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Where we stopped last time

@ Second quantization starts from field operators ¢)T(1), ©(1) sampling the electron field
in space. It provides a very convenient language for the formulation and implementation
of quantum chemical methods.

@ Occupation number vectors (ONVs) are defined with respect to some (orthonormal)

orbital set {Spp(r)}z/’:]_

@ Their occupation numbers are manipulated using creation- and annihilation operators,

27;[, and 3p, which are conjugates of each other.

@ The algebra of these operators is summarized
by anti-commutator relations

[aj,, ag} =0; [3p,3g], =0; [fap, sg] = Opq
+ -
and reflects the fermionic nature of electrons.
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What about spin ?

@ By convention, the z-axis is chosen as spin-axis such that the electron spin functions
|s, ms) are eigenfunctions of 32 and 3,

§2|s,ms) =s(s+1)[s,ms); 3, |s, ms) = mg|s, ms)

@ It is also convenient to introduce step operators
5 =5 +i5 and 5_ =5, — /5,

51 |s, ms) = \/s(s+1)— ms(ms £ 1) |s, ms £ 1)

o Electrons are spin—% particles with spin functions denoted |a) = ‘%, %> and |8) = ‘%, —%>
The action of the spin operators is summarized by

| 3 & 5 &
o) | 3ley  3la) 0 1B)
B) | 218) —318) la) 0
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Spin in second quantization

@ We may separate out spin from spatial parts of the creation-
and annihilation operators, giving

At af A A & A A af _ .
[apg, £ L= 0; [4po, a)qc,/]Jr =0; 8pos 80, L= OpgOo0’;

@ We may also separate out spin in the electronic Hamiltonian.
For the (non-relativistic) one-electron part we obtain

I:Il = ZZ(@PU|E|¢QU/>§ZU§<JU’

Pq o,0’

DD (welhleg)(olo’) 3o a0

pPq o0’

S el blea)Soor 3he gor

Pq o,0’

Z(‘Pp|h|§0q pa: Zapgaqo

pq
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Spin in second quantization

@ For the (non-relativistic) two-electron part we obtain

N 1 N
Foo= 530 Y (eeopatlaled’ ost)apoalrasr o

pars oo’ T’

1 )
= 52 > (eevaldleres)iolo’)(rlr)alsalracriarer

pqrs oo’ T/

1 N
= 5 Z Z <()0P(pq|g|§0r(,0s>60-0-157—7-/32;0-327— dsr/ dro’

pars oo’ T/

1 o
= 3 Z(‘Pp@q|g|<ﬂr905>epqyrs; €pq,rs = Z 3203273573'0

pqrs oT
@ Operator algebra
a;taa:grasr/aro’ = _a;oa;-raro'as‘r - a;r)aaraajyram' - 6qr50'7'a;r)o-asr

@ .. shows that
€pq,rs = EprEqs — OrqEps
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Hartree-Fock theory in second quantization

Reference ONV and orbital classes

@ In first quantization language the Hartree-Fock method employs a single Slater
determinant as trial function.

@ In second quantization we start from some orthonormal orbital basis {gop}l’y:l , which
defines our Fock space, and build a reference ONV in that space

0) = aial...al |vac) =11,1,1,1, 0,...,0)
N—— e N —
N M—N

@ For further manipulations it is useful to introduce orbital classes:
» occupied orbitals: 7,j, k, /...
» virtual (unoccupied) orbitals: a, b, c,d, ...
» general orbitals: p,q,r,s,...
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Hartree-Fock theory in second quantization

Hartree-Fock energy

ats 1 atats a
= (0|H|0) = (0| Z hpanaq + 5 Z qu,,sa;ga];asa,\@ +V
pq,rs

@ One-electron energy
ElHF = Z hpq<0|5;3q|0>

» The operator 3, tries to remove an electron to the right;
this is only possible if orbital g is occupied.

> Likewise, the operator élﬁ tries to remove an electron to the left;
this is only possible if orbital p is occupied.

» The final ONVs created left and right by these processes must be the same
(to within a phase) for a non-zero inner product.

