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Problem with Wavefunction Methods




—arly Local Correlation Approaches

The idea of local correlation is almost as old as correlation theory itself and has been

suggested long before even Hartree-Fock calculation on medium sized molecules were
feasible

O Sinanoglu Adv. Chem. Phys., 1964, 6,315
RK Nesbet, Adv. Chem. Phys., 1965, 9, 321

it took almost 20 years before it was taken up again. An important paper is from Cullen
and Zerner (received no attention, perhaps because it was in a semi-empirical context)
JM Cullen, MC Zerner J. Chem. Phys., 1982, 77, 4088

Followed by the pioneering work of Pulay and Saebo (CISD, MP4)

P Pulay, Chem. Phys. Lett. 1983, 100, 151.; S Saebo, P Pulay, Chem. Phys. Lett. 1985, 113 13.
P Pulay, S Saebg, Theor. Chim. Acta 1986 69, 357.; S Saebo, P Pulay, J. Chem. Phys. 1987, 87 914.

And the early coupled cluster work (mostly CCD)

RJ Bartlett, GD Purvis, Int. J. Quantum Chem. 14, 561 1978 WD Laidig, GD Purvis Ill, RJ Bartlett, Int. J.
Quantum Chem., Symp. 16, 561 1982. WD Laidig, GD Purvis Il RJ Bartlett, Chem. Phys. Lett. 97, 209

1983; WD Laidig, GD Purvis lll RJ Bartlett, J. Phys. Chem. 89, 2161 1985; W Foérner, J Ladik, P Otto, J
Cizek, Chem. Phys. 97, 251 1985 W Foérner, Chem. Phys. 114, 21 1987 M Takahashi J Paldus, Phys. Reuv.
B 31, 5121 1985

... given the hard- and software limitation at the time real applications were not feasible



Local Correlation: Importance of Accuracy Goals

The idea of local correlation methods is:

v preserve - as much as possible - the accuracy of wave function based correlation
approaches.
v Reduce the unfavorable scaling with system size - ideally to linear

HOWEVER

= One will only get wave function based ab initio quality, if the error that we
introduce by exploiting the locality is not spoiling the intrinsic accuracy of the
method!

= Example: In a large molecule the correlation energy is ~10 Eh=6270 kcal/mol

= (Chemical accuracy is ~1 kcal/mol

= The target accuracy MUST be 99.9 to 99.99% of E. to preserve the features of
the methods

= Error cancellation in local approximations is NOT better than about 1 order of
magnitude



Principles of Local Correlation Theory

Pretty much all local correlation methods:

Approximation 1

/
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corr K K
Chunks K=1 Chunks K'=1

Approximation 2

where ,,chunks” =
Fragments, Atoms, Atom Pairs, Orbitals, Orbital Pairs, ..



Decomposition of the Exact Correlation Energy

Start from the Schrdédinger equation ﬁBO\IJ = EWV

Insert the full Cl expansion

(@ + SO+ () S CL0 4.0 = BC, @, + 007 + (50107 +

ijab jab

Multiply with the HF function from the left:
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If we know the precise values of the double excitation coefficients we know
the EXACT correlation energy! It is a sum of PAIR CORRELATION ENERGIES




Approximation 1: Locality of Pair Correlation Energies

Pair correlation energy (Eh)
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FN, Wennmohs, F.; Hansen, A. 2009, J. Chem. Phys. 130, 114108



Chemically Speaking: How Local is the Correlation?
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Semi-Local Correlation Effects

0 Electron pair
1 26 51 6 101 126 151 176 201 226 251 276
?E) - Dispersion tail A=6,2 kcal/mol
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B We really need to capture both: semi-local and dispersion effects

B Correlation is not quite as local as we’d like it to be!

FN, unpublished



The Leading Term of Electron Correlation

Coulomb Exchange
> A(ia | jb)(ia | jb) — 2(ia ] b)(ib | ja)

5+€ — € —5

Assumptions: - Occupied orbitals are localized
- Orbital energies in the denominator can be replaced by diagonal
Fock matrix elements (semi-canonical approximation)

- Drop the exchange part for the long range behavior (it falls off
exponentially)

MPZN_4Z (ia | jb)°
w € te —F F

Analysis: - For non-zero contributions, orbitals i and a and | and b must be ,,close”
- If the charge distributions pia(r)=i(r)a(r) and pio(r)=j(r)b(r) are well
separated, we can make a multipole expansion.



Sipolar Expansion

Use the bipolar expansion in real spherical harmonics (local coordinate systems aligned!):
L Qza ij
Am (=D "1 +1)!
d" = a b
(ZCL ‘ ]b ;‘ y‘ ;: W2 +1)(2 +1) \/(la +m)(l +m)(, —m)(l —m)
m=1_
a b

A Rl +1, +1

Distance between the center of the charge distributions

. [ . Y
Q — f r'S - (9, ¢) 'Om (I’) dr Multipole moments of the charge distributions

Im

Since occupied and virtual orbitals are orthogonal, they have no monopole.
= the leading term is the dipole-dipole-interaction

(ia| i) x R°> =& " R

tJ

This is the pure dispersion (induced dipole-induced dipole) interaction.



