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You have an Equation, what now?
Let us assume that you have derived an equation, e.g. using Wick’s theorem 

a
j b

c dk l

i

You are charged (or simply want) to implement that. What do you do?

i,j,k,l=occupied 
a,b,c,d=virtual

Or diagrams …

See coupled  
cluster  

lectures!



Goals of Quantum Chemical Method Development

✓ To be able to calculate ‚things‘ (energies, properties) that could not be calculated 

before or on systems that were not accessible before 

✓ To develop a better (more accurate, more elegant, more compact, more transparent, 

…) theory for a known property. 

✓ Develop new approximations to known equations 

✓ …

✓ To obtain the same number faster than before 

✓ To obtain an approximate number faster (and in ‚improved scaling’) than before



Prelude 

A little information on Computers



Computer Architecture and Algorithm Design

Disk
CPUCACHEMAIN


MEMORY

~1ms

I/O bus Mem. bus Cacheline

~100 ns ~1 ns

~1 ns

✓ Disk access is very slow

✓ Memory to CPU transfer is slow }
Algorithms need to carefully 

balance I/O and memory 
operations, not just minimize FLOP 

count



Main Memory: Stack vs Heap

Stack: Fixed Size Reserved Main Memory region of static variables 

Heap: Variable Size Main Memory region of dynamic variables 

void SignOfLife() 
{ 
  int i; 
  double x[1024];   
  double *y = new double[1024];  
  printf(„This is SignOfLife - still hanging in there!“); 
  delete[] y; 
};

Memory allocated on the Stack

Main memory

Stack

Heap

Memory allocated on the Heap

Release memory allocated on the heap

NOTE 
‣ memory allocated on the Stack will be released automatically when the 

variable goes out of scope.  
‣ Memory allocated on the Heap you need to de-allocate yourself or you are 

created a memory leak (very common mistake)



The Stack can Overflow
✓ The Stack is usually small (e.g. default on a Mac is 8MB)

➡ If you are putting a lot of data on the stack if may overflow 
➡ Core dump / Segmentation fault

frankneese@MacBook-Pro-von-Frank 2024 - ESQC-24 % ./stack                 
Sign of Life - still hanging in there! 

void SignOfLife() 
{ 
  double x[1024]; 
  printf("Sign of Life - still hanging in there!\n"); 
  fflush(stdout); 
}; 

frankneese@MacBook-Pro-von-Frank 2024 - ESQC-24 % ./stack                 
zsh: segmentation fault  ./stack 

void SignOfLife() 
{ 
  double x[1024*1024]; 
… 

✓ The Heap can overflow too of course. In this case there might be chance to recover using 
„exception handlers“ (e.g. C++ try … catch ….)



Side Remark: Call by Reference vs Call by Value

An argument passed by value:  
‣ creates the copy of the variable on the stack 
‣ unchanged after the function call is done 
‣ Potentially creates overhead from copying or stack overflows  

An argument passed by reference:  
‣ What is passed is a pointer to the storage location of the variable (Heap or Stack) 
‣ Potentially changed after the function call is done 
‣ Creates no overhead  

void foo(int i){ i=i+1; }; 

int i=1;  foo(i); printf("i=%d");  The printout will be i=1

void foo(int &i){ i=i+1; }; 

int i=1;  foo(i); printf("i=%d");  The printout will be i=2



Summary: Hardware components 

Hard-disk: ‣ Potentially large (assumed infinite in the „von Neumann machine“ or 
the abstract „Turing machine“  

‣ Very slow compared to the rest. Avoid as much as you can!   

Bus: ‣ Transfer from main memory to CPU/Cache 
‣ Often rate limiting in actual calculations  

Main memory: ‣ Small Stack (static), large Heap (dynamic) 
‣ Relatively slow. It takes time to dig data out from there.  

Cache: ‣ Fast memory directly attached to the CPU 
‣ Relatively small. You want all the data the is being processed there  

Register: ‣ Central part of the CPU that holds the data or instructions that are 
being processed next 

CPU: ‣ Runs instructions in sequence (e.g. GHz means nsec for individual 
instructions) - make sure it does not run idle! 



„The greatest performance gains are coming from 

the calculations that you don’t do at all“

PART 1 

Before we talk about how to compute things 

efficiently: 



3 Ways to Avoid Unproductive Computation

1. Use of symmetry Integrals have selection rules, e.g.  in 

The direct product

Must contain the totally symmetric irrep, provided 

Are adapted to the irreps of the point group

2. Use of permutation symmetry

Integrals have permutation symmetry that usually should be used

3. Avoid terms that are (near) zero or factors that are (near) one

… here is where the art & science of thresholding starts!

Avoid small numbers but make sure errors don’t add up! 
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Almlöf’s Revolutionary Proposals
For decades progress in quantum chemistry was prevented by the O(N4) of two-
electron integrals.

The integral bottleneck was finally overcome by Almlöfs revolutionary proposals
1. Do NOT store integrals. Recalculate when needed (direct SCF) 

2. Split the calculation of the Coulomb and exchange terms and use the most 

efficient approximation for each rather than use the same integrals for both.

