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Elementary Properties of Electrons & Nuclei

‣ Mass 		 	 	 	 	 	 	 me	 	 MA


‣ Charge 	 	 	 	 	 	 	 –e0	 	 ZAe0


‣ Spin → Magnetic Dipole Moment 	 μe	 	 μN	 	
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(Electrons, Nuclei 

with Spin I>0)μe= −ge    be

2.002319... Bohr‘s Magneton=9.274010x10-24 J/T

μN= gN    bN

 Nuclear Magneton=5.050783x10-27J/T
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The electron is 
intrinsically a 1836 

times stronger 
magnet than nuclei

Electron Nuclei

NOTE - atomic units: 



Interactions Between Fields & Magnetic Dipoles

NS
Field B

Interaction with a uniform magnetic field

✓ The interaction is quantized: 

✓ Spin-space: dim=(2S+1)(2I+1) 

Interaction between dipoles

r



Introduction: The Phenomenological Spin 
Hamiltonian



„Magnetic Resonance Business“

Spectrum

Design an 
experiment

Obtain High 
Resolution 

Data

Simulate the 
Data

And now ?
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J	 ~   0  -103 cm-1

D	 ~ 10-1-101 cm-1

βeg	 ~ 10-1-101 cm-1

A	 ~ 0    -10-2 cm-1

βNgN	~ 0    -10-2 cm-1

Q	 ~ 0    -10-3 cm-1

JNMR	~ 0    -10-8 cm-1

Magnetic Interactions: Summary



The Spin Hamiltonian: Summary
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Zero-Field Splitting

Zeeman Term (g-Tensor)

Hyperfine Interaction

Quadrupole Interaction

Nuclear Zeeman

Spin-Spin Coupling

  
!
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!
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Fictitous Electron Spin

Nuclear Spin

Bohr‘s Magneton

Nuclear Magneton

(Apologies offered for using µ and b interchangeable for the magnetons - literature does that too 😬 )



What do these Terms describe (I)? 

No interaction …

Consider a multiplet |S,M>

All 2S+1 sublevels are degenerate

Electron Zeeman: ✓ Linear divergence

ΔE=hν=β|Β|  geff 

MOLECULAR Quantity=ge+Δg

Δg>0 Δg<0

Analogous: NMR chemical shift



What do these Terms describe (II)? 

I=1/2

1:1

1:2:1

1:3:3:1

1:2:3:2:1

I=1

1:1:1

1:2:3:2:1

1:2:3:4:3:2:1

1:2:3:4:5:4:3:2:1

Hyperfine

Consider a multiplet |S,MS,I,MI>

✓ Field independent

✓ Usually << Zeeman

Hyperfine coupling: Analogous NMR Spin-Spin Coupling



What do these Terms describe (III)? 

Analogous: NMR Quadrupole Coupling (I>1/2)

Zero-Field Splitting:

✓ Kramers pairs (non-integer S)

✓ Any splitting (integer S)

✓ Can be positive or negative

✓ Can be <<,= or >> Zeeman

✓ Only for S>1/2

2D
S=3/2

MS=±1/2

MS=±3/2

Kramers System

D
S=1

MS=0

MS=±1E

Non Kramers System

✓ THE quantity for single molecule magnets



Quick Comment: EPR vs NMR Conventions

In practice nobody in the NMR field uses „nuclear g-tensors“, but the NMR culture 
consists of thinking about the chemical shift as a modification of the external field  

In EPR spectroscopy, people like to thing of deviations from the free-electron g-value as 
the molecular g-shift



Theoretical Magnetic Spectroscopy

Fit

Simulation

Direct Calculation
Theory

Spin

Hamilton-Operator

Molecular

Hamilton-Operator

Spectra

Molecular-

structure

Reviews:    	 (1) FN Curr. Op. Chem. Biol., 2003, 125 


Neese, F. Quantum Chemistry and EPR Parameters eMagRes 2017, 6, 1.

