}{\partial x\partial y} + \sum_n \frac{\partial^2 L}{\partial x\partial c_n} \frac{\partial c_n}{\partial x}, \quad \sum_n \frac{\partial^2 L}{\partial c_m \partial c_n} \frac{\partial c_n}{\partial x} = -\frac{\partial^2 L}{\partial x\partial c_m}$$

By inverting the electronic Hessian, we obtain the more compact expression:

$$\frac{\mathrm{d}^2 E}{\mathrm{d}x\mathrm{d}y} = \frac{\partial^2 L}{\partial x \partial y} - \sum_{mn} \frac{\partial^2 L}{\partial x \partial c_m} \left[\frac{\partial^2 L}{\partial c_m \partial c_n} \right]^{-1} \frac{\partial^2 L}{\partial c_n \partial y}$$

• We next evaluate the various partial derivatives at x = y = 0 where $|\mathbf{c}\rangle = |0\rangle$:

$$\frac{\partial L}{\partial x} = \left\langle 0 \left| \frac{\partial H}{\partial x} \right| 0 \right\rangle, \quad \frac{\partial^2 L}{\partial x \partial y} = \left\langle 0 \left| \frac{\partial^2 H}{\partial x \partial y} \right| 0 \right\rangle, \quad \frac{\partial^2 L}{\partial x \partial c_n} = 2 \left\langle n \left| \frac{\partial H}{\partial x} \right| 0 \right\rangle$$
$$\frac{\partial^2 L}{\partial c_m \partial c_n} = 2 \left\langle m \left| H - E_0 \right| n \right\rangle = 2(E_n - E_0) \delta_{mn}$$

Inserted above, we recover Rayleigh–Schrödinger perturbation theory to second order:

$$\frac{\mathrm{d}E}{\mathrm{d}x} = \left\langle 0 \left| \frac{\partial H}{\partial x} \right| 0 \right\rangle, \quad \frac{\mathrm{d}^2 E}{\mathrm{d}x \mathrm{d}y} = \left\langle 0 \left| \frac{\partial^2 H}{\partial x \partial y} \right| 0 \right\rangle - 2 \sum_n \frac{\left\langle 0 \left| \frac{\partial H}{\partial x} \right| n \right\rangle \left\langle n \left| \frac{\partial H}{\partial y} \right| 0 \right\rangle}{E_n - E_0}$$

Section 2

The Hamiltonian — Zeeman and Hyperfine Interactions

Hamiltonian in Magnetic Field

In atomic units, the molecular Hamiltonian is given by

$$H = H_0 + \underbrace{\mathbf{A}(\mathbf{r}) \cdot \mathbf{p}}_{\text{orbital paramagnetic}} + \underbrace{\mathbf{B}(\mathbf{r}) \cdot \mathbf{s}}_{\text{spin paramagnetic}} + \underbrace{\frac{1}{2} A^2(\mathbf{r})}_{\text{diamagnetic}}$$

There are two kinds of magnetic perturbation operators:

paramagnetic (may lower or raise energy) and diamagnetic (always raises energy)

There are two kinds of paramagnetic operators:

- the orbital paramagnetic and spin paramagnetic
- First- and second-order Rayleigh–Schrödinger perturbation theory gives:

$$E^{(1)} = \langle 0 | \mathbf{A} \cdot \mathbf{p} + \mathbf{B} \cdot \mathbf{s} | 0 \rangle$$

$$E^{(2)} = \frac{1}{2} \langle 0 | A^2 | 0 \rangle - \sum_{n} \frac{\langle 0 | \mathbf{A} \cdot \mathbf{p} + \mathbf{B} \cdot \mathbf{s} | n \rangle \langle n | \mathbf{A} \cdot \mathbf{p} + \mathbf{B} \cdot \mathbf{s} | 0 \rangle}{E_n - E_0}$$

In the study of magnetic properties, we are interested in two types of perturbations:

- externally applied uniform magnetic fields B
- fields generated internally by nuclear magnetic moments M_K
- Both fields are weak—well described by perturbation (response) theory

Orbital Paramagnetic Interactions: A · p

Vector potentials corresponding to uniform fields and nuclear magnetic moments:

$$\mathbf{A_0} = \frac{1}{2} \mathbf{B} \times \mathbf{r_0}, \quad \mathbf{A}_K = \alpha^2 \frac{\mathbf{M}_K \times \mathbf{r}_K}{r_K^3}, \quad \alpha \approx 1/137$$

- ▶ the external field is typically about 10⁻⁴ a.u. (NMR experiments)
- the nuclear vector potential is exceedingly small (about 10^{-8} a.u.) since:

$$lpha^2=c^{-2}pprox 10^{-4}$$
 a.u., $\mathbf{M}_K=\gamma_K\hbar\mathbf{I}_Kpprox 10^{-4}$ a.u.