Even if the integrals can be stored for a 1000 basis 
function calculation, the I/O penalty is huge and 
the CPU remains largely idle while waiting for data 
to arrive from the hard drive



Let’s take a look at Electron Repulsion Integrals

Look at an ERI: 

This can be viewed as the electrostatic interaction of two smeared out 

charge distributions: 

And it is advantageous to take the basis functions themselves as Gaussians: 



Negligible Integrals: Gaussian Product Theorem
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➡ In a large system there are only O(N) ‚significant‘ Gaussian products.


➡ The should be precomputed and stored as a list (e.g. cut-off KAB>=Tcut)


➡ The significant bra- and ket-products interact via the 1/r operator (never small!).


➡  There are O(N2) non-negligible integrals



The principle of „Direct SCF“ 

➡ Only contributions >= Thresh go into the Fock matrix

 G=0 
 loop µ
  loop ν≤µ
    loop κ
          loop τ≤κ (µν≤κτ) 
             test= IntegralEstimate(µ,ν,κ,τ) 
                           *max(P(κ,τ),P(ν,τ),…) 
             if (test<Thresh) skip 
             else 
                Calculate (µν|κτ) 
                add G(µ,ν)+=P(κ,τ)(µν|κτ) (Coulomb) 
             add G(µ,κ)-=P(ν,τ)(µν|κτ) (Exchange) 
                   (and permutations of indices)  
            end (else) 
 end loops µ,ν, κ, 

F
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➡ Better than testing for small integrals alone since P can be large



Kohn’s Conjecture and the Density Matrix
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For an insulator (finite HOMO-
LUMO gap), the density matrix 
decays roughly exponentially 

with distance

(what we mean by that is the 
distance between the atoms the 
basis functions are attached to)

P
µAνB

➡ The decay is exponential, but slow. 10-10 is only reached at 20-25 Angström!

➡ Nevertheless, in insulators, there are only O(N) significant density matrix elements



Intrinsic Scaling of Coulomb and Exchange
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Assuming exponential decay of the density, Almlöf realized that the intrinsic scaling of the 
Coulomb and exchange terms is different:

Coulomb:

Exchange:
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Conclusion: Use the most efficient way to calculate or approximation each 
term separately! 



Integral Estimates (I): Almlöf’s estimate

In order to not decide that we do not calculate an integral, we need an estimate for it

Look at an ERI: 

Let us preted for a moment that          is not there. Then: 

Now assume that the bra- and ket distributions are centered at  



Now set 

And arrive at 

Estimate 

(Over the members of the 4 shells) 

➡ NOT a rigorous upper bound  
➡ Reasonably cheap to compute 
➡ Does take the R dependence into account to some extent



Integral Estimates (II): Ahlrich’s estimate

Häser and Ahlrichs used the Schwartz inequality to show: 

(Over the members of the 4 shells) 
Estimate 

➡ Is a rigorous upper bound  
➡ Is cheap to compute 
➡ Does NOT depend on R and hence will strongly overestimate 

integrals with well separated bra and ket distributions 



Integral Estimates (III): Multipole Estimate

Let us take two expansion points 

And express the two charge distributions in terms of their (real, spherical) multipoles: 

Assuming the two local coordinate systems are aligned and the charge distributions are 
not overlapping, the bipolar expansion yields: 

For one-center charge distributions 

Bühler, RJ, Hirschfelder, JO  Bipolar Expansion of Coulombic Potentials, Phys. Rev., 1951, 83, 628-633



The multipole formula becomes fully accurate (at least 16 digits) once the charge 
distributions don’t overlap. 

✓ Evaluating the multipole formula exactly is too costly - the estimate may become as 
expensive or more expensive than the actual integral calculation 

✓ For the purpose of pre-screening, one should only be interested in the lowest multipole 
interaction, because it is the one that covers the longest distances:

➡ Will break down for overlapping charge distributions overlap 
➡ Not cheap to compute  
➡ Misses higher order multipole contributions.  
➡ NOT an upper bound, i.e. Will perhaps dramatically underestimate the integral 

@medium R

Estimate 



Integral Estimates (IV): The „QQR“ and „CSAM“ 
➡ Lambrecht and Ochsenfeld  J. Chem. Phys., 2005, 123, 184102 derived rigorous 

upper bounds on the basis of the multipole expansion (too expensive in practice)

➡ Maurer, Ochsenfeld et al. J. Chem. Phys., 2012, 136, 144107 realized that higher 
multipoles can be simulated by the Schwartz integral and proposed the „QQR“ 
estimate:

Estimate 

The extent of a charge distribution is defined by:



➡ Thompson and Ochsenfeld et al. J. Chem. Phys., 2017, 147, 144101 further tweaked 

the QQR by realizing that the distance dependence can be simplified

Which features the distance dependence of the interacting bra/ket distributions. 