Multipole Based Pair Prescreening

v Long Range Multipole Approximation
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(this is actually very small relative to the residual
LE10 error of the method)
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Riplinger, C. FN J. Chem. Phys, 2013, 138, 034106; Riplinger, C.; Pinski, P.; Becker, U.; Valeey, E. F;
Neese, F. J. Chem. Phys. 2016, 144; Hetzer, G.; Pulay, P.; Werner, HJ Chem. Phys. Lett., 1998, 290, 143



Approximation 2: Local Excitation Spaces

v The occupied (internal) orbitals localize nicely (mostly, that is)

= Significant MO coefficients extend over only a few atoms (1-5)

v Pair correlation energies based on localized internal orbitals show locality with the
expected R-6 decay

v The virtual (external) orbitals are problematic

= Chaotic”, delocalized nature
= Building higher and higher towers with smaller and smaller stones
= [runcation schemes based on canonical MQOs are unlikely to be highly successful



Local Excitation Spaces

Let us go back to our analysis of the leading correlation term

S50~ MP2N_4Z (ia | jb)
ab 5 _|_5 _F;z _P;j

In order for this term to e significant
orbital a must be close to i AND orbital b must be close to j
IN mathematical terms

The orbital pair ia and jb must have a significant differential overlap

Consequence: \\e can focus on local excitations and neglect long range charge

transfer
However: A local representation of the virtual space is necessary
BUT: Standard localization schemes do not work well (but see Jorgensen et al)

» in particular for large basis sets the virtual orbitals do not localize well
since the orthogonality constraint leads to highly oscillatory behavior
» Most researchers: Choose a non-orthogonal, local representation



Projected Atomic Orbitals

Projected atomic orbitals, PAOs, Pulay, P. CPL, 1983, 100, 151

)= =22 [ il)
a N [ 2
N h}ﬁ\t N )._mh
< <y
- A}ﬂ(‘\/\‘} /"\(\“' w/\\?.\w
p‘d\‘)-\ o “‘?L

j‘> PAQO’s are local close to the ,parent® atom (but have significant tails)
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j‘> PAQO’s span the virtual space and are orthogonal to the occupied space

j‘> PAQO’s are non-orthogonal and linearly dependent



Orthonormal Localized Virtual Orbitals

IM Hoyvik, K Kristensen, T Kjaergaard, P Jorgensen Theo. Chem. Acc., 2014, 133, 1417

> Careful comparison of PAOs and standard localized virtual MOs
> Suggested localization functional

L=\ [c-R) 0 )

* Fourth ,central moment’
(emphasizes the LMO tail region)
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it seems possible to generate orthonormal virtual molecular orbitals that are as good
or better than PAOs



Local Correlation Approaches

Methods to exploit the locality of electron correlation fall into two broad categories:

1) ,,Piecewise“ Local Approaches (Stoll, Piecuch, Kallay, Li, Jorgensen, Friedrich, ...

Y Locality is used by dividing the molecule into subsystems (molecular
fragments, orbital groups, ...).

v Small calculations are carried out on one, two, three ... subsystems at the
time and

v Results are combined to estimate the total correlation energy

2) ,,Direct” Local Approaches (Pulay, Werner/Schutz, FN, ...)

v Locality is used in the algorithm to avoid the computation of terms that are near
zero or factors that are unity.

v Some kind of localized representation of the virtual space is required



,Piecewise‘ Local Correlation Schemes



The Cluster in Molecules (CIM) Approach

The Cluster in Molecules (CIM) approach was proposed by Li et al. and adopted by
Piecuch et al. and Kallay et al.

Let us start from the (orbital invariant) coupled cluster energy expression
Bo= Y tf, 4>t +tt))(if || ab)
a 1jab

and re-write it in terms of single-occupied orbital increments:

E. =Y 6E 6B =) tf +4y (t5 +t4)(ij| ab)

jab
let the occupied orbital be localized.
Replace: 9. (r) = Zcm,u(r) — ) (r) =~ Z cm,,u(r)
]

pe{t}

{1} is the orbital domain of localized MO i and contains the AOs of all atoms to ensure a
population of at least 1.98 when summed. Threshold © Very small: 1-3 atoms!

S Li, d Ma, Y Jiang J. Comp. Chem., 2002, 23, 237; S Li, W Li, d Ma Chin. J. Chem., 2003, 21, 1422; S Li, d Shen, W
Li, Y Jiang J. Chem. Phys, 2006, 125, 074109



The Cluster in Molecules (CIM) Approach

Now use the off-diagonal Fock matrix elements Fij > (1 to select orbitals j interacting with |
= Environment [i]=[i, j+, j2i,...,jn] (Approximation 1)

Associated with the primary environment are the AOs that are the union of the AO
domains of the orbitals in the environment

= AO domain [u];

Finally, the virtual space for the domain of orbital i is spanned by the PAO’s belonging to
the atoms that compose the AO domains

= PAO domain []i (Approximation 2)

After orthogonalization, removal of linear dependencies and cutting small AO
contributions, there is a set of orthonormal virtual orbitals that belong to the domain of |

(the actual algorithms are more involved than this, but the essence is just this)

W Li, P Piecuch, JR Gour, S Lij Chem. Phys, 2009, 131, 114109



An Integral-Direct Linear-Scaling Second-Order Mgller-Plesset Approach

MTA-BME Lendilet Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science,
Budapest University of Technology and Economics, P.O. Box 91, Budapest H-1521, Hungary

J. Chem. Theory Comput., Article ASAP

DOI: 10.1021/acs.jctc.6b00732

Publication Date (Web): September 12, 2016
Copyright © 2016 American Chemical Society

*E-mail: nagyrpeter@mail.ome.hu., *E-mail: kallay@mail.bome.hu.