@ We conclude
= Z hii
i
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Hartree-Fock theory in second quantization

Hartree-Fock energy

@ Two-electron energy
HF __ A
E" = E Viq,rs O|apaqasa,\0>

pqyrs
» Operators 3, and 3s both try to remove an electron to the right;
orbitals r and s must be occupied, but not identical
> Operators 3 ap and 3 a both try to remove an electron to the left;
orbitals p and g must be occupied, but not identical
> The final ONVs created left and right by these processes must be the same
(to within a phase) for a non-zero inner product.
> There are two possibilites

1 ata afata a
B = 2> { Vi (0la3]3:ai10) + Vyi(0/3]a[2:3(0) |

@ The final expression is

1
E" = 5 Z{VU,U Vit = ) Z<‘Pi‘PJ’ | wivs)

i#j ij
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Hartree-Fock theory in second quantization

Stationarity condition

@ The Hartree-Fock energy is a functional of the occupied orbitals
A 1
E" i}l =D (pilhloi) + > > (wiei || 9i0s) + Van
i ij
@ .. and is minimized under the constraint of orthonormal orbitals
(pilgs) = 0
@ This is normally done by the introduction of Lagrange multipliers

L o}l = E" [{oi}] - Z i {{pilews) — 05}

@ Is it possible to achieve minimization without constraints ?
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Hartree-Fock theory in second quantization

Parametrization

@ Suppose that we generate the optimized orbitals by transforming the initial orthonormal
M
set {¢p}pe1

Op = Z PqCqp
q

and use the expansion coefficients {cp} as variational parameters ?
@ In order to preserve orthonormality the expansion coeffients must obey

(@plBq) = Z@r‘-‘rp‘@scsq) = Z {prlips) CrpCsq = Z CrpCrg = Opg
\,—/ -

rs rs
Ors

@ ..which means that they must form a unitary (orthogonal) matrix for complex (real)
orbitals: CTC =1

e This adds £ M(M + 1) constraints,
and so we can not vary the coefficients freely.
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Hartree-Fock theory in second quantization

Matrix exponentials

@ We can, however, circumvent these constraints by writing the matrix as an exponential

of another matrix
U = exp(A)

@ You recall (I hope) that the exponential of a (complex or real) number is

o _k
R a
exp(a) = e? = Z o
k=0
@ We have some simple rules, e.g.
eleb =P, = eme? =1

@ With matrices we have to be more careful, because, like operators,
they generally do not commute.
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Hartree-Fock theory in second quantization

Matrix exponentials

@ In perfect analogy with numbers we define

exp(A) = i

»‘b

@ We next consider the product

oo o0 Am B"
exp(A) exp(B) = ZOZO ml ol
@ We rearrange to collect contribution of order k = m+n
Am Bk m oo 1 k k
co(Mon() =35 A B S LS (K ) ans
k=0 m=0 k=0 =" m=0

b — 2P by recognizing that

(o4 8 Z( )re ()= e
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Hartree-Fock theory in second quantization

Matrix exponentials

@ With matrices this does not work, for instance
(A+ B)? = A2 + AB + BA+ B? + A% + 2AB + B>

since, generally [A, B] #0
e However, [A,(—A)] =0, so we can use this rule to obtain that

exp(A) exp(—A) = I [exp(A)] " = exp(—A)
o It is also straightforward to show that
exp(A)Jr = exp (AT>
@ A unitary matrix is defined by U~ = U' which is obtained by using an anti-Hermitian A
Al = —A
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Hartree-Fock theory in second quantization

Exponential parametrization

e We avoid Lagrange multipliers (constraints) by expressing the optimized orbitals as
Gp = Z‘Pqqu? U=exp(—k); Kl =—k
q

@ | will now show that this corresponds to writing the optimized HF occupation-number

vector as
‘O> = exp (—k)|0)

@ where & is an orbital rotation operator with amplitudes xpq

A I\T ~ Lk
R = E Hpqapaq, qu = K‘qp
Pq
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Hartree-Fock theory in second quantization

Exponential parametrization
@ We start by the expansion

|0) = exp (—7) |0) = exp (—R) aIa; e a}LV |vac)
@ Next, we insert exp (k) exp (—k) = 1 everywhere