Defining:

Gives the final (CSAM) estimate:

Estimate 



Comparison of Estimates

Schwartz Almlöf

QQR CSAM

Lowest MLM

‣ Rigorous, 
‣ Not tight

‣ Tight, 
‣ Not Rigorous

‣ „Almost Rigorous“ 
‣ Slightly tighter

‣ Less Rigorous 
‣ Slightly tighter  

than QQR

‣ Ridiculous

(gly)3 / def2-SV(P) 



Performance in practice: (Gly)15/def2-SVP

#(Cycles)     Energy (Eh) #(Fock time/sec)

Schwartz 11 -3175.706180418709 1822

QQR 11 -3175.706179146775 1659

CSAM -3175.706177491313 156111

Almloef Wild divergence

(15%)

( 9%)

… 0.3 Microhartree loss of accuracy for 15% performance gain

(Will be more for larger systems)



Pre-screening: Wrapping up

✓ The best way to speed up a computation is to not do it :-) 
✓ Identifiying near zero’s is and art & science that is not done even after 30+ years 
✓ In skipping small contributions: 

‣ It is good but not strictly necessary to have rigorous upper bounds 

‣ Numerical stability must never be sacrificed

Always remember: 

‣ Computing a bad number fast is useless 

because it is still a bad number 

‣ First the approximation has to meet a specified 

accuracy goal, then it can be fast 



PART 2 

How to compute things you cannot avoid 
efficiently



Chapter 1:  

Scaling Laws and Their Impact on Algorithms 



Scaling Laws

A quantum chemical algorithm can be characterized by it’s scaling behavior: 

Scaling with respect to system size (#(Atoms), #(Basis functions),…) 
Scaling with respect to basis set (Size, Angular momentum,…)

A scaling law can be written as: 

T = aNb
T Time taken by algorithm

a ‚Prefactor‘

b Scaling Exponent

Optimizing an algorithm: Bring down the prefactor

Bring down the scaling

Holy grail: Linear scaling with a small prefactor



Figuring out the Scaling Law

General: 

Dimensionality of target quantity x Scaling of loops required to obtain it

Example: ψ
p
(r)= c

µp
ϕ
p
(r)

µ
∑

➡ The number of occupied and virtual MOs is proportional to system size

➡ The Number of AOs is proportional to system size

(µν |κτ) Number of AOs integrals proportional to N4 (O(N4))
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Prefactor vs Scaling

crossover point

In developing reduced scaling algorithms one shoots for early crossover

For many applications nonlinear scaling with a small prefecture is the preferred choice



Golden Law of Development

✓ In general, the workflow of a quantum chemical algorithm contains many steps (e.g. 
localization, integral transformation, equation solution, perturbative correction, …), 

✓ Each step will have its own scaling law

Work on 
the 

Slowest 
Step! 



Profile your Program!
Total execution time         ...  153019.575 sec 

Localization of occupied MO's          ...     7516.449 sec (  4.9%) 
Fock Matrix Formation                  ...    11392.614 sec (  7.4%) 
First Half Transformation              ...    37824.285 sec ( 24.7%) 
RI-PNO integral transformation         ...    17832.376 sec ( 11.7%) 
Initial Guess                          ...     5376.961 sec (  3.5%) 
DIIS Solver                            ...     8855.850 sec (  5.8%) 
State Vector Update                    ...        1.744 sec (  0.0%) 
Sigma-vector construction              ...     8177.969 sec (  5.3%) 
  <0|H|D>                              ...        0.072 sec ( 0.0% of sigma) 
  <0|H|S>                              ...        0.003 sec ( 0.0% of sigma) 
  <D|H|D>(0-ext)                       ...      575.591 sec ( 7.0% of sigma) 
  <D|H|D>(2-ext Fock)                  ...        1.921 sec ( 0.0% of sigma) 
  <D|H|D>(2-ext)                       ...     1512.608 sec ( 18.5% of sigma) 
  <D|H|D>(4-ext)                       ...      684.157 sec ( 8.4% of sigma) 
  <D|H|D>(4-ext-corr)                  ...     2880.920 sec ( 35.2% of sigma) 
  CCSD doubles correction              ...       33.534 sec (  0.4% of sigma) 
  <S|H|S>                              ...       78.695 sec ( 1.0% of sigma) 
  <S|H|D>(1-ext)                       ...       79.135 sec ( 1.0% of sigma) 
  <D|H|S>(1-ext)                       ...        5.117 sec ( 0.1% of sigma) 
  <S|H|D>(3-ext)                       ...       28.949 sec ( 0.4% of sigma) 
  CCSD singles correction              ...        0.108 sec (  0.0% of sigma) 
  Fock-dressing                        ...     1541.152 sec ( 18.8% of sigma) 
  Singles amplitudes                   ...       15.255 sec (  0.2% of sigma) 
  (ik|jl)-dressing                     ...      441.823 sec (  5.4% of sigma) 
  (ij|ab),(ia|jb)-dressing             ...      213.171 sec (  2.6% of sigma) 
  Pair energies                        ...        1.235 sec (  0.0% of sigma) 
Total Time for the density             ...      632.934 sec (  0.4% of ALL) 
Total Time for computing (T)           ...    32529.433 sec ( 21.3% of ALL) 

How much can you 
gain from optimizing 

these steps?

This is worth your 
while! 