We obtain the following orbital paramagnetic operators:

$$\begin{aligned} \mathbf{A}_{\mathbf{0}} \cdot \mathbf{p} &= \quad \frac{1}{2} \mathbf{B} \times \mathbf{r}_{\mathbf{0}} \cdot \mathbf{p} = \quad \frac{1}{2} \mathbf{B} \cdot \mathbf{r}_{\mathbf{0}} \times \mathbf{p} = \quad \frac{1}{2} \mathbf{B} \cdot \mathbf{L}_{\mathbf{0}} \quad \leftarrow \text{ orbital Zeeman} \\ \mathbf{A}_{K} \cdot \mathbf{p} &= \alpha^{2} \frac{\mathbf{M}_{K} \times \mathbf{r}_{K} \cdot \mathbf{p}}{r_{K}^{3}} = \alpha^{2} \frac{\mathbf{M}_{K} \cdot \mathbf{r}_{K} \times \mathbf{p}}{r_{K}^{3}} = \alpha^{2} \mathbf{M}_{K} \cdot \frac{\mathbf{L}_{K}}{r_{K}^{3}} \quad \leftarrow \text{ orbital hyperfine} \end{aligned}$$

interactions depend on angular momenta L₀ and L_K relative to 0 and R_K, respectively
 orbital hyperfine interaction expressed in terms of the paramagnetic spin–orbit operator:

$$\mathbf{A}_{K} \cdot \mathbf{p} = \mathbf{M}_{K} \cdot \mathbf{h}_{K}^{\mathsf{PSO}}, \quad \mathbf{h}_{K}^{\mathsf{PSO}} = \alpha^{2} \frac{\mathbf{L}_{K}}{r_{K}^{3}}$$

- These are imaginary singlet operators
 - they have zero expectation values of closed-shell states
 - they generate complex wave functions

Spin Paramagnetic Interactions: **B** · **s**

The spin interaction with the external uniform field B is trivial:

$\mathbf{B} \cdot \mathbf{s} \leftarrow \text{spin Zeeman interaction}$

should be compared with the orbital Zeeman interaction $\frac{1}{2}\mathbf{B} \cdot \mathbf{L}_0$ (different prefactor!) Taking the curl of \mathbf{A}_K , we obtain the nuclear magnetic field:

$$\mathbf{B}_{K} = \mathbf{\nabla} \times \mathbf{A}_{K} = \frac{8\pi\alpha^{2}}{3}\delta(\mathbf{r}_{K})\mathbf{M}_{K} + \alpha^{2}\frac{3\mathbf{r}_{K}(\mathbf{r}_{K}\cdot\mathbf{M}_{K}) - r_{K}^{2}\mathbf{M}_{K}}{r_{K}^{5}}$$

the first term is a contact interaction and contributes only at the nucleus

the second term is a classical dipole field and contributes at a distance

This magnetic field B_K thus gives rise to two spin hyperfine interactions:

$$\mathbf{B}_{K} \cdot \mathbf{s} = \mathbf{M}_{K} \cdot (\mathbf{h}_{K}^{\mathsf{FC}} + \mathbf{h}_{K}^{\mathsf{SD}}), \quad \begin{cases} \mathbf{h}_{K}^{\mathsf{FC}} = \frac{8\pi\alpha^{2}}{3}\delta(\mathbf{r}_{K})\mathbf{s} & \text{Fermi contact (FC)} \\ \mathbf{h}_{K}^{\mathsf{SD}} = \alpha^{2}\frac{3\mathbf{r}_{K}\mathbf{r}_{K}^{\mathsf{T}} - \mathbf{r}_{K}^{\mathsf{2}}\mathbf{l}_{3}}{\mathbf{r}_{K}^{\mathsf{T}}}\mathbf{s} & \text{spin-dipole (SD)} \end{cases}$$

the FC operator contributes when the electron passes through the nucleus

• the SD operator is a classical dipolar interaction, decaying as r_{κ}^{-3}

These are real triplet operators, which change the spin of the wave function

- they have zero expectation values of closed-shell states
- they couple closed-shell states to triplet states

Perturbation Theory with Zeeman and Hyperfine Operators

▶ Hamiltonian with a uniform external field and with nuclear magnetic moments:

$$H = H_0 + H^{(1)} + H^{(2)} = H_0 + H_z^{(1)} + H_{hf}^{(1)} + \frac{1}{2}A^2$$

Zeeman interactions with the external magnetic field B:

$$H_{z}^{(1)} = \frac{1}{2}\mathbf{B}\cdot\mathbf{L_{0}} + \mathbf{B}\cdot\mathbf{s} \sim 10^{-4}$$

• hyperfine interactions with the nuclear magnetic moments M_{K} :

$$\begin{split} H_{\mathrm{hf}}^{(1)} &= \sum_{K} \mathsf{M}_{K} \cdot \mathsf{h}_{K}^{\mathrm{PSO}} + \sum_{K} \mathsf{M}_{K} \cdot \left(\mathsf{h}_{K}^{\mathrm{FC}} + \mathsf{h}_{K}^{\mathrm{SD}}\right) \sim 10^{-8} \\ \mathsf{h}_{K}^{\mathrm{PSO}} &= \alpha^{2} \frac{\mathsf{L}_{K}}{r_{K}^{3}}, \quad \mathsf{h}_{K}^{\mathrm{FC}} = \frac{8\pi\alpha^{2}}{3} \delta(\mathsf{r}_{K}) \,\mathsf{s}, \quad \mathsf{h}_{K}^{\mathrm{SD}} = \alpha^{2} \frac{3\mathsf{r}_{K}\mathsf{r}_{K}^{\mathrm{T}} - r_{K}^{2}\mathsf{I}_{3}}{r_{K}^{5}} \mathsf{s} \end{split}$$