) = exp(~R)ajexp (&) exp (~7)al exp (7)...exp (~F) aexp (7) exp (~7) |vac)
= 515; .. 57\, exp (=) |vac); 3! = exp(—Rr)al exp (&)

@ First, we note that

Rlvac) = Z npqa;f,aq |vac) = 0;
Pq

1
= exp (—R) |vac) = (1,,g+ 5;%27...) |vac) = |vac)

Trond Saue (LCPQ, Toulouse) Second quantization ESQC 2022 14 /37



Hartree-Fock theory in second quantization

Baker-Campbell-Hausdorff expansion

Baker Campbell Hausdorff

@ We next use the Baker-Campbell-Hausdorff expansion

oo

1 1
exp(A)B exp(~A) = B+ [A, B + 5 [A,[A Bl + .. = ; A B|™®
e Proof: We introduce f (\) = exp(AA)B exp(—AA) and note that
» f(0)=8
» (1) = exp(A)Bexp(—A)
> Taylor expand: f(1) = f (0) + £ (0) + 3" (0) + ...
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Hartree-Fock theory in second quantization

Transformed creation operator

@ Using the BCH expansion with A = —& and B = al we get
NT o N T A\ T ~ .'. ]_ ~ ~ _'_
al =exp(—R)alexp(R) =al — [/@, ar] + 5 [/@, [/@, ar” - ...

@ To evaluate the commutator [/?;, aﬂ we use our rule

@ ..which gives

] = S ] = S ]~ ] =
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Hartree-Fock theory in second quantization

Transformed creation operator

@ We proceed to the next commutator
~ ~ ~ 2
[””7 [“’ ai” =D rpr [“v "’L] =D riprrigoal = (5 ) gr 24
P Pq q

@ We start to see a pattern

5= 31_[&,ai]%[e,[g,ai”_...
= ar_ZK,p,vQI,‘i‘ Z(Hz)qr II_
p q

1

2
— ) 1 2 T
= Z pr—ﬁp,+§(m)pr—... a,

p
— E T _
_ ap {exp [ H]}pr
P
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Hartree-Fock theory in second quantization

Transformed creation operator

@ To connect to orbital rotations we recall the formula
o= [ e
@ ...from which we obtain
5l => ab{exp[-rl}, =) / $T(1)p(r) {exp [—]},, d’r = / DT ()@ (r)d’r
p p

@ which provides the connection

0) =exp(—)[0) = & = ¢p(r){exp [k},
P
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Density functional theory in second quantization

The central quantity of DFT is the (charge) density p(r)
It is an observable and therefore expressible as an expectation value

N
p(r) =—e <w > (- w>
i=1
In second quantization the charge density operator is
_e/1/AJT ()& (F =) () dr = —ez <<pp '63 (r—r) ’ cpq> abag
pq
= —¢€ Z Qpq (r 3 pdq; Qpg (r) = sol (r) ¢q (r)

b

Just as in Hartree—Fock we may choose an exponential parametrization for the
Kohn-Sham determinant

|0) = exp (—#)[0)
@ such that the charge density is parametrized as
6) = e X a0

pr k)= —EZ% < ‘apaq
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Wave-function based correlation methods

@ Hartree-Fock theory is the starting point for wave-function based correlation methods in
that
E”exact” _ EHF 4 georT

@ This is where second quantization really shows its teeth

@ The Configuration Interaction (Cl) method employs a linear parametrization

|Cl) = (1 + C) |HF); C= Zc azai + — Zc,j’baTabaja,
ijab
@ The Coupled Cluster (CC) method employs an exponential parametrization
|CC) = exp (?’) |HF); T= Z tfalai+ - Z tPalalajai +

ijab
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Matrix elements

o Calculating the matrix element of a one-electron operator Q
for a two-electron system (N = 2):

Qomn = (m|Qn) ZQPq m|a agln); |m) =alal|vac); |n)=alal|vac)
@ .. amounts to evaluating the vacuum expectation value
(vac|a5a,a;f,aqalaf,|vac>
@ Based on the relations
aplvac) =0, Va, (vac| é;f, =0; Vég

@ Our strategy will be to move creation operators to the left and annihilation operators to
the right, that is, we bring the operator string on normal-ordered form.
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Matrix elements