Local MP2

for HIV-1 integrase

¢ 2380 atoms
022621 atomic orbitals

12 h on a workstation



Problems with Piecewise Correlation Methods

3_10-ALA (hartree)

Method Def2-SVP (1411)  Def2-TZVP (2744)
CIM-DLPNO-MP2* 99.79% 99.77%
(99.76%) (99.74%)
MP? CIM-RI-MP2* 99.93% 99.94%
- (99.90%) (99.90%)
DLPNO-MP2 99.91% 99.91%
RI-MP2 -11.236 098 -13.686073
CIM-DLPNO-CCSD 99.92% 99.92%
CCSD DLPNO-CCSD -11.695 100 —-13.986 602
CIM-CCSDP -11.672916
- O-CCSD(T 99.92% 99.91%
CCSD(T) CIM-DLPNO-CC _D'(T_) Yo 1%
DLPNO-CCSD(T) —-12.066 848 -14.568 571

Guo, Y.; Becker, U.; FN JCP, 2018, 148 , 124117

Good

Problem:
the largest subsystem
calculation is too large
to be doable with a
regular CCSD(T)
program



Strengths and Weaknesses of Piecewise Schemes

Advantages

v Relatively easy to implement and intuitively appealing
v Extensive reuse of canonical code or even driving existing canonical programs
v" Readily extended to properties

v Parallelizes with extremely high efficiency

Disadvantages

v Redundancy: Need for overlapping fragments leads to redundant integral
calculations and amplitude optimizations.

v Feasibility: If the largest subsystem gets too large to be done by a regular
correlation program, the method fails (Not a big problem for MP2, but very big
problem for CCSD(T) or even higher)

v Generality: Fragmentation may not be straightforward in electronically
complicated or heavily delocalized situations (does not apply to CIM and DEC)

v Practicality: Very few chemical applications; no extended benchmarks



Direct Local Correlation Schemes



Local MP2 Theory

Two complications relative to canonical MP2:
» At first sight the use of non-orthogonal orbitals appears to be ,nightmare” of

added complexity. However, the PAO’s remain orthogonal to the occupied space and
there are never more than two PAOs in any excited determinant

» In the local representation the Fock matrix is no longer diagonal and hence the
usual MOller Plesset expansion does not apply.

Pulay and Saebo suggested to use the Hylleraas functional instead
E® = min(2(9" | H [9") + (" | H — B, [9")

it readily leads to an orbital invariant formulation of MP2:

_ \y(0) (1) _ ij A ab
W=wv" 4w _\PHF+iZCa€q)ij

1jab
H=H +V H =F V=H-H,

P. Pulay, and S. Saebg, Theor. Chim. Acta 69, 357 (1986).



Local MP2 Theory

(W [ H| W) =237 (if || ab)
1jab
(0" |, = B, [99) =43 CLR,CL -3 CURC
ijabe iyhab

Minimization w.r.t. the coefficients C leads to the linear equation system:

R} = (il ab)+ 3 (CLE, +F,C) = > (CLE, + F,Ci)=0

k

Which immediately leads back to canonical MP2 if the Fock operator is diagonal.

If now the virtual orbitals are replaced by non-orthogonal PAO’s, only a slight
complication arises. The first order wave function is:
\Ij(l) _ 1 0L O
y - Q"

fiv i
ij v



Local MP2 Theory

The residual becomes:

RY = <z’j | /zﬁ> +> (F.C°S _+S5 CVF )— ;(F S C"S +FS C*S )=0

UK~ KT TV UK KT TV kK RT  TU kj — ik~ RT  TD

or:  RY=K"+(FC'S+SC'F)- ) (f,SC"S+ £ SC"S) =0

k

With the PAO overlap matrix S, = (ji | 7)
So far: no approximation!

These equations represent a more complicated and ill-conditioned way to do MP2!

> Owing to the linear dependencies in the PAO set, the equations are singular.

> Removing the singularities by diagonalizing of the PAO overlap matrix and dropping the
eigenvectors corresponding to zero eigenvalues leads back to canonical MP2

= Introduce correlation domains for each electron pair ij



PAQ’s,

Domains and Pair

according to some prescription

omains

A domain {u}i is a set of PAOs chosen for a given internal LMO

{11}46
)
o H/\'f
3 ) . _
@ ).J""NN
o o *
Ll Y 4"
B0 el
LMO 46 LMO 28

Correlated bond
J. W. Boughton and P. Pulay, J.
Comp. Chem. 14, 736
[2]1993[7].

> A pair domain {u}i is the union of the individual orbital domains

Vg, = e, ),

= Fine, but for sufficient accuracy (99.9%) domains become impractically large

= Need ,compaction” of the space




Domain Construction

Our proposal: Differential Overlap Integral

Differential Overlap Integral (a.u.)

PAQOs that have a DOI above
_ 2 2
por, = | [11 0F [g,0F d Y o e o
guestion are added to the
T T domain (then atom completed)

13 LR RLLL | T rrres LRRLLL | T IIIIII'I T llllllq T T
-
-

0,1

0,01 3 : :

3 )  Actual spatial extent of the virtual
1E-34 space is taken into account
1E-4 - . .

3 )  Excellent approximation to the the
1E-5 Schwartz screening integrals
156 » Easy to compute efficiently in linear
1E-7 scaling for any set of functions
1E-8

1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0,01 0,1 1

Schwartz Integral (a.u.)