(and many other reviews since 2001)



Chapter 1:  

Additional Terms in the Hamiltonian



Where do the Extra Terms come From? 
Dirac Equation

(1-Electron)

Dirac-Coulomb-Breit

(Relativistic; N-Electrons)

Born-Oppenheimer Operator

(Nonrelativistic; N-Electrons)

Schrödinger Equation

(Nonrelativistic; 1-Electron)

Additional (Small) Terms 

1. Scalar Relativistic Corrections

2. Relativistic Spin-Orbit Coupling 

3. Magnetic Field Interactions

EPR/NMR-Parameters

1. g-Tensor

2. D-Tensor

3. A-Tensor

4. Q-Tensor

5. Chemical shielding

6. Spin-Spin coupling

7. Magnetizability...

Effective Hamiltonian 
Theory

Nonrelativistic 
Limit

See relativity & 
Magnetic 
Properties  
lectures!



Additional Terms 0: units, notations constants

➡ Angular momenta are relative to a reference point

➡ Interparticle distances



Additional Terms 1: Scalar Relativistic Terms

In Breit-Pauli Approximation

➡ The Breit-Pauli expansion is divergent and practical never used anymore

➡ Almost all calculations use some form of spin-free scalar relativistic 

treatment such as X2C, ZORA. DKH, NESC

➡ Consensus for X2C seems to be emerging

➡ These terms are NOT treated as a perturbation but are included in the 0th 

order Hamiltonian (and hence in the SCF and post SCF treatment)



Additional Terms 2: Spin-Orbit Coupling 

Breit-Pauli forms (frequently used)

In practice: Needs picture change

➡ This operator is frequently used

➡ In a X2C, ZORA,… treatment, a picture change correction is required

In Breit-Pauli Approximation

Practice: Spin-Orbit Mean Field Operator

➡ Effective 1-particle operator, captures >99% of all SOC effects 

Note:

AMFI: BA Hess, CM Marian, U Wahlgren, O Gropen, CPL (1996), 251, 365; Full: FN (2005), JCP, 122, 034107 



Additional Terms 3: Spin/Magnetic Field 

➡ No orbital part; spin only

Straightforward

➡ Diagonal in spin

➡ No orbital part; Diagonal in spin



Additional Terms 4: Spin-Spin Interactions

These are dipole-dipole and contact interactions 

➡ Electron/electron

➡ Electron/Nucleus spin

➡ Electron/Nucleus orbital

➡ Fermi contact



Total Spin vs Individual Spin

Note carefully:

➡ The relativistic/field operators act on individual spin si  but the Spin-Hamiltonian is 
formualted in terms of the total spin S. 


➡ NEVER EVER confuse those two! 

➡ Only true for the total spin!

➡ True for the total +individual spins/ mixtures
➡ Basis for applying the Wigner-Eckart 

theorem later to relate s and S
=1 for an even permutation of x,y,z, -1 for odd permutation (Levi-Civitta)



Chapter 2:  

The Concept of Effective Hamiltonians



Hamiltonians and Eigensystems

★ Let us assume that we have a Hamiltonian that works on a set of variables x1 .. xN. 


★ Then its eigenfunctions (time-independent) are also functions of x1 ... xN.  
 

★ The eigenvalues of the Hamiltonian form a „spectrum“ of eigenstates that is 
characteristic for the Hamiltonian
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E7 There may be multiple 
systematic or accidental 
degeneracies among 
the eigenvalues



Effective Hamiltonians

★ An „effective Hamiltonian“ is a Hamiltonian that acts in a reduced space and only 
describes a part of the eigenvalue spectrum of the true (more complete) 
Hamiltonian

E0 E1 E2

E3

E4 E5

E6

E7

Part that we want to 
describe

  
H

eff
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,...,x

N
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I
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1
,...,x

N
( )

(nearly) identical eigenvalues wanted!

(I=0...infinity)

(I=0...3)

TRUE

EFFECTIVE



Expansion of the Wavefunction
✓ Assume that we have defined our „Complete Hamiltonian“. Assume that we can (or 

should) divide it into a part H0 and a part H1

   HΨI
= (H (0) + H

(1))Ψ
I

= E
I
Ψ

I

✓ The solutions to    H
(0)Ψ

I

(0) = E
I

(0)Ψ
I

(0)

✓ are assumed to be known (BOLD assumption!) 

✓ Then we can always expand the eigenfunctions of the full Hamiltonian in terms of 
the eigenfunctions of the 0th order Hamiltonian: 

   
Ψ

I
= C

JI
Ψ

J
(0)

J
∑

✓ Hence, the Schrödinger equation turns into a matrix eigenvalue problem

   HC = EC



The Partitioning Approach
✓ Critical step: divide the 0th order states into the ,a‘ set that (=model space; the 

functions that dominate the final states of interest - very small!)