Second-order Rayleigh–Schrödinger perturbation theory:

$$\begin{split} E^{(1)} &= \langle 0 | H_z^{(1)} + H_{hf}^{(1)} | 0 \rangle \\ E^{(2)} &= \frac{1}{2} \langle 0 | A^2 | 0 \rangle - \sum_n \frac{\langle 0 | H_z^{(1)} + H_{hf}^{(1)} | n \rangle \langle n | H_z^{(1)} + H_{hf}^{(1)} | 0 \rangle}{E_n - E_0} \end{split}$$

Zeeman and Hyperfine Interactions

Diamagnetic Operators: $\frac{1}{2}A^2$

From A_0 and A_K , we obtain three diamagnetic operators:

$$\mathbf{A} = \mathbf{A}_{\mathbf{0}} + \mathbf{A}_{K} \Longrightarrow A^{2} = \mathbf{A}_{\mathbf{0}} \cdot \mathbf{A}_{\mathbf{0}} + 2\mathbf{A}_{\mathbf{0}} \cdot \mathbf{A}_{K} + \mathbf{A}_{K} \cdot \mathbf{A}_{K}$$

Their explicit forms and typical magnitudes (atomic units) are given by

$$\begin{aligned} \mathbf{A}_{\mathbf{0}} \cdot \mathbf{A}_{\mathbf{0}} &= \frac{1}{4} (\mathbf{B} \times \mathbf{r}_{\mathbf{0}}) \cdot (\mathbf{B} \times \mathbf{r}_{\mathbf{0}}) &\sim 10^{-8} \\ \mathbf{A}_{\mathbf{0}} \cdot \mathbf{A}_{K} &= \frac{\alpha^{2}}{2} \frac{(\mathbf{B} \times \mathbf{r}_{\mathbf{0}}) \cdot (\mathbf{M}_{K} \times \mathbf{r}_{K})}{r_{K}^{3}} &\sim 10^{-12} \\ \mathbf{A}_{K} \cdot \mathbf{A}_{L} &= \alpha^{4} \frac{(\mathbf{M}_{K} \times \mathbf{r}_{K}) \cdot (\mathbf{M}_{L} \times \mathbf{r}_{L})}{r_{K}^{3} r_{L}^{3}} &\sim 10^{-16} \end{aligned}$$

- These are all real singlet operators
 - their expectation values contribute to second-order magnetic properties
 - they are all exceedingly small but nonetheless all observable

Section 3

First-Order Magnetic Properties

Taylor Expansion of Energy

Expand the energy in the presence of an external magnetic field B and nuclear magnetic moments M_K around zero field and zero moments:

First-order terms vanish for closed-shell systems because of symmetry

- they shall be considered only briefly here
- Second-order terms are important for many molecular properties
 - magnetizabilities
 - nuclear shieldings constants of NMR
 - nuclear spin-spin coupling constants of NMR
 - electronic g tensors of EPR (not dealt with here)
- Higher-order terms are negligible since the perturbations are tiny:
 - 1) the magnetic induction **B** is weak ($\approx 10^{-4}$ a.u.)
 - 2) the nuclear magnetic moments M_K couple weakly ($\mu_0 \mu_N \approx 10^{-8}$ a.u.)

First-Order Molecular Properties

- The first-order properties are expectation values of $H^{(1)}$
- Permanent magnetic moment

$$\mathbf{M} = \langle \mathbf{0} | \mathcal{H}_{z}^{(1)} | \mathbf{0} \rangle = \langle \mathbf{0} | \frac{1}{2} \mathbf{L}_{\mathbf{0}} + \mathbf{s} | \mathbf{0} \rangle$$

- permanent magnetic moment dominates the magnetism of molecules
- the molecule reorients itself and enters the field
- such molecules are therefore paramagnetic
- Hyperfine coupling constants

$$\mathbf{A}_{\mathcal{K}} = \langle \mathbf{0} | \mathbf{H}_{\mathsf{hf}}^{(1)} | \mathbf{0} \rangle = \frac{8\pi\alpha^2}{3} \langle \mathbf{0} | \delta(\mathbf{r}_{\mathcal{K}}) \, \mathbf{s} | \mathbf{0} \rangle \cdot \mathbf{M}_{\mathcal{K}} + \cdots$$

- measure spin density at the nucleus
- important in electron paramagnetic resonance (EPR)
- recall: there are three hyperfine mechanisms: FC, SD and PSO
- ▶ Note: there are no first-order Zeeman or hyperfine couplings for closed-shell molecules
 - all expectation values vanish for imaginary operators and triplet operators:

$$\left\langle \text{c.c.} \left| \hat{\Omega}_{\text{imaginary}} \right| \text{c.c.} \right\rangle \equiv \left\langle \text{c.c.} \left| \hat{\Omega}_{\text{triplet}} \right| \text{c.c.} \right\rangle \equiv 0$$

