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Asking Nature ... and the computer

the appestances of the
Complox on +he Compuler and
on the bench are exoacHy

+he same

C omputotional Chemistryy

To learn about the world

@ the experimentalist asks Nature using his experimental apparatus
@ the theoretician asks the wave function W
using mathematical operators €2

@ The most important operator is the Hamiltonian
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The molecular problem

oxygen

@ The time-independent molecular Schrédinger equation
I’_‘Imolwmol — Etotwmol
@ The molecular Hamiltonian
I:ImOI = ii_N + ii_e + Ven + Vee + Vnn

Tn(R) - kinetic energy of nuclei

T.(r) - kinetic energy of electrons
Ven(r, R) - electron-nucleus interaction
Vee(r) - electron-electron interaction
Vin(R) - nucleus-nucleus interaction

vV vy vy VvYy
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Simplifications

@ The Born-Oppenheimer approximation leads to a separation of the
> electronic problem

HEWe(r;R) = E¥(R)W¥(r;R); H = T+ Vep + Ve + Vin
» ... from the nuclear problem

[T+ E¥(R)] x(R) = E“*\(R)

@ ... although many of us stop after the electronic part.
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Theoretical model chemistries

method (y)
cesD(n) 4+
MpP2 4

HF +

1 l 1
1 DZ TZ  QZ  basis(N,

4

Hamiltonian (x)

N N
~ ~ 1
Electronic Hamiltonian: H = g h(i) + 3 E g(i,j)+ Van
i=1 i#j

Computational cost: xNY
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The electronic energy

@ The electronic wave function
v(1,2,...,N)

is an extraordinarily complicated mathematical beast and generally not available in exact

form.

@ The expectation value of the electronic Hamiltonian is

E— <\u ‘H’ w> - ZN:<\II ‘ﬁ(i)) w> +;2N: (WIE(I,J)| W) + (W V| W)
=1

1=

@ ...and can be simplified.

@ The constant term is
Eo = (V |Vpp| V) = Vi, (VW) =V,

which follows from the normalization of the wave function.
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The electronic energy

One-electron energy

@ We can simplify the one-electron energy
N
3 <w ‘h(i) \u>

N
Z/\UT(1,2,...,N)ﬁ(i)\ll(l,2,...,N)d1d2...dN
i=1

E;

@ ... by noting that since electrons are indistinguishable,
all one-electron integrals have the same value

<w ’ﬁ(l)‘ w> - <\u ‘ﬁ(z)’ w> — = <w ﬁ(N)‘ w>

@ We therefore pick one and multiply with the number N of electrons

E = /v<w ‘ﬁ(l)‘ w>
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The electronic energy

Two-electron energy

@ For the two-electron energy

N
1 re
E, = 5;(W|g(171)|\|1>
i#

N
1
= 5Z/\UT(1,2,...,N)g(i,j)\u(l,z,...,/V)o|1o|2...dN

we can proceed in similar fashion.
@ Since electrons are indistinguishable,
all two-electron integrals have the same value

(WI(1,2)| V) = (V[&(L,3)[ V) = ... = (V[&(N - L, N)| V)

@ We can therefore write 1
B2 = SN (N -1){VI[g(1,2)[ V)
where 2N (N — 1) is the number of electron pairs.
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The electronic Hamiltonian
1-electron density matrix

@ The one-electron Hamiltonian can be split into a free-electron part (kinetic energy) and a
term describing the electron-nucleus interaction

h(1) = ho(1) + Ven (1)

@ The interaction operators Ve, (/) and g(i,j) are multiplicative operators, that is, they do
not contain derivatives and can be moved around inside integrals, e.g.

<VeN> - N/\I!T(I,Q,...,N) Ten()V (1,2,..., N)d1d2...dN
= N/\“/e,\,(l)\lﬂ(1,2,...,N)\Il(1,2,...,N)d1d2...dN
= /OeN(l)nl(l;l)dl
@ where we have introduced the one-electron density matrix
nl(l;l’):N/\UT(1,2,...,N)\I!(l’,2,...,N)d2...dN
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The electronic Hamiltonian

2-electron density matrix

@ The kinetic part ho is in general not multiplicative, but we can write the expection value

of kinetic energy in terms of the one-electron density matrix by a trick

<t> - N/\IIT(1,2,...,N)IA10(1)\U(1,2,...,N)d1d2...dN

_ /[%0(1’),7(1;1')]1/%1(11

@ The expectation value of the two-electron interaction

. 1
<vee> - EN(N—1)/\IJT(1,2,...,N)§(172)\U(1,2,...,N)d1d2...dN

1
E/g—(1,2)nz(1,2;1,2)d1o|2
may be expressed in terms of the two-electron density matrix
m(1,2;1,2")y = N(N — 1)/\IJT(1,2,...,N)\Il(l’,2’,...,N)d3...dN
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The electronic energy

What is needed to calculate the energy?