✓ The b-space or ,outer space‘. The outer space can be very large!


✓ Partitioned eigenvalue problem: 
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✓ The equation for the ,b‘ space coefficients can be formally solved:

    C
B = −(HBB −1E)−1

H
BA

C
A

✓ Hence:

    H
AA

C
A −H

AB(HBB −1E)−1
H

BA
C

A = EC
A



Expansion of the Partitioned Eigenvalue Problem

    H
eff (E)CA = EC

A✓ Hence:

✓ Exact equation!

✓ However, since the desired energy E is contained in the effective Hamiltonian, the 
equation is nonlinear and difficult to solve. 

    H
eff (E) = H

AA −H
AB(HBB −1E)−1

H
BA

✓ With the effective Hamiltonian:

dimension=dim(A)xdim(A)

✓ We will pursue a simple approach here that exposes the nature of the reasoning. 
First let us look at the Hamiltonian in b-space: 
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Coupling among the b-space 
eigenfunctions can be neglected if 
H1 is much smaller than H0



Simplification of the Effective Hamiltonian
✓ Realize that we seek solutions in the vicinity of the eigenvalues of HAA - possible if 

the coupling to the b-space is not too large.

 


✓ Dropping this restriction leads to the reasoning of Malrieu‘s intermediate 
Hamiltonians that contain a ,buffer space‘ to ,protect‘ the model space against 
strong perturbers.


✓ With that assumption, we can replace:  

     (1E)
IJ
≈ δ

IJ
E

a

   
E

a
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1
dim(A)

E
I
(0)

I∈'a '
∑

again neglecting the ,small‘ coupling of the ,a‘ 
states via H1 (but we could have taken 
eigenvalues of H0+H1 in ,a‘ space equally well

✓ Then we are done
    H

eff = H
AA −H

AB(EBB −1E)−1
H

BA



Matrix Elements of the Effective Hamiltonian

     

(Heff )
IJ

= δ
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E
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−
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✓ This looks like second order perturbation theory but is more general since the 
coupling of the ,a‘ space functions via the perturbing operator H1 is taken into 
account. 


✓ We could have arrived at this result as well by a formal series expansion of the 
inverse matrix that would then also define higher order corrections to the effective 
Hamiltonian but for most intents and purposes the second order Hef is the 
desired one. 



Summary
✓ In order to apply the effective Hamiltonin theory in the proposed form the 

following conditions have to be met: 

1. There must be a sensible division of the ,Complete Hamiltonian‘ into H0 
and H1.


2. We must know the complete set of eigenfunctions of H0

3. There must be a large enough energy gap between the model space and 

the outer space (Hence, the matrix elements of H1 should not be so large 
as to induce a crossing or near crossing of the b-space eigenfunctions 
with the ,a‘ space eigenfunctions).

✓ All three assumptions may or may not be critical. In particular (2)+(3) are 
sometimes hard to meet and then one has to look into an alternative approach 
(→linear response theory)



The Value of Effective Hamiltonians
✓ EH’s are MUCH simpler than the ‚parent‘ Hamiltonians 


‣ Treat their eigensystems analytically or with little effort numerically

‣ Help to Identify the minimum number of physically sensible empirical parameters to effectively 

describe the physical situation at hand.


✓ EH’s have a great imaginative power: 

‣ They create pictures in which we can think 

‣ They provide a language in which we can talk

‣ They provide insights into classes of substances rather than numbers for individual systems 


➡ GOOD effective Hamiltonians have parameters that have an unambiguous 
definition in terms of first principle physics 


➡ LESS GOOD effective Hamiltonians have parameters with a cloudy of ill defined 
connection to first principle physics


Following this logic, the Spin Hamiltonian is a GOOD effective Hamiltonian while the Hückel 
Hamiltonian is a less good effective Hamiltonian.



Chapter 3:  

First Application: Exchange Couplings



What is Exchange ?
The interaction of two paramagnetic ions (or more generally fragments) leads to a 
„ladder“ of total spin states which are described phenomenologically by the 
Heisenberg-Dirac-VanVleck Hamiltonian 

Ion A Ion B

Partially Filled

d-Shell

Partially Filled

d-Shell

Net  
Magnetic 
Moment

Net  
Magnetic 
Moment

N

S
N

S

„Magnetic“ 
Interaction

SA=5/2 SB=3/2

2J

4J

St=0

St=4

St=1

6J

8J

St=2

St=3

With no other magnetic interactions, the energy of a given spin-state is simply:

What is the origin of this „magnetic“ interaction and how do we calculate it?