@ We start by using our commutator rule

[Aé,é] :A[E,CL— [A,CL@

@ .. to obtain
(vac|asa,a;r,aqalaﬂ|vac> = (vac| (a},asa, + [asar7 a;r,D agalal|vac)

(vac| (as [a,, a;r,}+ — [as, a;r,]+ a,> aana“vac)

= (vac|(asdmp, — dspar) aanaZ|vac>
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Matrix elements

@ We next develop an analogous commutator rule
[A.BE] = [AB] ¢-B[A(]
+ +
@ .. such that
(vac|asa,a;f,aqala:f,|vac> = (vac|(asérp — dspar) (aIaIaq + [aq, alaz]) |vac)
= (vac|(asérp — dspar) <[aq, aI] . al — a;f [aq, az] +) |vac)
= (vac|(asérp — dspar) (éqtaz — aiéqu) |vac)
@ The final expression is
(vac|asa,a,T,aana,T,|vac> = 81p0qtOsy — OrpOqulst — OspOqtOry + OspOqulrt
@ .. and the matrix element evaluates to
an = <§0r§05|ﬁ‘§0t§0u> = Qrt su — Qru(sst - Qsl'(sru + qu(srt

@ We quickly run out of steam; we need more powerful tools !
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Let us bring out some bigger guns...

(Wick'ed guys)
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Normal ordering
Definition

e Writing an operator string O on normal-ordered form {@} corresponds to moving all
creation operators to the left and all annihilation operators to the left as if they all

anticommuted, e.g.

{apaq} = apag {3232} = 3232

{af,aq} = a;r,aq; {apaz,} = —agap

@ A more complicated example is
{asa,af,aqaia:‘,} = {af,asa,aqaiaf,} =—

@ The vacuum expectation value of a normal-ordered operator string is zero
<vac HO}’ vac> =0

Second quantization

a,‘;alasa,aqa,t} = a};aIaZasa,aq

ESQC 2022 25 /37
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Contraction

@ A contraction is defined as
(!
xy = xy — {xy}

@ There are four possible combinations

[Tt Tt Tt Tt Tt

—

apag = apag — {apagt = apag — apag =

,,3T_‘|9 = aba, — ala = ala, — aba, =

pdq = dpdq pdq = dpdq pdq =

[y T T T T

apag = apag — {apagy = apag + agap = Opq

@ The only non-zero contraction occurs when an annihilation operator appears to the left of
a creation operator.
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Wick’s theorem

An operator string may be written as a linear combination of
normal-ordered strings.

ABC...XYZ = {ABC...XYZ}
i
+ 0> {ABC...XYZ}
singles
—F— 1
+ Y. {ABC...XYZ
doubles
_|_

Only fully contracted terms contribute to vacuum expectation values.
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Wick’s theorem: example

@ Returning to our one-electron expectation value we find that
to atat P e 0t
(vaclasarapaqaja,|vac) = (vaclasarapaqa;a,|vac)

(vac|as:';e|:;laqaiaj,| vac)

_l’_

+ (vac|asa QTET3T|VQC>
sdrdpdqdtdy
+ (vac|asa,a;aqazaf,|vac)

e Signs of fully contracted contributions are given by (—1)*
where k is the number of crossing lines.
@ We again obtain

(vac|asa,a;r,aqa1af,|vac> = 61p0gtOsy — OrpOqudst — OspOqtOru + OspOqudrt

Trond Saue (LCPQ, Toulouse) Second quantization ESQC 2022

28/37



Matrix elements

@ We have seen that any matrix element over a string of creation- and annihilation
operators can be expressed as a vacuum expectation value and then evaluated using
Wick's theorem, e.g.

Qonn = (m|Qn) = Z Qpq(vac|asaralagal al|vac)
Pq

@ However, with an increasing number N of electrons the operator strings become long and
the evaluation tedious.