Pinski, P.; Riplinger, C.; Valeev, E. F.; Neese, F. J. Chem. Phys. 2015, 143.
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PAO overlap eigenvalues
=

-15 * Cs3Hy
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Properties of the

i) =[i- X))

def2-SVP

)
/

def2-TZVP

PAQO’s in Domains

» Not normalized
)

» Guaranteed to be linearly dependent (spans the
virtual space only and has full AO dimension)
» Somewhat local

N
N

- Domain +
« CiHs3
CyHs

¢ CsHip \.‘

)

» Now normalized but still not orthogonal and
linearly dependent

» Diagonalize PAO overlap in a given domain and
1 discard eigenvectors to eigenvalues <10-8
(smallest possible to retain numerical stability)

» Diagonalize the Fock operator in the non-
\- redundant space to get to normlized, non-
. redundant, quasi-canonical PAO’s

] ]
0 50 100 0 100

Stoychey, G. L.;

|
200

Auer, A. A.; Gauss, J.; Neese, F. J. Chem. Phys. 2021, 154, 27.



Solving Local MP2 Theory

Using the domains, the residual becomes
R = KY + (F(z‘j>Cz‘jg(z‘j,z‘j) 4 g(zj,z‘j)CijF(z‘j)) _ Z( ]z;kgw,jk)ckjg(kj,zj) 4 ﬁjg(ij,ik)cikg(ik,ij)) —0
k

Where all matrices are now local:

ij ij
o = Mcgpoetsy )
K - K" =
(H%) peliyreli) } v Sub-matrices can either be stored or constructed on
]
b’ = Hactgroe) the fly
Q(ij k1) Q
S v aelitoe(kl}l )

Two more steps are necessary to reach linear scaling
1. Discard weakly interacting electron pairs:

In almost all local treatments done by distance criteria (Rij=distance between
orbital centroids)

2. Discard small terms in the sum over Kk by analyzing fi.fix
Threshold Feut~10-° Eh



PAQO based Local Correlation Treatments

JOURNAL OF CHEMICAL PHYSICS VOLUME 111, NUMBER 13 1 OCTOBER 1999

Low-order scaling local electron correlation methods.
l. Linear scaling local MP2

Martin Schiitz, Georg Hetzer, and Hans-Joachim Werner?®

10000
very distant

8000 | pairs
2 | Hierarchical treatment of electron
S 6000 | - pairs, multipole approximations,
O .
s ; distant careful thresholding lead to
0 ! i . s . . .
£ 4000 weak | pairs efficient, linear scaling algorithms
c

2000 -

|

FIG. 1. The number of strong, weak, distant and very distant pairs as a
function of the size n of a polyglycine peptide chain [gly], . The number of
strong, weak, and distant pairs all scale linearly with the molecular size,
whereas the number of very distant pairs scales quadratically with #.



Problems with PAO based treatments

NJ Russ, TD Crawford J. Chem. Phys., 2004, 121, 691

Energy (mEy)

1 L 1 1 L 1 1
1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
r(C-C) (A)

FIG. 7. LMP2 and LCCSD localization errors (in mE,) for singlet ketene
dissociation, where the four discontinuities discussed in the text are clearly

isib FIG. 8. Contour plots of the relevant Pipek—Mezey localized orbitals for
visible.

singlet ketene: (a) The 7r and o bonding orbitals near the equilibrium geom-
etry and (b) the corresponding lone-pair dissociated MOs of singlet methyl-
ene and carbon monoxide.

= Discontinuous potential energy surfaces due to small and changing domains along the PES
THE JOURNAL OF CHEMICAL PHYSICS 125, 184110 (2006)

= Reply:
Calculation of smooth potential energy surfaces using local electron
correlation methods

Ricardo A. Mata and Hans-Joachim Werner®



In either PAO based or CIM based procedures the correlation energy

recovered depends critically on the PAO domains.

... how large do they have to be in order to lead to an accurate result?



How Large do Domains have to be?

Correlated bond

TDO=0.1 98.40/0 Ecorr NaVPA0=1 15
Tpo=0.01 99.7% Ecorr Navppo=588

At the domain size one reaches target accuracy the average number of PAOs
per domain is too large for the calculation to be efficient or even doable

- There are important correlation effects that are not that local



Virtual Space Compaction: Pair Natural orbitals



Saving Time in
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Natural Orbitals

PHYSICAL REVIEW

VOLUME 97,

NUMBER 6 MARCH 15, 1955

Quantum Theory of Many-Particle Systems. 1. Physical Interpretations by Means of
Density Matrices, Natural Spin-Orbitals, and Convergence Problems
in the Method of Configurational Interaction*

PeErR-Orov LO6wpIN
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, and
Institute of Mechanics and M athematical Physics, Uppsala University, Uppsala, Sweden

(Received July 8, 1954)

in the k-space, i.e., the charge- and bond-order matrix, is
Hermitean, and it is therefore possible to find a unitary
matrix U which transforms this matrix to diagonal form
with the eigenvalues 7= :

Uty U=n=diagonal matrix. (72)

We have further, in matrix form, y= UnUf, and, if we
introduce a new set of spin-orbitals xx by the matrix
relation x={¢U, or

Xk=Za 'anak, ’ (73)
we may rewrite the density matrix in the form
v (X1 | X1) =22k mexae™ (X1 xx (X1). (74)