Chapter 2 

Writing Efficient Programs



The Do’s and Don’t’s of Programming: Overview 

‣ Avoid short, nested Loops 

‣ Avoid Multidimensional Arrays 

‣ Access arrays in „Unit Stride“ 

‣ Avoid indirect addressing 

‣ Make use of matrix multiplications and BLAS 

‣ Make use of LAPACK 

‣ Move redundant work out of the inner loops 

‣ Minimize disk I/O, do it in larger chunks and do it as far ‚outside‘ as possible 

‣ Watch out of Load Balancing in parallel programming

Some rules for scientific programming that are relevant for obtaining high performance:



Instruction Pipelines and Logic

Ideal: The CPU has preloaded a ‚pipeline‘ of instructions and the data required to perform 
the next operations is in the CACHE

CPUCACHE Cacheline

LD x 
MOV x y 
ADD y z 
…x,y,z,…

A logical instruction whose outcome can not be predicted at compile time brings the CPU 
and CACHE out of the ‚groove‘

if (x<y) 
   z=x+y 
else 
   n=n+1 
   xp= sin(2*yp) 
end

GOOD: x,y,z are in the CACHE, 
performance is optimal

BAD: xp, yp and n are not in the 
CACHE. The pipeline must be 
cleared and a slow memory 
operation (MOP) is performed to 
get this data

} careful optimization 
avoids logical 

decisions in time 
critical parts of the 

program



Chapter 2.1 

Unit stride and avoiding short loops



Unit Stride Access

The CACHE has a finite size that is rather small. If one loads an array into the CACHE that 
is larger than the CACHE size, one should avoid ‚jumping‘ around in the array but rather 
only access consecutive positions in the array (unit stride access)

x=0 
for (i=0;i<2048;i++) x=x+y[i]

Example: Say, the CACHE holds 1024 array elements and we want to add up the 
elements of an array y that contains 2048 elements.

Good:

Bad: x=0 
for (i=0;i<2048;i++) x=x+y[yorder[i]]

Two problems:  
- yorder[i] may be anything in the range 0..2047 for any i and hence we may have to reload y into 

the CACHE multiple times 
- We use ‚indirect addressing‘. There is no way for the compiler to know the value of yorder[i] and 

hence after each addition we have to look again which element of y we need next.

- The compiler can optimize well: load the first 1024 elements of y and the next 1024 elements. 
Performs optimally without any ‚CACHE misses‘

for (i=0;i<2048;i++) x=x+y[i]-y[N-i-1]or



Example: Loop Unrolling

Time critical routines should not contain logic and should not contain nested loops. The 
process of eliminating short loops in favor of hand optimized, explicit code is called ‚Loop 
unrolling‘

Example: Calculation of integrals using the McMurchie/Davidson method

In the MD method, molecular integrals can be very elegantly calculated using 
an expansion of the Gaussian product in a Gaussian Hermite basis

Cartesian Gaussian on center A: Gabc;α
A = (x −X
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Example: Short Loops and Multidimensional Arrays
Pseudocode for a general MD integral routine
Calculate Array EAB 

Calculate Array ECD 

loop ixyz over Cartesian components of A

loop jxyz over Cartesian components of B

loop kxyz over Cartesian components of C

loop lxyz over Cartesian components of D
x=0
loop t =0..a+a’
loop u =0..b+b’
loop v =0..c+c’

loop t’ =0..d+d’
loop u’ =0..e+e’

loop v’ =0..f+f’

Calculate Array R 
} recursive formulas. Nested loops of length ~lA+lB  (or lc+lD)

x=x+ EAB[x][a][a’][t ]*EAB[y][b][b’][u ]*EAB[z][c][c’][v ] 
    *ECD[x][d][d’][t’]*ECD[y][e][e’][u’]*ECD[z][f][f’][v’]*(-1)t’+u’+v’ 
      *R[t+t’][u+u’][v+v’]

end loops t’,u’,v’
end loops t,u,v

end loops i,j,k,lxyz

ELREP[ixyz][jxyz][kxyz][lxyz]=x

10 nested loops!  
For s and p functions these run basically from 0 to 1



Example: Short Loops and Multidimensional Arrays
Alternative: For low angular momenta create hand optimized routines and store integrals in 
linearized arrays

Calc_ssss() 
  ab      = a+b  
  cd      = c+d 
  abcd    = ab+cd; 
  pprim   = 4.0*ab*cd*sqrt(abcd); 
  SR      = Kab*Kcd/pprim; 
  PQX     = (PX-QX); 
  PQY     = (PY-QY); 
  PQZ     = (PZ-QZ); 
  RPQ2    = PQX*PQX+PQY*PQY+PQZ*PQZ; 
  W       = ab*cd/abcd; 
  RT      = W*RPQ2; 
  Calc_F_Function(F) 
  ELREP[0]= F[0]*SR; 

Calc_sssp() 
  ab      = a+b  
  cd      = c+d 
  abcd    = ab+cd; 
  pprim   = 4.0*ab*cd*sqrt(abcd); 
  SR      = Kab*Kcd/pprim; 
  PQX     = (PX-QX); 
  PQY     = (PY-QY); 
  PQZ     = (PZ-QZ); 
  RPQ2    = PQX*PQX+PQY*PQY+PQZ*PQZ; 
  W       = ab*cd/abcd; 
  RT      = W*RPQ2; 
  Calc_F_Function(F) 
  t1      = W/cd*F[1]; 
  ELREP[0]= (QDZ*F[0]+PQZ*t1)*SR; 
  ELREP[1]= (QDX*F[0]+PQX*t1)*SR; 
  ELREP[2]= (QDY*F[0]+PQY*t1)*SR;