@ This exercise has shown that in order to calculate the electronic energy we do not need
the full wave function in terms of N electron coordinates
» |t suffices to have:
* the near-diagonal elements of the one-electron density matrix
* the diagonal elements of the two-electron density matrix.

@ Density functional theory goes a big step further and proposes that we only need the

electron density p(r) = —eZn(l; 1)
spin

Trond Saue (LCPQ, Toulouse) Second quantization ESQC 2022

11/48



The electronic problem

@ The generic form of the electronic Hamiltonian, relativistic or not, is
H= ;h(l) + 2§g(/,1) + Vi
and is supposed to specify our system.

@ The problematic term is the two-electron interaction g(i, ).

@ Let us for a moment drop this term, as well as Viyy (a number),
and consider a two-electron system

[/“7(1) + /3(2)} W(1,2) = EV(1,2)
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The electronic problem

Separation of variables

o We write the two-electron wave function as

V(1,2) = pa(1)es(2)

@ Insertion into the wave equation gives

{h(D)ea(1)} b(2) + #a(1) {h(2)pp(2)} = Epa(1)ps(2)

e Division by W(1,2) gives

(h(1)ea1)) | {H)es(d)}
1) T e F
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The electronic problem

Separation of variables

@ In order for this relation to hold for any choice of electron coordinates 1 and 2,

we must have
t {h(1)ea(D)} | (M)} _

2,(1) 25(2)
€a ;;

@ A single wave equation for two electrons
[%(1) + /“1(2)} W(1,2) = EW(1,2)
@ ... is thereby converted into two wave equations for single electrons
h(1)pa(l) = capa(l);  h(2)pp(2) = ebpp(2)

@ The situation is even simpler ...
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The electronic problem
Indistinguishability

@ Electrons can not be distinguished,
so it suffices to solve a single wave equation

h(1)ex(1) = expx(l); x=a,b,c,...
@ However, the form
V(1,2) = wa(1)¢s(2)
is not an acceptable wave function:
» electrons are identical particles

> electrons are fermions:
the wave function must be antisymmetric under particle exchange

@ This leads to the form

W(1,2) = 2 (s (Den(2) — 2p(1)pa(2))
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The electronic problem

Slater determinants

@ This result is readily generalized:
The exact wave function for a system of N non-interacting electrons is an
antisymmetrized product of one-electron wave functions (orbitals).

AR pn(W) = 1 Wea(2) ()

where A is the anti-symmetrization operator.

W(1,2,...,N) =

@ The wave function for a system of N interacting electrons is typically expanded in an
N-electron basis of Slater determinants.

@ The fermionic nature of electrons is not built into the electronic Hamiltonian.

@ This is achieved with second quantization !
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First quantization

e The quantum-mechanical Hamiltonian H is obtained from its classical counterpart, the
Hamiltonian function H = H(r,p), by replacing the dynamical variables (position r and
momentum p) by operators:

> in the coordinate representation:

B,
St=r pop=-—ih—=—ihV
r—Ff=r, p—p lar i

> in the momentum representation:

I’—)f—ha —p=
=ih—: —

@ ...in order to obey the fundamental commutator relation
[ri, pj] = ihéj;

@ Quantization leads to discrete values of the energy E
(as well as angular momentum etc.)
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Intermission: the double slit experiment

Researchers of Hitachi has reproduced the famous double-slit experiment using an electron

microscope as electron source, an “electron biprism” as double slit and a very sensitive electron
detector.