This form is characterized by the fact that all bond
orders are vanishing, and the new spin-orbitals x; will
therefore be called the natural spin-orbitals associated

4. NATURAL SPIN-ORBITALS AND THE CONVERGENCE

PROBLEM IN THE METHOD OF
CONFIGURATIONAL INTERACTION

Its convergence properties may now be understood
from the relations (63), (64), and (74). In the limiting
case, when exactly N natural spin-orbitals are fully
occupied and the relation y?= « is fulfilled, the natural
expansion (80) is reduced to a single Slater determinant.
In considering the convergence, this is of course the
most favorable case. However, if only a finite number of
the occupation numbers 7 in (74) are essentially dif-
ferent from zero, the natural expansion (80) will be
reduced to a sum of determinants over all ordered con-
figurations associated with these essentially occurring
spin-orbitals, i.e., to a sum of comparatively few terms.
The introduction of natural spin-orbitals seems there-
fore to provide a simple solution of the convergence
problem, previously discussed by Slater.!?



Note added in proof.—It is desirable to have also a more exact
mathematical measure for the rapidity of convergence of the two
configurational interaction series (66) and (80). We note that,
according to (60) and (63), the charge order (k) gives the
probability for the ordinary spin-orbital ¥4 to occur in the expan-
sion of the total wave function ¥. If only M of the numbers
v(k), k=1, 2, 3, - -+, are essentially different from zero, then the
number of essential terms in (66) is given by the corresponding
number of possible configurations: M//N! (M —N)!. In using this
procedure, however, it is necessary to evaluate the individual
quantities y(%) and to distinguish between essential and unessen-
tial charge orders.

A still simpler measure of convergence may be constructed by
observing that the charge orders always lie between 0 and 1 and
that, in the limiting cases v(k2)=0 and v (k)=1, the corresponding
spin-orbital ¥, occurs in none or in all of the terms in (66), respec-
tively, without contributing to the slowing down of the con-
vergence of the series. The eventual slowness of the convergence
of (66) depends instead on the possibility for an electron to be
distributed over two or more spin-orbitals, giving charge orders
of an intermediate order of magnitude, 0 <7%;e) <1. The rapidity
of convergence of (66) may therefore be measured by the small-
ness of the quantity

3= (1/N) Zi{1—~(R)}v(k)=1— (1/N) Zr{v(k)}?,

which fulfills the inequality of 0=¢ <1. In considering different
basic sets ¥1, ¥2, ¥3, - -« for the description of the same total wave
function ¥, it is clear that the natural spin-orbitals x5 are char-
acterized by having the smallest & value possible. According to
(7%i ), we have ¥=UnU" and y2=Un?UT, leading to Tr(y?)=Tr(n?)
an

2Zyii= Zmlt— lfklmlzs 2,

with the final result
1—(1/N) Zm<1—(1/N) 2y,

which proves our theorem. This means that the natural spin-
orbitals are distinguished not only by having vanishing bond
orders but also by giving the smallest number of essential charge
orders possible. By investigating the quantity &, one can therefore
easily estimate how much improvement one can expect in the
convergence of a given configurational interaction series by intro-
ducing the natural spin-orbitals.



The Natural Expansion of He

Percentage Correlation Energy Recovered

Natural Orbitals included in the CI
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THE JOURNAL OF CHEMICAL PHYSICS VOLUME 45, NUMBER 5 1 SEPTEMBER 1966

Pseudonatural Orbitals as a Basis for the Superposition of Configurations. I. He,*

C. EpmisToN*
University of Wyoming, Laramie, W yoming
AND
M. KraAuvss
National Bureau of Standards, Washington, D. C.
(Received 1 December 1965)

The use of pseudonatural orbitals (PNO) is proposed to improve the rate of convergence in the super-
position of configurations (SOC). Natural orbitals are determined for selected electron pairs in the Hartree-
Fock field of the #—2 electron core and are then used as the basis for the total SOC calculation. Since
these natural orbitals are not natural for the z-electron system they are considered false or pseudonatural
orbitals when used in the n-electron problem.

The PNO basis has been applied to He,* and H; to test the convergence. Complete results are reported here
only for He.*. The PNQO’s are quite successful in speeding up the convergence of the SOC and rendering
the calculation of correlation energy quite practical in general. Gaussian-type orbitals (GTO) are used
throughout and were not a serious impediment to obtaining quantitative accuracy. In fact the large number
of unoccupied Hartree-Fock orbitals consequent upon the use of a GTO basis permit a straightforward
determination of the PNO orbitals.



—arly Applications of Pair Natural Orbitals

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, No. 5. 341-348 (1971)

Ionization Energies of Water from PNO-CI
Calculations

WILFRIED MEYER
Institut fiir Theoretische Physikalische Chemie, Universitaet Stutigart, Germany

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 58, NUMBER 3 1 FEBRUARY 1973

PNO-CI Studies of electron correlation effects. I. Configuration expansion by means of
nonorthogonal orbitals, and application to the ground state and ionized states of methane

Wilfried Meyer



Pair Natural Orbitals and the Virtual Space

v Exact density D _— g D<Pb> a,b= canonical virtual orbitals
a a
P=ij P = (ij) Pair label

V' Diagonalize each pair density individually

DPP) — n®g®

a> (exact without truncation)

PNO | 3. ) = (P)
v expansion ‘ aP> Z daaP
a

» PNOs are orthogonal to all occupied orbitals
» PNOs of a given pair are orthonormal
» PNOs of different pairs are not orthogonal