Effective Hamiltonian Treatment of the Heisenberg Model

1. H0 is the Epstein-Nesbet Hamiltonian (diagonal of the CI matrix) and H1 = 
H - H0. Thus, the complete Hamiltonian is the Born-Oppenheimer 
Hamiltonian.


2. This means, we do know the eigenfunctions of the 0th order Hamiltonian 
exactly (Slater determinants).  


3. Our model space for the most elementary case of two interacting S=1/2 
systems consists of two ,neutral‘ determinants |core(aαbβ)> and  |
core(aβbα)>.


4. We assume that we know the quasi-localized orbitals ,a‘ and ,b‘.

5. The outer-space consists of all other Slater determinants including the 

ionic ones |core(aαaβ)> and |core(bαbβ)> and we restrict attention to those

✓ In order to derive the Heisenberg Hamiltonian in the simplest case (the Anderson 
model). we make the following specification of the general second-order effective 
Hamiltonian



Evaluation of the Effective Hamiltonian

★ Assuming two (semi) localized orbitals ,a‘ and ,b’, then the model space is:

   
(core)a

α
b
β    

(core)a
β
b
α

★ The ,+‘ and ,-‘ combination of these determinants are the M=0 components of the 
lowest singlet and the lowest triplet respectively.

★ The diagonal elements of the effective Hamiltonian are equal for both model 
functions and hence may be put to 0.

★ The off-diagonal first order term is: 
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Extraction of the Exchange Coupling Constant
✓ Since: a
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b
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✓ We obtain the effective Hamiltonian:
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✓ And the splitting:

   
E(S = 0)−E(S = 1) = 2K
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U
✓ And from the Spin-Hamiltonian

   

H
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   E(S = 0)−E(S = 1) = 2J✓ Hence
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„Exchange Coupling“: Anderson Model
2e- in 2 orbitals problem: 3-Singlets

1-Triplet

After-CI: 

Orbitals States Integrals

On-Site Coulomb Integral

Inter-Site Coulomb Integral

Inter-Site Exchange Integral

Fock Like „Transfer“ Integral

Neutral

Ionic

Neglect overlap for a moment

Heisenberg-Dirac-van Vleck „effective“ Exchange (H=-2JSASB)



A Model Calculation: [Cu2(µ-F)(H2O)6]3+

The Hartree-Fock SOMOs of the triplet state („active“ orbitals)

The pseudo-localized „magnetic orbitals“

~0.7 eV

Notes: 

• ‚a‘ and ‚b‘ have tails on the bridge (and on the other side)

• ‚a‘ and ‚b‘ are orthogonal and normalized

• ‚a‘ and ‚b‘ do not have a definite energy

• THE orbitals of a compound are not well defined! (ROHF, MC-SCF, DFT, Singlet or Triplet 
  Optimized, ...)



Values of Model Parameters:
„Direct“ (Potential) exchange term:

Exactly calculated „kinetic“ exchange term:

Is that accurate? Look at the singlet wavefunction:

Recommended Literature:

Calzado, C. J.; Cabrero, J.; Malrieu, J. P.; Caballol, R. J. Chem. Phys. 2002, 116, 2728  
Calzado, C. J.; Cabrero, J.; Malrieu, J. P.; Caballol, R. J. Chem. Phys 2002, 116, 3985 

Fink, K.; Fink, R.; Staemmler, V. Inorg. Chem. 1994, 33, 6219  
Ceulemans, A.; et al., L. Chem. Rev. 2000, 100, 787 

BUT:  

• The ionic parts are too high in energy and mix too little with the neutral configuration 

(electronic relaxation)

•  Need to include dynamic correlation into the calculation

Far of



Refined Ab Initio Calculation

The Anderson model is not really realistic and should not be taken literally even 
though its CI ideas are reasonable. 