( |
SN

HITACHI
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Intermission: the double slit experiment

Researchers of Hitachi has reproduced the famous double-slit experiment using an electron
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v

/ / \ / Electron biprism

zZ1 »
SN |
Detactor E =

HITACHI

A\\_/“-_/

Trond Saue (LCPQ, Toulouse) ESQC 2022 19 /48



Intermission: the double slit experiment

Researchers of Hitachi has reproduced the famous double-slit experiment using an electron

microscope as electron source, an “electron biprism” as double slit and a very sensitive electron
detector.

Source

/ Electron biprism

Detector HITACHI

Trond Saue (LCPQ, Toulouse) ESQC 2022 20 /48



Intermission: the double slit experiment

Researchers of Hitachi has reproduced the famous double-slit experiment using an electron
microscope as electron source, an “electron biprism” as double slit and a very sensitive electron

detector.

Detector

/ /\ / Electron biprism

Source

HITACHI

This information is contained in the wave function.

Trond Saue (LCPQ, Toulouse) Second quantization ESQC 2022 21 /48



Interpretation of the wave function

@ The wave function is interpreted as a probability amplitude.

@ For a system of N electrons the quantity
wi(1,2,... N)V(1,2,...N)d1d2...dN

represents the probability of finding of finding the electrons in the infinitesimal volumes
dl, d2,...dN about the space/spin coordinates 1, 2,... N

@ This leads to the normalization condition

/\UT(1,2,...,N)\U(1,2,...N)d1d2...dN:1
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Second quantization
@ The electron density can be obtained from the quantity
p(l):N/IIJT(1,2,...,N)\IJ(1,2,...N)d2...dN
@ The electron density integrates to the number of electrons
/p(l) dl=N.
@ We now introduce an operator
= [ Wi

@ ... in terms of operators 1)T(1) and ¢)(2), creating and annihilating electron density
amplitude at position 1, respectively.

@ We want the total operator N to return the particle number N,
when acting on an object representing an N-electron system.
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Field operators

@ In order to represent electrons (fermions) field operators must obey the following
anti-commutation relations

.

DR+ 012071 = 0

PP = iR+l = o

PmR] = dPE) M) = s1-2)

@ Bosons obey corresponding commutator relations.
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Expansion of field operators

M

@ Suppose that we have some orthonormal orbital basis {¢p(1)},_;

/@m%Mﬂawmw&f%q

@ We now expand the field operators in this basis
h(1) = Z@q Dag: 4f(1) Z‘Pq
@ We find the expansion coefficients 3, and é,t by

3= [ eb0iWds 8= [F(a)e1)dL
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Expansion of field operators

@ This is perhaps easier seen using bracket notation, for instance
(1) =D g3, = 1) =D leq)ap
q q

@ ... such that

<80p|12> = Z (‘Pp|90q> aq = Zépqéq = ap
q

q

@ The expansion coefficients 3, and QI, are operators as well:

» 3, is denoted an annihilation operator

> é;f, is denoted a creation operator and is the conjugate of a,
T

» which means that (é;g) =23
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Annihilation and creation operators

@ The algebra of the annihilation and creation operators follows from the algebra of the field

operators. We have
D)., =51 -2)

@ .. from which we deduce

[ap,agL [/QDP( dl/w )l )dz}

@ Remen bering that the integra| Signs are like summation Slgns we obtain
3 AT} = //np Yoq( bt (2 } dld?2
dp, d
[ ps 9q p q ( ), ¥'(2)

_ / / oh(Dpa(2)5(1 — 2)d1d2

— [ eha)ea1)dL = 5
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Algebra of annihilation and creation operators

@ We just found that (using an orthonormal basis)
POAR| =s0-2) = |a.3l] =
@ In a similar manner we find that

P.0@], = 0 = [ahal] = o

+

PR, =0 = [l = 0
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Occupation-number vectors

@ Let us consider a simple example:
We have 4 orbitals {1, 2, 3, 04} (M=4).

e With two electrons (N=2) we can build ( g >: 6 determinants. One example is

(1,2) p3(1) ‘

f‘¢1(2 ©3(2)

@ or, in short-hand notation
®(1,2) = |13

@ We can map this into an occupation-number vector (ONV)
Pk (1,2) = [p1p3]  —  |k) = |ki, ko, ks, ka) = [1,0,1,0)

@ ... where occupation numbers k, are either 0 or 1,
since electrons are fermions.
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Occupation-number vectors
Vacuum state and annihilation

@ Another example is

e1(1)  w2(1)  pa(1)
©1(2)  92(2)  a(2)
©1(3)  ¢2(3)  a(3)