<éP | BQ> = S;i:(;i = ;d; dSBQ {a b>} = (d")"d®

P

v

5
» PNOs based on local occupied orbitals are also local



Pair Natural Orbitals and the Virtual Space

. . P
V' Truncation according to n 1 TCutPNO

» Asymptotically constant number of PNOs per pair
» Minimal error for a given expansion length

. . L (full)  _(selected)
v’ Estimate of PNO error: AEPNO — Z €P EP
P

v After truncation, try to expand the PNOs of one pair in terms of another pair PNOs:

‘aP> - ZCanp bQ>
b
Q
— (1 o S(Q,P) » EXxpansion is approximate for
CanP o < Q ‘ aP> o by ap truncated PNO expansions! (it can
be very bad)

» The overlap is a projector



Pair Natural Orbitals (PNOs)

> Small number of significant PNOs per electron pair
> Vanishing (0-5) PNOs for weak pairs

\\(\ > Located in the same region of space as the internal pair
- n=0.0003 but as delocalized as necessary
G

> Orthonormal within one pair, non-orthogonal between

)

-
9"(\ n=0.0011 e . N
| Qe n=00002

g
. 2 N
n=0.0035 N

| n=0.0011

o5
o o | @yt

FN; Wennmohs, F.; Hansen, A. J. Chem. Phys. 2009, 130, 114108

n=0.0030




Obstacles

v At threshold 0, each pair dimension = full VMO » Nightmare!

v' Need to know the exact density to get PNOs » Absurd!

v Many more PNOs than VMOs » Integral generation is frightening

= PNO method that expand PNOs in virtual MOs are possible (and maybe
sometimes desirable! e.qg. first generation LPNO methods), but it only
becomes efficient and linear scaling with further approximations



Domain Based Local Pair Natural Orbital Methods

v Logical approximation: Expand the PNOs in terms of local virtual orbitals, e.g. PAO’s
taken from large pair-specific domains

‘a..> = Zd(m
1] IL..a
v' The pair density is approximate and comes from (semi-canonical) local MP2:

D) — i | il

(i, | Jvij)
Hys F. — Fjj —c —¢
.

. V..
1) 1)

= The generated PNQOs are rather approximate, but experience shows that only
minor improvements are possible by making more elaborate choices; the
domain approximation is is more problematic.



L ocal Correlation with PNOs: PNO-MP2

Rcall: In Nonorthogonal virtuals (exact equation!):

R’ =K’ +(FC'S+SC'F)—~ > (f,SC"S+ £ SC*'S)=0 &, =(alb)

ab

k
»  Throwing out negligible electron pairs (ij) does not change the equations

» Introducing pair-specific truncated virtual spaces does change the notation:

RY = KVY e (F(ij)Cij S(ij,ij) + g(ij,ij) CijF(ij)) _ Z(fikg(ijyjk)ckjg(kjﬂj) 4 f S(Z’j,ik)cikg(ik,ij)) — (

k
— — 1 J
1in PNOs 1in PNOs N, xN, N_xN_
NinNij NinNij NinNij NinNij NinNij NinNij NiiXNk.i NijNij Ni.iXNik NikXNii
(P.Q) _
Sa,b o aJP ‘ bQ

Thus there is an emerging ,,cooking recipe"“:

> Whenever two pairs are ,connected” there will be mismatched dimensions on the
matrices to be multiplied: insert the pair-pair overlap in these terms.

> |n reality it is not quite that simple ...

P. Pulay, and S. Saebg, Theor. Chim. Acta 69, 357 (1986).



Steps in DLPNO-MP2

v Perform HF calculation

v Localize occupied MOs — separately for core and valence
v Construct normalized redundant PAOs

v Select PAO domains based on DOI (T ipo)

v 8creen jj-pairs based on a dipole approximation of the pair energy

v For every pair domain, construct quasi-canonical non-redundant PAOs
v Calculate the semi-canonical amplitudes

v Diagonalize the pair density

v Keep PNOs with occupation > T ipno

v Solve MP?2 residual equations in PNO basis



DILPNO-MP2: Efficiency and Scaling

& HF (RIJCOSX)
-RI-MP2
@ L-MP2

L 1

1 L

0 20 40 60 80 100
number of carbon atoms

— ALWAYS faster than even accelerated Hartree-Fock

B Early crossover with the canonical RI-MP2 method!
P Pinski, C Riplinger, E Valeev, FN, J Chem Phys. 2015, 143, 034108




(Domain Based Local)

Pair Natural Orbital Coupled Cluster Theory



The DLPNO-CCSD Approach

The DLPNO approach to CCSD follows as a natural extension to MP2 (although
historically, DLPNO-CCSD was much earlier than DLPNO-MP2)

The cluster operator is written in the PNO basis:

T+T—Ztaa+2t”aaaa

ija b Zj 2] 2

» PNO'’s for doubles are made from DLPNO-MP2 and cut with Tcu+pno

» PNO's for singles are identical to the PNOs of the diagonal pairs and cut
with 0. 01 Teut PNO

The PNOs are expanded in large PAO domains (using Tcutpo) fOor domain construction
and Tcuemxy fOr aux-domain construction)
i)

a> =N ar
ij fid

el }




Natural Triple Excitations

Our suggestion: Natural triples orbitals (TNO’s)
V' Three-pair density: D" = 1(D” + D" + D")