NO logic, NO short loops ➢ The compiler can optimize this code most efficiently
                                         ➢ Efficient modern integral libraries (e.g. libint) make use of  
                                              machine generated, highly unrolled code 



Numerical Example

(ss|ss)

(pp|pp)

(dd|dd)

unoptimized 
code

unrolled 
code libint

„to a large extend the efficiency of a computer code is a result of the care taken 

during the implementation stage and not due to the particular method selected 

for implementation.“ — Roland Lindh

(107 times)

(106 times)

(104 times)

(ff|ff)
(103 times)

1.8

8.3

4.1

9.1

1.2

2.6

0.4

0.5

0.7

0.4

0.1

0.2

(3x)

(21x)

(41x)

(45x)

speedup



A Real Life Example

In the theory of multipole interactions, There occurs the multipole interaction tensor:

(RP, RQ are the multipole expansion centers, we need all l=0..L, l'=0..L')

Let us write a subroutine for that - easy, we only have to evaluate some spherical 
harmonics, right? 



... Better version

void MultipoleInteractionTensor_ILMreal_Fame(double *PQ, double &RPQ, int LmaxBra, int LmaxKet, TRMatrix &T){ 
   
  //Load all required ILM at once  
  Load_AllIlm_stddef(LmaxBra+LmaxKet,X,Y,Z,R,ILM.p); 

  // Start looping over angular momenta 
 int64 LM1=0; 
  double *TLM1 = &(T(0,0)); 
  for (int64 L1=0;L1<=LmaxBra;L1++){ 
    for (int64 M1=-L1;M1<0;M1++){ 
      int64 LM2 = 0; 
      for (int64 L2=0;L2<=LmaxKet; L2++){ 
       // Pointer to correct ILM vector 
        double *ILre  = &(ILM(L12,0     )); 
        double phase1 =  (L2%2==0)? 1.0 : -1.0; 
          // Now we have to distinguish four cases to form Trygve's real interaction tensor 
        for (int64 M2=-L2;M2<0;M2++){ 
          // Common prefactor 
          double PreFac    = phase1 * 2.0; 
          double ILM_P_re  = ILre[M12Paddr];  // Real part      of I( L1+L2, M1+M2) 
          double ILM_M_re  = ILre[M12Maddr];  // Real part      of I( L1+L2, M1-M2) 
          TLM1[LM2]        =  PreFac* (-ILM_P_re + phase2 * ILM_M_re); 
          LM2++; 
          ////////////////////////// 
        }// M2 
        ... three more loops like this for the three other cases

no redundant computation

Correct loop order for unit stride access (Bra indices)

Correct loop order for unit stride access (Ket indices)

No silly array access  for phase factors

No Logic in the innermost loop



MultipoleInteractionTensor Shame vs Fame

➡ The version of the same function that has memory optimized unit stride 
access performs a FACTOR of 2-4 faster for non-trivial angular momenta
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Chapter 2.2 

Making the most out of using  

External Libraries



Libraries: The only ones you really need
Relying on third party software that may or may not be maintained in long term or may or 
may not be portable between platforms can be dangerous! There are three you likely 
cannot avoid:
1. BLAS (Basic Linear Algebra System)

a) Level 1: Vector/Vector operations
b) Level 2: Matrix/Vector operations
c) Level 3: Matrix/Matrix operations

2. LAPACK (Linear Algebra Package)

Linear algebra routines (Diagonalization, Linear equation systems, Cholesky 
decomposition, singular value decomposition, …)

3. MPI (Message Passing Interface)

Low level routines for parallelization using a distributed memory paradigm

These are highly efficient, standardized and portable libraries. 
(In ORCA, we nevertheless have put one software layer above them in order to have no direct calls to third party software whatsoever)



Example: The power of BLAS

Let us look at two ‚innocent‘ matrix multiplications:

C= AB C
ij
= A

ik
B
kj

k
∑

C= ABT C
ij
= A

ik
B
jk

k
∑

Which we can program as follows:

loop i = 1 … N 
  loop j = 1 … N 
    x=0.0; 
    loop k = 1 … N  
       x=x+A(i,k)*B(k,j); or x=x+A(i,k)*B(j,k) 
    end loop k 
    C(i,j)=x; 
  end loop j 
end loop i



Example: The power of BLAS (II)

For two densely filled essentially random, square matrices A and B with N=2750 

C= AB

C= ABT

C= ATB

:

:

:

directly programmed BLAS (dgemm)

99 

11 

Why that?

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

A =

!
✓ The matrices are arrange row-wise in contiguous memory 

places. Hence A(i,k) is accessing the matrix in unit stride while 
A(k,i) is not! 

✓ Huge (factor 10!) performance penalty! 
✓ Even worse would be to have rows scattered somewhere in 

the main memory (e.g. Numerical Recipes matrix routines in C)

104

USE BLAS LEVEL 3 
(DGEMM) WHENEVER YOU 

CAN!)