@ A special occupation-number vector is the vacuum state

dn(1,2,3) = = |prp2pal  —  |m)=11,1,0,1)

V3l

lvac) = [0,0,0,0)

@ Annihilation operators reduce occupation numbers by one
and therefore all give zero when acting on |vac)

ap|vac) =0; Vap
@ This even serves as a definition of the vacuum state.
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Occupation-number vectors

Creation operators

o Creation operators increase occupation numbers by one

al lvac) = 1,0,0,0)
ablvac) = 10,1,0,0)
al|vac) = 10,0,1,0)
3 lvac) = 10,0,0,1)

@ ..but, since they refer to fermions,
occupation numbers can not be greater than one

al11,0,0,0) = alal [vac) = 0
@ This follows directly from the special case

[a* al

— atat 1 atat — oatat —
s p]+ = apa, +apa, = 2apap =0
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Occupation-number vectors
More creation

@ We can build ONVs corresponding to N = 2
4110,1,0,0) = [1,1,0,0) = a!4 |vac)
@ Using the algebra of creation operators we find
3 11,0,0,0) = 453l |vac) = —ala] |vac) = —|1,1,0,0)

@ ..showing how the fermion antisymmetry is built into the operators.
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Fock space

..or occupation-number space

@ Occupation number vectors (ONVs) have the general form
‘k)I‘kl,kz,...,kM>; kaOOI’].
and reside in a Fock space of dimension 2M.

@ Any ONV can be generated from the vacuum state
M

k) = T (35)" vac)

p=1
@ An inner-product in Fock space is defined by

M
(Km) = Sm = [ [ 0k,
p=1
and is one if all occupation numbers are identical, zero otherwise.
@ A special case
(vac|vac) =1
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Fock space

..or occupation-number space

@ The dual vector (k| is obtained by conjugation, e.g. starting from
k) = [1,0,1,1) = 3] a{a] |vac)

@ ... we have '
<k‘ = <1?0’ L 1’ = <V3C‘ <§I§£§Z> = <V3C‘ 343331

» notice the change of operator order under conjugation
» annihilation operators become creators when operating to the left
> the dual vacuum state can therefore be defined by

(vac| é;f, =0; Vé;f,
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The number operator

@ Notice that in Fock space there is no restriction on particle number N, except N < M.

N:/zﬁ(lw(ndl

e Expanding the field operators in some orthonormal orbital basis {gpp(l)} _, we obtain

N = /Jﬂ(l)uiu)dl => {/@,(1) }aTaq Za,,qa g = Zafap

Pq

@ We now return to the operator

@ ... which defines the number operator N. For instance
N|1,0,1,1) =3|1,0,1,1)

@ The occupation number vectors are eigenvectors
of the number operator.
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Counting electrons

@ The field operators do not relate to specific electrons; rather, they sample contributions to
the electron quantum field in space

@ Quantum field theory explains why electrons are the same everywhere:
they all belong to the same field !
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The number operator

and commutator algebra

@ Suppose that

e What about Na;r, k) 7

@ We can rewrite this as

@ We may use a commutator rule such as

N

@q+mqs

0w
e
I
oY
>
o>
Il
>
0>
(el
|
>
oy
0>
+
>
el
0>
I
(el
>
o
Il
>

[AB, q =A
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The number operator

and commutator algebra

@ The algebra of creation and annihilation operators is, however, expressed in terms of
anti-commutators

[ag,agh =0; [3p, 3], =0; [apvam = Opq
@ We therefore rather form the rule

{AB, C} = ABC — CAB = ABC+ACB — ACB - CAB =

>
o>
[l

@ ... which gives

@ Our final result is thereby
i3 k) = (a5 + [A,3] ) k) = a) (A +1) k) = (W + 1) 8 [K)
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The number operator

and commutator algebra

o What about Na, [k) ?