(The operator D" =S "|a Wa |+

FAR— [\ PR
/ | |

a \a, |+ |a, \a,| projects onto the joint PNO
- - space of the three pairs)
v Formation of the three pair density in the PAO basis is linear scaling:

V' Eigenfunctions: D7x" = n"x" (cut-off below a given nik(min) just as for PNOs)
v Recanonicalize: x* Fx*

v' Amplitudes are projected into the TNO basis: T’” J;NO Gk Tij;gNOngk’g
Qi Vi QopoCyi G it Y

= Integrals over TNOs must be generated for each triple
(bookkeeping complicated but linear scaling) avoiding projection

= Linear scaling implementation achieved (Dr. Christoph
Riplinger)

Riplinger, Sandhéfer, Hansen, FN, JCP, 2013,139(13):134101



Convergence of DLPNO-CCSD(T)
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CutPNO

v’ Typically 99.8-99.9% of the canonical correlation energy

V' Energetics of the canonical counterpart methods is reproduced to a few tenth of
kcal/mol. Maximum achievable accuracy ~0.1 kcal/mol of the canonical result.

v' The methods are robust and completely black box in character

Riplinger, C. FN J. Chem. Phys, 2013, 138, 034106; FN; A. Hansen, D.G. Liakos,, J. Chem. Phys., 2009 131, 064103



% Basis set correlation energy

100,0 1
99,9
99,8

99,7 -

99,5 -

99,4 4

1E-3

—a—cc-pVDZ
—e—cc-pVTZ
—a— cc-pVQZ

Li-Dimer @ 1.5 Angstrom

At fixed threshold one recovers less Ec
as the basis set is approaching completeness
... Tcuno=10"Is fine even for large bases

| At fixed threshold the number of NOs is
1 approaching a constant (!) as the the

basis set saturates
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Fraction of Virtual Space

At fixed threshold the fraction
of the virtual space treated
gets smaller as the basis set
saturates

(cost reduction ~ (fraction)4)




Real Life Basis Set Behavior of DLPNO-CCSD(T)

In real life convergence of the PNO expansion is more favorable than for, say He, since
weakly interacting electron pairs saturate more quickly with basis set!

NBas Nexvo  Fraction Time(s)
cc-pVDZ 329 19 5.7 723
A cc-pVTZ (23 27 3.7 3782 (5.2
O Q cc-pvQZ 1383 32 2.3 13676 (3.6x
cc-pV5Z 3243 36 1.1 406675 (3.4x)
Diclophenac cc-pVvV6Z 36069 39 1.0 144141  (3.0x
(30 atoms) s o =1.6 days/16 cores

Increase of computer time with cardinal number: DLPNO-CCSD(T)  ~factor 3-4
Canonical CCSD(T) ~factor 10-100



PNO Truncation, Basis Sets, Correlation Energy

N-particle
= CCSD(T) Full-Cl
~ Finite basis set Basis set CCSD(T) Ecor  Basis set Econ CCSD(T)
Complete basis set True CCSD(T) Ecor  True ,Physical Ecor s
F12-CCSD(T)
DLPNO-CGSD(T) P12-DLPNO- aims @this
aims @this cCsb)
aims @this

= One should only judge DLPNO-CCSD(T) relative to how well it approximates
CCSD(T) energy in the same basis set!
= Extrapolation to the 1-particle (basis set) limit is something separate

= Extrapolation to the N-particle (full Cl) limit is something separate



PNO Extrapolation

One can extrapolate the PNO energy towards O threshold:
E(T=0)~E(T=10"%)+ F(E(T =10"Y) - E(T = 1O‘X))
T = PNO truncation threshold F =1.5 Y > X

I T T T L

@)1, m

-1.776 - EX=E+A-X" - 866 Set
(E=-1.78656; A=84.92; f=5.55; R?=1.000) _ ] | TightPNO/
1.778 - . £ 0.8 | CBS
—~~ - E h
'-J;lf 1.780 é bal !
Y 4782 - l . \
. 0 i I
1.784 - (b) T : y
42
1.786 - %6 \
. ~ 30
5 6 7 8 9 §
X =109 (T o) o 2
aVY (YY) _ paVX p(X) aY 12
£ — e“V'E e“VE = e | 5 l
VY _ pa/X VY _ pavX o | Il

X=5 X=6 Extr.(5/6) X=7 Extr.(6/7) X =8

Altun, A.; Neese, F.; Bistoni, G. J. Chem. Theo. Comp. 2020, 16, 6142-6149.



Scaling of
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CCSD(T) Calculations on Entire Proteins

Crambin

644 atoms
def2-SV(P)/6187 basis functions

Canonical computation time
~5 Million Years

DLPNO-CCSD(T)
~3 weeks/1 Core

Riplinger, Sandhdéfer, Hansen, FN, JCF, 2013,139(13):134101

http://www.physicstoday.org/daily edition/physics update/coupled cluster theory tackles a protein



http://www.physicstoday.org/daily_edition/physics_update/coupled_cluster_theory_tackles_a_protein

Benchmark

Results for

DL

PNO-CCS

D(T)

BP86

PBE-D3

BP86-D3

TPSS

MO6L
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B3LYP-D3

TPSSh-D3

M062X

DLPNO-CCSD(T)/Small

B2PLYP-D3

B2GPPLYP-D3

DSD-BLYP-D3

DLPNO-CCSD(T)