‣ Relaxation of ionic configurations are important („dressing“ by dynamic 

correlation)

‣  LMCT states are important

Include relaxation and LMCT/MLCT states via Difference Dedicated CI:

Look at the singlet wavefunction

Treatment of LMCT States in Model Calculations: VBCI Model: 
Tuczek, F.; Solomon, E. I. Coord. Chem. Rev. 2001, 219, 1075 

(~105 Configurations)

Reduced Increased! NEW+IMPORTANT



Comments
✓ Kab is always positive (ferromagnetic). „Potential Exchange“


✓ -F2/U is always negative since Jaa > Jab (antiferromagnetic). „Kinetic Exchange“


✓ This effective Hamiltonian is too simple and upon ab initio evaluation of the 
integrals one recovers only a fraction of J.


✓ The reason is that the ,bare‘ U is much too large since the ionic configurations 
relax a lot in the dynamic correlation field.


✓ The dynamic correlation contributions can - again - be calculated through an 
effective Hamiltonian.

de Loth, P.; Cassoux, P.; Daudey, J. P.; Malrieu, J. P. J. Am. Chem. Soc. 1981, 103, 4007; Calzado, C. J.; Cabrero, J.; Malrieu, J. P.; Caballol, R. J. 
Chem. Phys. 2002, 116, 3985; Calzado, C. J.; Cabrero, J.; Malrieu, J. P.; Caballol, R. J. Chem. Phys. 2002, 116, 2728. Miralles, J.; Caballol, R.; 
Malrieu, J. P. Chem. Phys. 1991, 153, 25; Miralles, J.; Daudey, J. P.; Caballol, R. Chem. Phys. Lett. 1992, 198, 555.



A quick Comment on Broken Symmetry DFT
Simplest possible case

✓ tails on the bridge, orthogonal

a = 1
2
ψ
g
+ ψ

u( ) b = 1
2
ψ
g
− ψ

u( )
Ψ00 = 1

2
ab − ab( )

1/2

1

1 2

Broken Symmetry DFT:

✓ Energy gain through delocalization, non-orthogonal

ΨBS = η
a
η
b

Terrible mistake: 

Positive spin

density

Negative spin

density

In the real world 
everywhere zero for a 

singlet state!!!

My View: FN (2003) J. Phys. Chem. Solids, 65, 781; FN Coord. Chem. Rev., 2009, 253,526



Chapter 4:  

Second Application: Spin Hamiltonians



Spin-Hamiltonians and their Limitations

Normal:
~1 cm-1

~1 cm-1

~10,000 cm-1

~1
00

 c
m

-1

✓ Separation between multiplets is 
much larger than SOC


➡ Spin-Hamiltonian is valid

Special:

~10-100 cm-1

~1
00

 c
m

-1

<1000 cm-1

✓ Separation between multiplets is 
not much larger than SOC


➡ Spin Hamiltonian not valid

Ĥ= Ĥ
BO

Ĥ0

!
+ Ĥ

rel
+ Ĥ

Fields

Ĥ1

! "#### $####Standard:

FN (2001) J. Chem. Phys., 115, 11080



Perturbation Theory of SH Parameters

Divide the Complete Set of Many Electron States into Two Sets

1. „Model Space“:
The 2S+1 components of the orbitally nondegenerate ground state

2. „Outer Space“:

All other states of any multiplicity and symmetryExample:

Ground State 3Γ: Exc. State 3Γ‘: Exc. State 1Γ‘‘: Exc. State 5Γ‘‘‘:



Defining the Spin-Hamiltonian

★ We arrive at the effective Hamiltonian: 

★ But there is a deep symmetry that relates the components with different M for each 
state ,a‘ or ,b‘ - we have to make use of this with the powerful Wigner-Eckart 
theorem in the next step. 


★ But let us first be more specific on the perturbing Hamiltonian and derive the g-
Tensor. Let: 

li	 = Angular momentum of electron i relative to  
	    the ,global‘ origin (whatever this means ...)

si 	 = Spin angular momentum of electron i

hSOC	 = Effective one-electron spin-orbit Hamiltonian  
	    (e.g. SOMF)

The 0th order ground state energy can 
obviously be dropped since it does 
not add anything to the splitting of the 
magnetic sublevels. 