Section 4

Molecular Magnetizabilities

Molecular Magnetizabilities

Expand the molecular electronic energy in the external magnetic field:

$$E(\mathbf{B}) = E_0 - \mathbf{B}^{\mathrm{T}}\mathbf{M} - \frac{1}{2}\mathbf{B}^{\mathrm{T}}\boldsymbol{\xi}\mathbf{B} + \cdots$$

The magnetizability describes the second-order energy:

$$\boldsymbol{\xi} = -\frac{\mathrm{d}^{2}\boldsymbol{E}}{\mathrm{d}\mathbf{B}^{2}} = -\left\langle 0 \left| \frac{\partial^{2}\boldsymbol{H}}{\partial \mathbf{B}^{2}} \right| 0 \right\rangle + 2\sum_{n} \frac{\left\langle 0 \left| \frac{\partial \boldsymbol{H}}{\partial \mathbf{B}} \right| n \right\rangle \left\langle n \left| \frac{\partial \boldsymbol{H}}{\partial \mathbf{B}} \right| 0 \right\rangle}{\boldsymbol{E}_{n} - \boldsymbol{E}_{0}}$$
$$= \underbrace{-\frac{1}{4} \left\langle 0 \left| \mathbf{r}_{\mathbf{0}}^{\mathrm{T}} \mathbf{r}_{\mathbf{0}} \mathbf{I}_{3} - \mathbf{r}_{\mathbf{0}} \mathbf{r}_{\mathbf{0}}^{\mathrm{T}} \right| 0 \right\rangle}_{\mathrm{diamagnetic term}} + \underbrace{\frac{1}{2} \sum_{n} \frac{\left\langle 0 \left| \mathbf{L}_{\mathbf{0}} \right| n \right\rangle \left\langle n \left| \mathbf{L}_{\mathbf{0}}^{\mathrm{T}} \right| 0 \right\rangle}{\boldsymbol{E}_{n} - \boldsymbol{E}_{0}}}_{\mathrm{paramagnetic term}}$$

The magnetizability describes the curvature at zero magnetic field:

left: diamagnetic dependence on the field ($\xi < 0$); right: paramagnetic dependence on the field ($\xi > 0$)

Zeeman and Hyperfine Interactions

Basis-Set Convergence of Hartree–Fock Magnetizabilities

- London orbitals are correct to first-order in the external magnetic field
- For this reason, basis-set convergence is usually improved
- RHF magnetizabilities of benzene:

	basis set	χ_{xx}	χ_{yy}	χ_{zz}
London	STO-3G	-8.1	-8.1	-23.0
	6-31G	-8.2	-8.2	-23.1
	cc-pVDZ	-8.1	-8.1	-22.3
	aug-cc-pVDZ	-8.0	-8.0	-22.4
origin CM	STO-3G	-35.8	-35.8	-48.1
	6-31G	-31.6	-31.6	-39.4
	cc-pVDZ	-15.4	-15.4	-26.9
	aug-cc-pVDZ	-9.9	-9.9	-25.2
origin H	STO-3G	-35.8	-176.3	-116.7
	6-31G	-31.6	-144.8	-88.0
	cc-pVDZ	-15.4	-48.0	-41.6
	aug-cc-pVDZ	-9.9	-20.9	-33.9

Normal Distributions of Errors for Magnetizabilities

Normal distributions of magnetizability errors for 27 molecules in the aug-cc-pCVQZ basis relative to CCSD(T)/aug-cc-pCV[TQ]Z values (Lutnæs *et al.*, JCP **131**, 144104 (2009))

Trygve Helgaker (University of Oslo)

Molecular Magnetic Properties

Mean Absolute Errors for Magnetizabilities

Mean relative errors (MREs, %) in magnetizabilities of 27 molecules relative to the CCSD(T)/aug-cc-pCV[TQ]Z values. The DFT results are grouped by functional type. The heights of the bars correspond to the largest MRE in each category. (Lutrase et al., JCP 131, 144104 (2009))

Trygve Helgaker (University of Oslo)

Section 5

High-Resolution NMR Spectra

High-Resolution NMR Spin Hamiltonian

Consider a molecule in an external magnetic field B along the z axis and with nuclear spins I_K related to the nuclear magnetic moments M_K as:

 $\mathbf{M}_{K} = \gamma_{K} \hbar \mathbf{I}_{K} \approx 10^{-4}$ a.u.

where $\gamma_{\mathcal{K}}$ is the magnetogyric ratio of the nucleus.