@ We need even bigger guns
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Let us look at the vacuum state

@ We have seen that the vacuum expectation value of a normal-ordered string is zero.
@ A prime example is

(vac|H|vac) = vac|Zh qa ag+ = Z Vq,sa a asa,|vac> =0

pq,rs

(we dropped V)

@ The vacuum state can be defined as the “empty” state
|vac) =|0,0,0,...,0),
@ ..alternatively as the occupation-number vector for which

ap|vac) =0; Va,
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Particle-hole formalism

@ Let us consider the occupation-number vector |0) corresponding to some reference
determinant &g, e.g. the Hartree-Fock determinant.
@ As before we introduce orbital classes with respect to this reference
» occupied orbitals: 7,j, k, /...
» virtual (unoccupied) orbitals: a, b, c,d, ...

@ We observe the following
a,|0) = a,T |0) =0; Va,, a:-r

» with respect to the reference a, and a}L act as annihilation operators
> their conjugates al and a; act as creation operators
» al creates an electron (particle), whereas a; creates a vacancy (hole)

@ Using Wick's theorem, we will express all operators in terms of normal-ordering with
respect to the new reference, the Fermi vacuum. This also changes the zero of energy.
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The normal-ordered electronic Hamiltonian

One-electron part

@ Using Wick's theorem the one-electron part of the Hamiltonian becomes
N ryl
P =3 honahag = 3 e ({aha0}o + {53},
pq Pq
@ Recall that the only non-zero contraction appears when a annihilation operator appears to

the left of a creation operator
@ This only happens when both p and g refer to occupied orbitals, giving

By = Z hpq ({alaq}o + 5pq(5p6i> — Z e {aLaq}O + Z hii
Pq pPq /
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The normal-ordered electronic Hamiltonian

Two-electron part

@ For the two-electron part
~ 1
H= 5 Z quJsaLaLasa,
pq.rs

non-zero contractions only occur if p or g refer to occupied orbitals such that the
corresponding operators é,T, and é:r, are annihilators with respect to the Fermi vacuum.

@ Non-zero double contractions are

|
{az,ai,asa,} =  —0peiOpsOqejiqr
0

ToT
apagasar = 0pciOprigejdgs

(e,
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The normal-ordered electronic Hamiltonian

Two-electron part

@ Non-zero single contractions are

1 =
{a;f,a:;asa,}o = — {a;f,asaga,}o = —Opcilps {agar}o
e
{ } = {a;f,a,agas}o = Opeifpr {ahas},
=
{a;f,a:f?asa,} = 4eifqs {a);a,}o

1
= _{‘9;‘923@5}0 = _5q6/5qr{azas}o
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The normal-ordered electronic Hamiltonian

..almost there
@ From the non-zero double contractions we get

1 1
5 Z Vioa,rs (5p€i5pr5q€j5qs - 6p6f5p56q€j6q') = 5 Z (ij»fj - Vij,ji) = E2HF

Pq,rs ij

@ From the non-zero single contractions we get

% Z Vig,rs (5pei5pr {aias}o — Opcilps {aga,}()

pq,rs
1
+ 5 Z qu,rs (5q€i5qs {azar}o - 6q€i6qr {3;35}0)
pq,rs
1 1
- 5 Z ‘/iq,is {azas}o - 5 Z \/iq,ri {agar}o
iq,s iq,r
1 ; 1 ;
+ 5 Z Vpi,ri {apar} - E Z Vpi,is {apas}o
pi,r pi,s
_ i
= Z (Viisai = Vpiyia) {apaq}o
pais
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The normal-ordered electronic Hamiltonian

Final form

@ The final form of the electronic Hamiltonian is

= Z (hpq + Z (Voiai = Vibi,ig ) {alaq}o + % Z Viq,rs {a;agasar}o

pa,rs

A

= E —|—HN

@ where appears the HF energy
E O|H|O Zhu+ Z(Vuu ’JJ'

@ and the normal-ordered electronic Hamiltonian

. 1 ; :
Hn = Z foq {aitaq}o *3 Z Voa,rs {a:{,agasar}o = H = {0/HD)
pq

pg,rs

e This result can be generalized: Qy = Q — (0/Q]0)
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Final words

@ The second quantization formalism provides a powerful language for the formulation and
implementation of quantum chemical methods

@ Matrix elements over second quantized operators split into integrals over the operator in
the chosen orbital basis and a vacuum expectation value.

@ For the formulation of wave-function based electron correlation methods second
quantization becomes an indispensable tool.

@ Further sophistication is provided by Wick's theorem, the particle-hole formalism and ...
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