Derivation of the g-Tensor
★ First of all, the first order terms are zero since the expectation value over the purely 

complex operators l or hSOC vanish: 

★ Hence we are interested in the second-order terms - but only those terms that are linear 
in the magnetic field since the g-Tensor describes a linear coupling to B. This immediatly 
gives:

★ The LS matrix element reduces easily since the orbital angular momentum part is 
diagonal in spin and the spin angular momentum part vanishes since it is diagonal in the 
spatial part; 



The Spin-Orbit Coupling Matrix Elements
★ The SOC matrix elements are more subtle. Here one has to make use of the Wigner-

Eckart theorem that tells us that for any operator of the form: 

★ where m is a ,spherical tensor component‘ (m = 0, ±1): 

    

Ψ
I
SM f

i
s

i
(m)

i
∑ Ψ

J

′S ′M = ′S 1
′M m

S
M

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

Clebsch_GordonCoefficient
! "####### $#######

Ψ
I
S || f

i
i
∑ || Ψ

J

′S

Reduced Matrix ElementYIJ
S ′S

! "######## $########

★ This fairly esoteric looking equation says that all the M-dependence of the SOC 
matrix elements is in the ,Clebsch-Gordon coefficient‘ and that the rest (the hard 
part!) comes from the ,reduced matrix element‘. Hence, we only need 
the ,standard components‘ M = S of each multiplet to calculate the entire (2S‘+1)
(2S+1) block.


★ Note also that this equation tells us that a general operator that depends on the 
individual electron spins couples states of different multiplicity!



Reduced Matrix Elements
★ Without proof: the reduced matrix elements are calculated from the standard states 

as: 
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★ With the ,spherical tensor components‘ of the spin operators being given by: 
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FN, EI Solomon Inorg. Chem., 1998. 37,6568



The Second Order g-Tensor
★ After this significant detour we can now evaluate the sums over the intermediate M-

components exactly and arrive at the second-order expression for the g-Tensor 
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★ Note: Only excited 
states of the same 
spin as the ground 
state


★ Note: Only standard 
components M=S

★ Let us first look at an element of the Spin-Hamiltonian:
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z
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★ Now the same for our perturbation sum:

★ Thus (and generalizing to all components):

compare to 
find the 
expression 
for g!
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First Order g-Tensor Contributions
★ For completeness, we notice that there are also a few relativistic operators that are 

bilinear in spin and field and hence give rise to first order contributions. They read:
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★ Except for the trivial ge=2.002319... the first order terms are typically much smaller than 
the second order term. 

★ α≈1/137 is the fine structure constant and Zeff is an effective nuclear charge that is 
semiempirical and has been introduced to avoid expensive (and small) two-electron 
gauge terms. 



From EPR g-Tensors to to NMR Chemcial Shifts
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A

A

∑

Ĥ
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The g-Tensor vs the Chemical Shift Tensor
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Chapter 5:  

Connection of Response and Analytic 
Derivatives
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Infinite summation 🥴



Linear Response Approach

λ

E
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E0
Linear 

„Linear Response“

Search for approximate solutions of:

Explicitly:

FN (2001) J. Chem. Phys., 115, 11080
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(Almost) all molecular properties

    

∂2E
∂λ∂κ

λ=κ=0

=
∂P

µν
±

∂κ
ϕ

µ

∂h
∂λ
ϕ
ν

+ P
µν
± ϕ

µ

∂2h
∂λ∂κ

ϕ
ν

µν
∑



Sum-over-States versus Linear Response
★ So far we had formulated our second order terms in the Spin-Hamiltonian as infinite sums 

over many electron eigenfunctions of the Born-Oppenheimer Hamiltonian

★ For two reasons this is unrealistic: (a) we don‘t know exact solutions to the BO Hamiltonia 

and (b) we never know an infinite number of eigenfunctions. Thus, we need to come up 
with something else. 


★ To make the connection with SOS fomulations we will first find a formulation that is exactly 
equivalent to SOS in the case of exact solutions and then apply this to the various 
approximate schemes like HF, DFT, CASSCF, MRCI,...


★ Let us start from the BO Hamiltonian in second quantization:
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= h

pq
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★ and some perturbation
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Exact Equivalence of SOS and LRT

‣ Assume that we know the exact eigenspectrum of the BO Hamiltonian as our basis. 
Then the Hellmann-Feynman theorem tells us that 
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‣ This result is exactly equivalent with the first order perturbation theory. Can we do the 
same thing for the second derivative?
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Second Derivative and SOS
★ We take the derivative with respect to another perturbation h(μ)
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★ Since:
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∑ = 0 | h(µ,λ) | 0

★ This term is already exactly equivalent to the first-order term in Heff

★ For the „response term“ involving the derivative of the density we have:
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★ But we are certainly allowed to expand the first derivative in terms of the unperturbed 
eigenstates of the BO Hamiltonian:
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Second Derivative and SOS (ctd.)
★ But first-order perturbation theory tells us that: 