Assuming free molecular rotation, the nuclear magnetic energy levels can be reproduced by the following high-resolution NMR spin Hamiltonian:

where we have introduced

- the nuclear shielding constants σ_K
- the (reduced) indirect nuclear spin-spin coupling constants K_{KL}
- This is an effective nuclear spin Hamiltonian:
 - it reproduces NMR spectra without considering the electrons explicitly
 - the spin parameters σ_K and K_{KL} are adjusted to fit the observed spectra
 - we shall consider their evaluation from molecular electronic-structure theory

Simulated 200 MHz NMR spectra of Vinyllithium $^{12}\text{C}_2\text{H}_3{}^6\text{Li}$

Section 6

NMR Shielding Constants

Nuclear Shielding Constants

Expansion of closed-shell energy in an external field B and nuclear magnetic moments M_K:

$$E(\mathbf{B},\mathbf{M}) = E_0 + \frac{1}{2}\mathbf{B}^{\mathrm{T}}\mathbf{E}^{(20)}\mathbf{B} + \frac{1}{2}\sum_{K}\mathbf{B}^{\mathrm{T}}\mathbf{E}^{(11)}_{K}\mathbf{M}_{K} + \frac{1}{2}\sum_{KL}\mathbf{M}^{\mathrm{T}}_{K}\mathbf{E}^{(02)}_{KL}\mathbf{M}_{L} + \cdots$$

Here E⁽¹¹⁾ describes the coupling between the applied field and the nuclear moments:
 in the absence of electrons (i.e., in vacuum), this coupling is identical to −I₃:

 $H_z^{nuc} = -\mathbf{B} \cdot \sum_{\mathcal{K}} \mathbf{M}_{\mathcal{K}} \quad \leftarrow \text{ the purely nuclear Zeeman interaction}$

in the presence of electrons (i.e., in a molecule), the coupling is modified slightly:

 $\mathsf{E}_{\mathsf{K}}^{(11)} = -\mathsf{I}_3 + \sigma_{\mathsf{K}} \quad \leftarrow ext{ the nuclear shielding tensor}$

Shielding constants arise from a hyperfine interaction between the electrons and the nuclei and Zeeman interaction between the electrons and the field

▶ they are of the order of $\alpha^2 \approx 5 \cdot 10^{-5}$ and are measured in ppm

The nuclear Zeeman interaction does not enter the electronic problem

compare with the nuclear–nuclear Coulomb repulsion

Zeeman and Hyperfine Interactions

Trygve Helgaker (University of Oslo)

Ramsey's Expression for Nuclear Shielding Tensors

Ramsey's expression for nuclear shielding tensors of a closed-shell system:

The (usually) dominant diamagnetic term arises from differentiation of the operator:

$$\mathbf{A}_{\mathbf{0}} \cdot \mathbf{A}_{K} = \frac{1}{2} \alpha^{2} r_{K}^{-3} \left(\mathbf{B} \times \mathbf{r}_{\mathbf{0}} \right) \cdot \left(\mathbf{M}_{K} \times \mathbf{r}_{K} \right)$$

As for the magnetizability, there is no spin contribution for singlet states:

$$|0\rangle \equiv 0 \quad \leftarrow \text{ singlet state}$$

For ¹S systems (closed-shell atoms), the paramagnetic term vanishes completely and the shielding is given by (assuming gauge origin at the nucleus):

$$\sigma_{\mathsf{Lamb}} = \frac{1}{3} \alpha^2 \left< {}^{1}\mathsf{S} \left| r_{\mathcal{K}}^{-1} \right| {}^{1}\mathsf{S} \right> \quad \leftarrow \mathsf{Lamb \ formula}$$

Benchmark Calculations of BH Shieldings (ppm)

	$\sigma(^{11}B)$	$\Delta \sigma$ (¹¹ B)	$\sigma(^{1}H)$	$\Delta \sigma(^{1}H)$
HF	-261.3	690.1	24 .21	1 4.15
MP2	-220.7	629.9	24 .12	1 4.24
CCSD	- 1 66.6	5 49.4	24.74	13 .53
CCSD(T)	-17 1.5	55 5.2	24.62	13 .69
CCSDŤ	-17 1.8	55 7.3	24 .59	13.7 <mark>2</mark>
CCSDTQ	-170.1	554.7	24.60	13.70
CISD	- 1 82.4	5 72.9	<mark>24</mark> .49	13.87
CISDT	- 1 91.7	587.0	24 .35	1 4.06
CISDTQ	-170.2	554.9	24.60	13.70
FCI	-170.1	554.7	24.60	13.70

▶ TZP+ basis, $R_{BH} = 123.24$ pm, all electrons correlated

J. Gauss and K. Ruud, Int. J. Quantum Chem. S29 (1995) 437

M. Kállay and J. Gauss, J. Chem. Phys. 120 (2004) 6841

Coupled-Cluster Convergence of Shielding Constants in CO (ppm)

	CCSD	CCSD(T)	CCSDT	CCSDTQ	CCSDTQ5	FCI
$\sigma(^{13}C)$	3 2.23	35.91	35.66	36.10	36.14	36.15
$\Delta \sigma$ ⁽¹³ C)	361.30	356.10	356.47	355.8 <mark>5</mark>	355.8 <mark>0</mark>	355.79
$\sigma(^{17}O)$	-1 3.93	-13.03	-13.16	-12.81	-12.91	-12.91
$\Delta \sigma(^{17}O)$	<mark>63</mark> 6.01	634.55	634.75	634.22	634.52	634.35

- All calculations in the cc-pVDZ basis and with a frozen core.
- Kállay and Gauss, J. Chem. Phys. 120 (2004) 6841.