@ We can write this as
Wiz k) = (3,0 + [1,3,] ) k)
@ We can proceed as before, but instead we note that
- [A8] = (AB-8A) =8'A" ~A'8' = A8

(hermitian operator)

v
=
i
Il
=[]
—
>
o —+
>
T
S~—
-
Il
=

@ ... so that

N, k) = (spﬂl - [N, QLD k) = 3, (N - 1) k) = (N —1)3, k)
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Counting electron pairs

@ Let us have a look at the second quantization operator

Npair = /w*(l)z/ﬁ(z (2)eh(1)d1d2

- [ dwde r(z)sos<1)d1d2}éls§érés

pqrs

- 33 {[dwema [ <Pq(2)90r(2)d2}

pqrs

25 {6p55q,}apaqa,as— E apaqaqap

pars

@ Operator algebra

@ ...shows that it counts electron pairs

A~ 1. /4
Na,-,:fN(N—l)
P 2
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What does the second-quantized electronic Hamiltonian look like?

@ The first-quantized form
N 1N
H:; )+2§g(’71)+VNN

@ The second-quantized form
A= [ had+ ;5 [0 @) 2d@)5d + Vay

(notice the order of electron coordinates in the two-electron operator)

@ This gives a formula for finding the second-quantized form of any one- and two-electron
operator.
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What does the second-quantized electronic Hamiltonian look like?

@ The one-electron part

~

B — / O A(1)H(1)d1

e = 5 [0 e 20@ )0

@ Dirac notation: V,q.s = (wppqlerps) = /gaf,(l)gpi,(z)g(l,2)<p,(1)gas(2)d1d2

© Mulliken notation: g = (¢seelirer) = [ #h(1)el 2)2(1. 2 (1) (2102
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What does the second-quantized electronic Hamiltonian look like?

@ The final form is
thqa ag + 5 Z Vg, ,sa af asa, + Vi

pq,rs

@ This is a very convenient operator form:
» The fermion antisymmetry is built into the operator
» The operator is expressed in terms of one- and two-electron integrals,
which are the basic ingredients of quantum chemistry codes
» The form is universal; there is no reference to the number of electrons !

@ ..but note that it is a projected operator:
» it “lives” in the space defined by the orbital set {(pp}gil
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The electronic energy in second quantization

@ The electronic Hamiltonian is

~ i 1 At A A
H= Z hpqaf,aq + 5 Z qu7,sa;r)agasa, + Vi
Pq

pq,rs

@ The wave function is now expressed as a linear combination of occupation number vectors

(limited to occupation N)
0) = Clk)
k

@ The energy is given as the expectation value
A~ 1
E = (0]H|0) =" hpaDpg + 5 D Voarsdoars + Vi
Pq pq,rs

» Matrix elements hpq and Vg s depends on the operator,
but are independent of wave function

» Orbital density matrices D,q and dpq s are independent of operator,
but depend on wave function
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Orbital density matrices

@ One-electron orbital density matrix

» dimension: M?
» contains all information needed to calculate expectation values of one-electron operators
» diagonalization gives natural orbitals

@ Two-electron orbital density matrix

» dimension: M*
» contains all information needed to calculate expectation values of two-electron operators

M

e Data reduction: C: ( N

) —~D/d: M2/M* 1
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Summary

e Second quantization starts from field operators (1), 1/(1) sampling the electron field
in space. It provides a very convenient language for the formulation and implementation

of quantum chemical methods.

@ Occupation number vectors (ONVs) are defined with respect to some (orthonormal)

orbital set {@p(r)}z/’:]_

@ Their occupation numbers are manipulated using creation- and annihilation operators,

Q;r, and 3p, which are conjugates of each other.

@ The algebra of these operators is summarized
by anti-commutator relations

ES agL =0 [3p,3], =0 |

and reflects the fermionic nature of electrons.
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Summary

@ One-electron operators are translated
into their second quantized form by

> — /¢T(1)f(1)¢(1)d1 =3 (o

Pq

4Pq> 323’17

@ Two-electron operators are translated
into their second quantized form by

36 = [P e 2i@be

1 A atata a
= 5D (eppal8lerps) 3,335,
pq,rs

@ Nice features is that:

» Antisymmetry is automatically built into the operators
» They are expressed in terms of integrals,
building blocks of quantum chemistry codes
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Summary

@ The second-quantized electronic Hamiltonian is expressed as

@ The electronic energy becomes

X 1
E— <o ’H‘ o> =" hpaDpg + 5 D Voasdoas + Van
Pq Pq.rs

@ which nicely separates

» operator content,
in terms of integrals hpq and Vg s, and

» wave function content,
in terms of orbital density matrices Dpq and dpq, s
(data compression)
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