    

∂Ψ
0

∂µ
= −

0 | H (µ) | n

E
n
−E

0

n

n

∑
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★ So:
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★ Thus, second derivatives are exactly equivalent to the Heff to second order! (there is some 
Wigner-Eckart trickery involved for nondiagonal components but this should not distract 
from the beauty of the argument)

see FN Mol. Phys, 2007, 105, 2507 FN J. Chem. Phys., 2007, 127, 164112



Chapter 6:  

Spin-Hamiltonian Parameters as Analytic 
Derivatives



Explicit Expressions from Response Theory
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Only completely realized in the framework of density functional theory in the ORCA 

program under the assumption that the exact wavefunction coincides with the Kohn-
Sham determinant




How to Calculate the SH Parameters in Practice?

Let us assume that we have the (one-electron) perturbating operators:   

Then the first order contribution to the response property is: 

With being the basis set and  Is the electron or spin density

What would you program (DFT or HF will be our example)? 

Solve SCF equations for the orbitals and the density P

Call integral package to make all HKL(p,q)

For all p,q add BLAS_Trace(P,HKL) to the tensor Q(K,L)

➡ If there are too many HKL to hold in memory, the integral package 
could contract batches of HKL with P on the fly



Calculating the Second-Order Terms 

Let us start from the SCF conditions (I=occupied, a=empty): 

With: 

Let us expand the orbitals in the order of the pertubation (either K or L is fine): 

Inserting this and solving for U gives the coupled-perturbed SCF (CP-SCF) equations:

=Fraction HF exchange

=XC potential



The CP-SCF equations

U(K) is the solution of the linear CP-SCF equations:

A is dependent on the type E=electric(real) or M=magnetic(imaginery) of the pertubation:

➡ The Coulomb term and all local potentials give 0

➡ If there is no HF exchange, the A matrix is diagonal

➡ The perturbed (response) density is antisymmetric

➡ There is no first order change in the total electron density 

=XC „Kernel“

Special properties of magnetic perturbations:

The right-hand side b is defined by the perturbation

=Response Fock with overlap dervivative as density



Solving the CP-SCF equations

The A-matrix is of dimension (nocc*nvirt)2 and thus O(N4). 

➡ Too big to keep in memory and solve equations by inversion of A

Solution: ➡ Transform everything to the AO basis  
➡ Solve the equations iteratively using any solver (DIIS, Davidson, Pople,…)

➡ Transform back to the MO basis 

➡ Calculate perturbed (response) densities 

In each step of the iteration cycle, one calculates a Fock-like matrix using the same 
techniques already available from the SCF code of your program

The cost for one perturbation is roughly the same as for one full SCF, but treating many 
perturbations together can bring major advantages

Detailed equations & derivation for example in: FN, „Prediction of molecular properties and molecular spectroscopy with 
density functional theory: From fundamental theory to exchange-coupling“ Coord. Chem. Rev., 2009, 253, 526-563

Response term: 
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Dealing with the Ugly: GIAO’s

A lack of Gauge invariance is not acceptable. Cure: 

Gauge including Atomic Orbitals:

Normal basis function: 
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etc.  …about a dozen different types of new integrals 



Convergence to the Basis Set Limit

Basis set size

S
hi

el
di

ng

GIAO

Common gauge origin

➡ Convergence to the basis set limit is very slow and in practice calculations 
with GIAOs are mandatory



Magnetic Properties: Conclusions
✓ EPR and NMR spectroscopy are major analytical tools in chemistry.

‣ They allow for fine finger printing.

‣ They carry very detailed electronic structure information and hence they are a great 

target for validating electronic structure calculations. 

✓ Effective Hamiltonian theory connects electronic structure with phenomenological 

treatments 

‣ Exchange coupling / Heisenberg Hamiltonian (NOT a magnetic interaction)

‣ Spin Hamiltonians for EPR and NMR spectroscopy 


✓ Linear response theory connects cleanly to the Spin-Hamiltonian 

‣ Most common tool used in practice  


✓ When excited states come close in energy to the ground state multiplet, LRT breaks 
down and one is best advised treating magnetic fields and relativity (SOC) to infinite 
order using Quasi-Degenerate Perturbation Theory (QDPT)  

‣ Crucial for treating single molecule magnets.
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