Calculated and Experimental Shielding Constants (ppm)

		HF	CAS	MP2	CCSD	CCSD(T)	exp.
HF	F	413.6	419.6	424.2	418.1	418.6	410 ± 6 (300K)
	н	28.4	28.5	28.9	29.1	29.2	28.5 ± 0.2 (300K)
H_2O	0	328.1	335.3	346.1	336.9	337.9	$323.6 \pm 6 (300 \text{K})$
	н	30.7	30.2	30.7	30.9	30.9	30.05 ± 0.02
NH_3	N	262.3	269.6	276.5	269.7	270.7	264.5
	Н	31.7	31.0	31.4	31.6	31.6	31.2 ± 1.0
CH_4	С	194.8	200.4	201.0	198.7	198.9	198.7
	н	31.7	31.2	31.4	31.5	31.6	30.61
F_2	F	-167.9	-136.6	-170.0	-171.1	-186.5	-192.8
N_2	Ν	-112.4	-53.0	-41.6	-63.9	-58.1	-61.6 ± 0.2 (300K)
CO	С	-25.5	8.2	10.6	0.8	5.6	3.0 ± 0.9 (eq)
	0	-87.7	-38.9	-46.5	-56.0	-52.9	-56.8 ± 6 (eq)

For references and details, see Chem. Rev. 99 (1999) 293.

▶ for exp. CO and H₂O values, see Wasylishen and Bryce, JCP 117 (2002) 10061

Kohn-Sham shielding constants (ppm)

		HF	LDA	BLYP	B3LYP	KT2	CCSD(T)	exp.
HF	F	413.6	416.2	401.0	408.1	411.4	418.6	410 ± 6
H_2O	0	328.1	334.8	318.2	325.0	329.5	337.9	323.6 ± 6
NH_3	N	262.3	266.3	254.6	259.2	264.6	270.7	264.5
CH_4	С	194.8	193.1	184.2	188.1	195.1	198.9	198.7
F_2	F	-167.9	-284.2	-336.7	-208.3	-211.0	-186.5	-192.8
N_2	N	-112.4	-91.4	-89.8	-86.4	-59.7	-58.1	-61.6 ± 0.2
CO	С	-25.5	-20.3	-19.3	-17.5	7.4	5.6	3.0 ± 0.9 (eq)
	0	-87.7	-87.5	-85.4	-78.1	-57.1	-52.9	-56.8 ± 6 (eq)

NMR: Mean Absolute Errors Relative to Experiment

Mean absolute errors relative to experimental (blue) and empirical equilibrium values (red)

Kohn–Sham calculations give shielding constants of uneven quality

- errors increase when vibrational corrections are applied
- Teale et al. JCP 138, 024111 (2013)

Mean absolute NMR shielding errors relative to empirical equilibrium values

Mean absolute errors (in ppm) for NMR shielding constants relative to empirical equilibrium values for H (white), C (grey), N (blue), O (red), and F (yellow). The total mean absolute errors over all nuclear types are shown by the purple bars. The DFT methodologies are arranged in the categories LDA, GGA, hybrid and OEP-hybrid. (Teal *et al.*, JCP)

Section 7

NMR Spin–Spin Coupling Constants

Direct and Indirect Nuclear Spin–Spin Couplings

The last term in the expansion of the molecular electronic energy in B and M_K

 $E(\mathbf{B},\mathbf{M}) = E_0 + \frac{1}{2}\mathbf{B}^{\mathrm{T}}\mathbf{E}^{(20)}\mathbf{B} + \frac{1}{2}\sum_{K}\mathbf{B}^{\mathrm{T}}\mathbf{E}^{(11)}_{K}\mathbf{M}_{K} + \frac{1}{2}\sum_{KL}\mathbf{M}^{\mathrm{T}}_{K}\mathbf{E}^{(02)}_{KL}\mathbf{M}_{L} + \cdots$

describes the coupling of the nuclear magnetic moments in the presence of electrons

There are two distinct contributions to the coupling: the direct and indirect contributions

$$\mathsf{E}_{\mathit{KL}}^{(02)} = \mathsf{D}_{\mathit{KL}} + \mathsf{K}_{\mathit{KL}}$$

The direct coupling occurs by a classical dipole mechanism:

$$\mathbf{D}_{KL} = \alpha^2 R_{KL}^{-5} \left(R_{KL}^2 \mathbf{I}_3 - 3 \mathbf{R}_{KL} \mathbf{R}_{KL}^{\mathrm{T}} \right) \sim 10^{-12} \text{ a.u.}$$

it is anisotropic and vanishes in isotropic media such as gases and liquids

▶ The indirect coupling arises from hyperfine interactions with the surrounding electrons:

- it is exceedingly small: $K_{\textit{KL}} \sim 10^{-16}~\text{a.u.} \sim~1~\text{Hz}$
- it does not vanish in isotropic media
- it gives the fine structure of high-resolution NMR spectra

Experimentalists usually work in terms of the (nonreduced) spin-spin couplings

 $\mathbf{J}_{KL} = h \frac{\gamma_K}{2\pi} \frac{\gamma_L}{2\pi} \mathbf{K}_{KL} \quad \leftarrow \text{ isotope dependent}$

Zeeman and Hyperfine Interactions

Ramsey's Expression for Indirect Nuclear Spin-Spin Coupling Tensors

The indirect nuclear spin-spin coupling tensors of a closed-shell system are given by:

$$\mathbf{K}_{KL} = \frac{\mathrm{d}^{2} E_{\mathsf{el}}}{\mathrm{d} \mathbf{M}_{K} \mathrm{d} \mathbf{M}_{L}} = \left\langle \mathbf{0} \left| \frac{\partial^{2} H}{\partial \mathbf{M}_{K} \partial \mathbf{M}_{L}} \right| \mathbf{0} \right\rangle - 2 \sum_{n} \frac{\left\langle \mathbf{0} \left| \frac{\partial H}{\partial \mathbf{M}_{K}} \right| n \right\rangle \left\langle n \left| \frac{\partial H}{\partial \mathbf{M}_{L}} \right| \mathbf{0} \right\rangle}{E_{n} - E_{0}}$$

Carrying out the differentiation of the Hamiltonian, we obtain Ramsey's expression:

Fermi contact (FC) and spin-dipole (SD)

- the isotropic FC/FC term often dominates short-range coupling constants
- the FC/SD and SD/FC terms often dominate the anisotropic part of K_{KL}
- the orbital contributions (especially DSO) are usually but not invariably small
- for large internuclear separations, the DSO and PSO contributions cancel

Relative Importance of Contributions to Spin-Spin Coupling Constants

▶ The isotropic indirect spin-spin coupling constants can be uniquely decomposed as:

$$\mathbf{J}_{KL} = \mathbf{J}_{KL}^{\mathsf{DSO}} + \mathbf{J}_{KL}^{\mathsf{PSO}} + \mathbf{J}_{KL}^{\mathsf{FC}} + \mathbf{J}_{KL}^{\mathsf{SD}}$$

- The spin-spin coupling constants are often dominated by the FC term
- Since the FC term is relatively easy to calculate, it is tempting to ignore the other terms.
- ▶ However, none of the contributions can be *a priori* neglected (N₂ and CO)!

Calculation of Indirect Nuclear Spin–Spin Coupling Constants

- The calculation of spin-spin coupling constants is a challenging task
- Spin-spin coupling constants depend on many coupling mechanisms:
 - 3 singlet response equations and 7 triplet equations for each nucleus
 - for shieldings, only 3 equations are required, for molecules of all sizes
- Spin-spin coupling constants require a proper description of static correlation
 - the Hartree–Fock model fails abysmally
 - MCSCF theory treats static correlation properly but is expensive
- Spin-spin couplings are sensitive to the basis set
 - the FC contribution requires an accurate electron density at the nuclei
 - steep s functions must be included in the basis
- Spin-spin couplings are sensitive to the molecular geometry
 - equilibrium structures must be chosen carefully
 - large vibrational corrections (often 5%–10%)
- For heavy elements, a relativistic treatment may be necessary.
- However, there is no need for London orbitals since no external magnetic field is involved.

Restricted Hartree–Fock Theory and Triplet Instabilities

- ▶ The correct description of triplet excitations is important for spin-spin coupling constants
- ► In restricted Hartree–Fock (RHF) theory, triplet excitations are often poorly described
 - ▶ upon H₂ dissociation, RHF does not describe the singlet ground state correctly
 - but the lowest triplet state dissociates correctly, leading to triplet instabilities

Near such instabilities, the RHF description of spin interactions becomes unphysical

C_2H_4/Hz	¹ J _{CC}	$^{1}J_{CH}$	² <i>J</i> _{CH}	$^{2}J_{HH}$	${}^{3}J_{cis}$	$^{3}J_{trans}$
exp.	68	156	-2	2	12	19
RHF	1270	755	-572	-344	360	400
CAS	76	156	-6	-2	12	18
B3LYP	75	165	$^{-1}$	3	14	21