1.7

1.7

1.7

Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz



Example: The power of LAPACK

Diagonalization

Example: 3000x3000 matrix 

Intel(R) Core(TM) i7-4810MQ CPU @ 2.80GHz 

Hand written         

28.1 sec                           5.3 sec 

2.4 sec                           0.2 sec 

315.0 sec                         21.7 sec Singular value decomposition

Cholesky decomposition

Intel-MKL

~5x

~12x

~25xdgesvd

dsyevr

dpotrf



Application: Integrals over Gaussians

ϕ
µ
A(r)= N

abc
(x −X

A
)
aµ(y−Y

A
)
bµ(z −Z

A
)
cµ exp(−α

µ
r
A
2)The form of a Gaussian

Multiplying two Gaussians
ϕ
µ
A(r)ϕ

ν
B(r)= N

µ
N
ν
K
AB
(x −X

A
)
aµ(y−Y

A
)
bµ(z −Z

A
)
cµ(x −X

B
)aν (y−Y

B
)bν (z −Z

B
)cν

VERY NASTY!
! "########################### $###########################

exp(−α
P
r
P
2)

Nice!
! "#### $####

difficult to integrate in 3 
dimensions



The McMurchie Davidson Method (I)

If we have a nasty polynomial, we can expand it in terms of nice polynomials

➡ Orthonormal harmonic oscillator eigenfunctions (Hermite polynomials)

H
n
(x)= (−1)n exp(x 2)

d
n

dx
n
exp(x 2) H

0
(x)= 1

H
1
(x)= 2x

H
2
(x)= 4x 2−2

H
3
(x)= 8x 3−12x

In one dimension: (x −X
A
)
aµ(x −X

B
)aν = E

t

aµaν
H
t
(x −X

P
)

t=0

aµ+aν

∑

(a) McMurchie, L.E.; Davidson, E. (1978) J. Comp. Phys. 26,218

(b) Helgaker, T.; Raylor, P.R. (1995) in: Yarkony (Ed.) Modern Electronic Structure Theory, World Scientific, 725ff

E
t
i+1,j = 1

2p
E
t−1
ij + (X

P
−X

A
)E
t
ij + (t +1)E

t+1
ijRecursion relation

E
0
00 = 1



McMurchie-Davidson in Matrix Form

Think of E
t

aµaνE
u

bµbνE
v

cµcν

Then we have: (µAνB |κCτD)= (Ebra+REket )
µν,κτ

As matrices Ebra(tuv,µν)

E ′t
aκaτE ′u

bκbτE ′v

cκcτ

Eket( ′t ′u ′v ,κτ)

R
t+ ′t ,u+ ′u ,v+ ′v

R(tuv, ′t ′u ′v )

Obviously, not all tuv combinations occur for each member of the shell pair

Lµ / Ln 0 1 2 3 4
0 1 4 10 20 35
1 10 20 35 56
2 35 56 84
3 84 120
4 165

#(tuv) combinations as a function of angular momenta  



Advantage of Factorisation

E-Matrix E tuv,µν( )
L3 L2

R-Matrix R tuv, ′t ′u ′v( )
L3 L3

RE-product T(tuv,κτ)=
′t ′u ′v
∑ R(tuv, ′t ′u ′v )E ′t ′u ′v ,κτ( )

L2L3L2

O(L5)

O(L6)

O(L8)

TE-product I(µν,κτ)= E tuv,µν( )
tuv
∑ T(tuv,κτ)

L2L2L3
O(L7)

➡ Never worse than O(L8) which is better than O(L10) in the original MD

L3 L2

L2 L2

L3

L3

(Pre-computed; linear scaling)

(Generated on the fly)

 FN The SHARK integral generation and digestion system, J. Comp. Chem., 2022,   1-16 (DOI: 10.1002/jcc.26942)



SHARK vs Libint: „in vitro“

<1 Libint is faster 
>1 SHARK is faster

Contraction Depth

An
gu

la
r M

om
en

tu
m

 FN The SHARK integral generation and digestion system, J. Comp. Chem., 2022,   1-16 (DOI: 10.1002/jcc.26942)



Chapter 2.3 

Finding Algorithms with Minimal  

FLoating Point Operations

(… and whether this is the ultimate goal)



Design of an algorithm: FLOP count

In the early days of algorithm design, developers were carefully minimizing the number of 
floating point operations (FLOPs) required to accomplish a given task 

Example:  Partial integral transformation (µν |κτ)→ (ia | jb)

i,j= occupied MOs (#=O), a,b, unoccupied MOs (#=V), µ,n,k,t=basis functions (#=B)

Naive: (ia | jb)= c
µi
c
νa
c
κj
c
τb
(µν |κτ)

τ
∑

κ
∑

ν
∑

µ
∑ FLOPS = B 4O2V 2

ψ
p
(r)= c

µp
ϕ
p
(r)

µ
∑

O(N8) scaling

Must be possible to do better than that



FLOP Count: Partial Integral transformation

(iν |κτ)= c
µi
(µν |κτ)

µ
∑ (B 4O)

(iν | jτ)= c
κj
(iν |κτ)

κ
∑ (O2B3)

(ia | jτ)= c
νa
(iν | jτ)

ν
∑ (O2VB2)