'GMTKN30

3

4 5

WMAD (kcal/mol)

L. Goerigk and S. Grimme, J. Chem. Theory Comput. 2011, 7, 291-309



High Accuracy Thermochemistry

Efficient DLPNO—-CCSD(T)-Based Estimation of Formation Enthalpies
for C-, H-, O-, and N-Containing Closed-Shell Compounds Validated
Against Critically Evaluated Experimental Data

Eugene Paulechka™" and Andrei Kazakov*

Thermodynamics Research Center, Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325
Broadway, Boulder, Colorado 80305-3337, United States

ABSTRACT: An accurate and cost-efficient methodology for the geometry

estimation of the enthalpies of formation for closed-shell compounds '[ B3LYP-D3(BJ)/def2-TZVP ]s
composed of C, H, O, and N atoms is presented and validated against

critically evaluated experimental data. The computational efficiency is [ energy ] [ vibrations ]
achieved through the use of the resolution-of-identity (RI) and | DLPNO-CCSD(T)/def2-QZVP B3LYP-D3(BJ)/def2-TZVP
domain-based local pair-natural orbital coupled cluster (DLPNO—

CCSD(T)) approximations, which results in a drastic reduction in ] ‘

both the computational cost and the number of necessary steps ror a ary steps for a AH ; + 3 k] - mol~1

composite quantum chemical method. The expanded uncertainty for
the proposed methodology evaluated using a data set of 45 thoroughly vetted experimental values for molecules containing up to

12 heavy atoms is about 3 kJ-mol~", competitive with those of typical calorimetric measurements. For the compounds within the

stated scope, the methodology is shown to be superior to a representative, more general, and Widelz used composite quantum

chemical method‘ G4.




How accurate can you get?

G  TIGhPNO PReaction

S66 |t .
———NormalPNO Energies
e

m— | 00SePNO

-0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0 — ’
ﬁ Energy Deviation (kcal/mol) Energy Deviation (kcal/mol)
ela-
Butan

1,4-diol
Isomers

1 kd/mol

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Energy Deviation (kcal/mol) 0.2 0.0 0.2 0.4 0.6 0.8

Energy Deviation (kcal/mol)

D.G Liakos, M. Sparta, J.M.L. Martin and F. Neese JCTC, asap



Cost vs Accuracy

~1 kd/mol
In common test
250 - sets B (T)
B CCSD
I Trafo
. I HF
150 -
100 - | ~1 kcal/mol
In common test Exploration
sets only
50 4
0 -

TightPNO NormalPNO LoosePNO

D.G Liakos, M. Sparta, J.M.L. Martin and F. Neese JCTC, 2015, 11, 1525



Beyond Closed Shell Energies

Chemical Interpretation

Intermolecular Interactions

Local Energy Decomposition (LED)
HF-LD low cost method

Macromolecules

& Solids/Surfaces

QMM/MM & ECP Embedding
Multilayer DLPNO-CCSD(T)

Properties/Derivaties

DLPNO-MP2 relaxed Density
DLPNO-MP2 Gradient
DLPNO-MP2 Response Properties
DLPNO-CCSD Lambda equations (Density)

Closed-Shell p)Lpno-mP2
Fnergies  (P)LPNO-CCSD(T)

(DL)PNO

Excited States

PNO-EOM-CCSD
bt-DLPNO-EOM-CCSD
(bt-)DLPNO-STEOM-CCSD

Open-Shell  p pno-mp2
Energieg DLPNO-CCSD(T)

Multiref. (p)LPNO-NEVPT2/CASPT2
Fnergies PLPNO-Mk-MRCCSD

Basis set DLPNO-Extrapolation scheme
- F12-(D)LPNO-MP2
limit F12-(D)LPNO-CCSD(T)
F12-(D)LPNO-NEVPT2



PNO based coupled cluster methods: Summary

(relative) Simplicity. Only one critical cut-off (T ;pno); l0Cal approximations only ,boost’

efficiency. Tcutpno can be use to control the absolute desired accuracy

No real-space cut-offs and no fragmentation necessary

No redundant integral generation or amplitude optimizations

No reliance on sparsity (e.g. not linear scaling ,by construction®)

Optimal correlation spaces: a) small for weak pairs, b) as delocalized as necessary
Excellent behavior with basis set size

Only local method with proven accuracy (better than 1 kcal/mol) and proven efficiency
(approaching SCF/DFT times) for real life applications.

Very weak or no dependence on the localization method. Well localized internal space
not even required

Very smooth error; no kinks and jumps in PESs

Black box character

Meanwhile developed for open shells, excited states, properties, F12, multireference,

(gradients),...



Does Local Correlation ,,Solve all Problems®?

NO

1. Local correlation- by design - will fail in almost exactly the same way as canonical
CCSD(T) does. Hence, it is accurate in the regime of applicability of CC theory,
not beyond. However, multi-reference local methods are as successful.

2. There is a residual error that is size intensive. It is typically <1 kcal/mol (relative to
canonical CCSD(T)) However, that is still not zero (relative to basis set limit full Cl)
and to ,hammer’ the total energy down to even higher accuracy is difficult without
drastically slowing things down. (Hence, CCSDT and beyond may not be attractive)

3. One ,only‘ gets an accurate electronic energy. For zero-point, thermal and
entropy corrections as well as solvation or geometry errors one is stuck with the
same errors as before - this is actually now the limiting factor for applications!