Reduced Spin–Spin Coupling Constants by Wave-Function Theory

		RHF	CAS	RAS	SOPPA	CCSD	CC3	exp*	vib
HF	${}^{1}K_{HF}$	59.2	48.0	48.1	46.8	46.1	46.1	47.6	-3.4
CO	$^{1}K_{CO}$	13.4	-28.1	-39.3	-45.4	-38.3	-37.3	-38.3	-1.7
N_2	${}^{1}K_{NN}$	175.0	-5.7	-9.1	-23.9	-20.4	-20.4	-19.3	$^{-1.1}$
H_2O	${}^{1}K_{OH}$	63.7	51.5	47.1	49.5	48.4	48.2	52.8	-3.3
	${}^{2}K_{HH}$	-1.9	-0.8	-0.6	-0.7	-0.6	-0.6	-0.7	0.1
NH_3	${}^{1}K_{\rm NH}$	61.4	48.7	50.2	51.0	48.1		50.8	-0.3
	${}^{2}K_{HH}$	-1.9	-0.8	-0.9	-0.9	-1.0		-0.9	0.1
C_2H_4	${}^{1}K_{CC}$	1672.0	99.6	90.5	92.5	92.3		87.8	1.2
	${}^{1}K_{CH}$	249.7	51.5	50.2	52.0	50.7		50.0	1.7
	${}^{2}K_{CH}$	-189.3	-1.9	-0.5	-1.0	-1.0		-0.4	-0.4
	${}^{2}K_{HH}$	-28.7	-0.2	0.1	0.1	0.0		0.2	0.0
	${}^{3}K_{cis}$	30.0	1.0	1.0	1.0	1.0		0.9	0.1
	${}^{3}K_{tns}$	33.3	1.5	1.5	1.5	1.5		1.4	0.2
$\overline{\Delta}$	abs.	180.3	3.3	1.6	1.8	1.2	1.6	*at R _e	
	%	5709	60	14	24	23	6		

SOPPA: second-order polarization-propagator approximation

Reduced spin-spin coupling constants by density-functional theory

		LDA	BLYP	B3LYP	PBE	B97-3	RAS	exp*	vib
HF	${}^{1}K_{\rm HF}$	35.0	34.5	38.9	32.6	40.5	48.1	47.6	-3.4
CO	$^{1}K_{CO}$	-65.4	-55.7	-47.4	-62.0	-43.4	-39.3	-38.3	-1.7
N_2	${}^{1}K_{\rm NN}$	32.9	-46.6	-20.4	-43.2	-12.5	-9.1	-19.3	$^{-1.1}$
H_2O	$^{1}K_{OH}$	40.3	44.6	47.2	41.2	46.3	47.1	52.8	-3.3
	$^{2}K_{HH}$	-0.3	-0.9	-0.7	-0.5	-0.6	-0.6	-0.7	0.1
NH ₃	${}^{1}K_{\rm NH}$	41.0	49.6	52.3	47.0	50.1	50.2	50.8	-0.3
	$^{2}K_{HH}$	-0.4	-0.7	-0.9	-0.7	-0.8	-0.9	-0.9	0.1
C_2H_4	$^{1}K_{CC}$	66.6	90.3	96.2	83.4	92.9	90.5	87.8	1.2
	${}^{1}K_{CH}$	42.5	55.3	55.0	50.0	51.4	50.2	50.0	1.7
	$^{2}K_{CH}$	0.4	0.0	-0.5	-0.2	-0.3	-0.5	-0.4	-0.4
	$^{2}K_{\rm HH}$	0.4	0.4	0.3	0.3	0.3	0.1	0.2	0.0
	${}^{3}K_{cis}$	0.8	1.1	1.1	1.0	1.0	1.0	0.9	0.1
	${}^{3}K_{\rm tns}$	1.2	1.7	1.7	1.6	1.5	1.5	1.4	0.2
Ā	abs.	11.2	5.9	3.1	6.4	2.6	1.6	* at $R_{ m e}$	
	%	72	48	14	33	14	14		

Comparison of Density-Functional and Wave-Function Theory

Normal distributions of errors for indirect nuclear spin-spin coupling constants

Some observations:

- LDA underestimates only slightly, but has a large standard deviation
- BLYP reduces the LDA errors by a factor of two
- B3LYP errors are similar to those of CASSCF
- The CCSD method is slightly better than the SOPPA method

The Karplus curve

- Vicinal (three-bond) spin-spin coupling constants depend critically on the dihedral angle:
- ▶ ${}^{3}J_{\rm HH}$ in ethane as a function of the dihedral angle:

Good agreement with the (empirically constructed) Karplus curve

Valinomycin C₅₄H₉₀N₈O₁₈

- ▶ DFT can be applied to large molecular systems such as valinomycin (168 atoms)
 - there are a total of 7587 spin–spin couplings to the carbon atoms in valinomycin
 - below, we have plotted the magnitude of the reduced LDA/6-31G coupling constants on a logarithmic scale, as a function of the internuclear distance:

- the coupling constants decay in characteristic fashion
- most of the indirect couplings beyond 500 pm are small and cannot be detected

Valinomycin $C_{54}H_{90}N_8O_{18}$ One-bond spin-spin couplings to CH, CO, CN, CC greater than 0.01 Hz

Valinomycin $C_{54}H_{90}N_8O_{18}$ Two-bond spin-spin couplings to CH, CO, CN, CC greater than 0.01 Hz

Trygve Helgaker (University of Oslo)

Valinomycin C₅₄H₉₀N₈O₁₈

Three-bond spin-spin couplings to CH, CO, CN, CC greater than 0.01 Hz

Valinomycin $C_{54}H_{90}N_8O_{18}$ Four-bond spin-spin couplings to CH, CO, CN, CC greater than 0.01 Hz