(ia | jb)= c
τb
(ia | jτ)

τ
∑ (O2V 2B)

(µa |κτ)= c
νa
(µν |κτ)

ν
∑ (B 4V )

(µa | νb)= c
τb
(µa |κτ)

τ
∑ (V 2B3)

(ia | νb)= c
µi
(µa | νb)

µ
∑ (OV 2B2)

(ia | jb)= c
νj
(ia | νb)

ν
∑ (O2V 2B)

Algorithm A: occupied indices first Algorithm B: virtual indices first

}
Four O(N5) steps

ratio of FLOP counts: #(FLOPS)
A

#(FLOPS)
B

=
O
V

(2B3−V 3)

(B2 + 3B2V −3BV 2 +V 3)
<1

Example: GFLOPS for B=500, O=50, V=450

0.07

3125 28215

312 25312

281 2531

253 253

Always transform the index first that offers the largest data reduction!



FLOP count versus Performance

In order to capitalize on the efficiency of the BLAS routines, it is sometimes advantageous 
to sacrifice optimal FLOP count.

Example: Integral direct partial integral transformation for MP2

E
MP2
=− 1

4

[(ia | jb)−(ib | ja)]2

ε
a
+ ε

b
− ε

i
− ε

ji,j ,a,b
∑

(ia | jb)= c
µi
c
νa
c
κj
c
τb
(µν |κτ)

τ
∑

κ
∑

ν
∑

µ
∑

Key step: integral transformation



loop ibatch over batches of occupied MOs  
   loop p=1..NBas 
     loop q=1…p 
       loop r=1…p 
         loop s=1..r|q 
            Calculate(pq|rs)  
            loop i=1..Nocc (in ibatch)  
            ITMP[p,q,r,i]+= Cocc[s,i]*(pq|rs) and non-redundant permutations of indices 
         end i in ibatch 
    end loops p,q,r,s 
    loop p=1..NBas         
        loop r=1..NBas 
          loop i=1,…Nocc (in ibatch) 
             loop j=1..i 
              loop q=1..NBas 
                 JTMP[p,j,r,i]+= Cocc[q,j]*ITMP[p,q,r,i] 
               end loop q 
    end loops j,i,r,p 
    loop i=1..Nocc (in ibatch) 
      loop j=1..i 
        loop p over AO’s 
          loop b=1..NVirt 
            loop r over AO’s 
              ATMP(p,b)+=C[r,b]*JTMP[p,j,r,i] 
        end loops r,b,p 
        loop a=1..Nvirt 
          loop b=1..Nvirt 
            loop p over AO’s 
              KIJ[a,b]+= C[p,a]*ATMP[p,b] 
        end loops p,a,b 
        Evaluate MP2 amplitudes and pair energy   
    end loops i,j 
       end loop i 
end loop ibatch

Full eightfold permutation symmetry used
FLOP count optimized algorithm 

have to be able to store NBas3 integrals for each 
occupied MO. Hence need batches of occupied 

MOs

Transformation of 2nd index

Transformation of 3rd index

Transformation of 4th index



loop p=1..NBas 
  loop r= 1..p 
    loop q=1..NBas 
      loop s=1..NBas 
         calculate K[p,r](q,s)= (pq|rs) 
   end loop q,s 
   Perform transformation K[p,r](i,j)=(CoccT*K[p,r]*Cocc)ij 
   Write matrix K[p,r] to disk 
end loops p,r 
Resort Integrals K[p,r](i,j) to give K[i,j](p,r)  (i<=j) 
Loop i= 1..Nocc 
  loop j=1..i 
    Read integrals K[i,j](p,r) 
    Perform transformation K[i,j](a,b)=(CvirtT*K[i,j]*Cvirt)ab 
    Calculate MP2 amplitudes T[i,j](a,b) 
    Calculate MP2 pair energy e(i,j) 
    Sum up MP2 correlation energy 
end loops i,j      

BLAS optimized algorithm

We only use one out of eightfold permutational 
symmetry, which means that we generate the 

integrals effectively 4 times

We only use one 
permutational symmetry 

here too, which means we 
store 4 times too many 

integrals

Two BLAS level 3 
multiplications in the rate 

determining step

Two BLAS level 3 
multiplications

Awkward: Lots of I/O



Performance Test

FLOP optimized algorithm BLAS optimized algorithm 

Diclophenac
def2-TZVP (667 basis functions)
4 GB main memory used

1732 sec
TOTAL TIME for half transformation: 1697.0 sec 
AO-integral generation            : 1078.9 sec 
Half transformation               :  354.0 sec 
K-integral sorting                :   60.4 sec

(25 batches necessary)

>100,000 sec



Chapter 2.4 

Using Factorizations and Finding the ones 

with the best FLOP count



Example: Factorization in Coupled Cluster

The scaling of an algorithm can sometimes be reduced through factorization. This 
happens if intermediates can be defined that only depend on a subset of the summation 
indices. In this case  the summations can be carried out in two steps:

O(N8) scaling

Look at one nonlinear term in the CCSD equations: 

σ
ab
ij ← kl ||cd t

cd
ij t
ab
kl

cd
∑

kl
∑

➡ 4 target indices 
➡ 4 summation indices 
➡ … But any quantity depends on only 2 target indices at a time 
➡ Must be able to re-arrange loops more cleverly

Two possibilities: 

σ
ab
ij ← t

ab
kl kl ||cd t

cd
ij

cd
∑

Xkl
ij

! "###### $######kl
∑ σ

ab
ij ← t

cd
ij

cd
∑ t

ab
kl kl ||cd

kl
∑

Ycd
ab

! "###### $######
or



Example: Factorization in Coupled Cluster

Algorithm 1          Nocc2                                   <—— MUCH better and MUCH less Storage! 
—————  =   ——— FLOPS <<1  
Algorithm 2          Nvirt2

σ
ab
ij ← t

ab
kl kl ||cd t

cd
ij

cd
∑

Xkl
ij

! "###### $######kl
∑ : X

kl
ij = kl ||cd t

cd
ij

cd
∑ Nocc4 Storage 

Nocc4Nvirt2 FLOPS

σ
ab
ij ← t

ab
klX

kl
ij

kl
∑ Nocc4Nvirt2 FLOPS

σ
ab
ij ← t

cd
ij

cd
∑ t

ab
kl kl ||cd

kl
∑

Ycd
ab

! "###### $######
: Y

cd
ab = t

ab
kl kl ||cd

kl
∑

2xNocc4Nvirt2 FLOPS 
Nocc4 Storage

σ
ab
ij ← t

cd
ijY
cd
ab

cd
∑

Nvirt4 Storage 
Nocc2Nvirt4 FLOPS

Nocc2Nvirt4 FLOPS

2xNocc2Nvirt4 FLOPS 
Nvirt4 Storage

O(N6) scaling

O(N6) scaling



Let us return to our initial question!

a
j b

c
dk l

We had:
i

STEP 1: What is your data and how do you store what?

Integrals:

➡ Series of matrices orderd by internal label pairs

i,j,k,l=occupied 
a,b,c,d=virtual

How many occupied (no) and virtual (nv) orbitals do I have? 
➡ Say no=50, nv=400, then (no*nv)2~3 GB storage, (nv)4=190 GB

➡ Probably need to store that on disk and retrieve in portions

Amplitudes:

➡ Always look for matrices and vectors!

STEP 2: Rewrite the equations in matrix form

→O(N8)?O(N4) O(N4)



How it is REALLY NOT done
Get array SIGMA(i,j,a,b)

Loop over k,l

SIGMA(i,ja,b,)+= T(i,k,a,c) 
                *T(j,l,d,b) 
                *KS(k,l,c,d)

End i,j

Loop over i>=j

End k,l

O(N2)
O(N2)

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

Overall O(N8) 
With heavy 

Memory 
demands 
and no 
BLAS

Get array T(i,j,a,b)

Get array KS(i,j,a,b)

Loop over a,b

Loop over c,d
O(N2)

O(N2)

End c,d

End a,b



How it is ALSO NOT done

Get matrix SIGMA(i,j)

Loop over k,l

Form intermediate X= KS(k,l)*T(j,l)

Get matrix T(j,l)

Get matrix KS(k,l) (KS=K-squiggle)

Add to SIGMA(i,j)+= X(k,j)*T(j,l)

End i,j

Store matrix SIGMA(i,j)

Loop over pairs i>=j

Get matrix T(i,k)

End k,l

O(N2)

O(N2)

O(N3)
O(N3)

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

Overall O(N7) 
With heavy 

I/O



How it IS done 
Loop over pairs kl

Get matrix SIGMA(i,j)
Loop over k

Form intermediate X(k,j)= KS(k,l)*T(j,l)

Loop over j
Get matrix T(j,l)

Get matrix KS(k,l) (KS=K-squiggle)

Add to SIGMA(i,j)+= X(k,j)*T(j,l)
End k

End i,j
Store matrix SIGMA(i,j)

BLAS matrix x matrix

BLAS matrix x matrix

O(N2)

O(N)

O(N2)

(Let’s drop P(ij)P(ab) for the 
moment to keep things simple)

Store X(k,j)
End j

O(N3)

End kl
Loop over pairs i>=j

Get matrix X(k,j)
Get matrix T(i,k)

O(N)

O(N3)

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

Overall O(N6)

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

Overall O(N6)



Chapter 2.5 

Precompute what you can afford to avoid 

redundant re-computation



Precomputed quantities

Example: shell pair data

Loop ish>= jsh

Loop ksh, lsh(ish==ksh?jsh:ksh)

Calculate KIJ=di*dj*exp(-ai*aj/(ai+aj)*RAB2) 

Calculate P = 1/(ai+aj)*(ai*RA+aj*RB) 

Calculate KKL=dk*dl*exp(-ak*al/(ak+al)*RCD2) 

Calculate Q = 1/(ak+al)*(ak*RC+al*RD) 

Calculate (IJ|KL) {P,Q,KAB,KCD,…}

…

Highly redundant since independent of ish,jsh, A or B!

Better: Precompute shell pair data AND screen for negligible shell pairs 

Loop ish>= jsh

Calculate KIJ=di*dj*exp(-ai*aj/(ai+aj)*RAB2) 

Calculate P = 1/(ai+aj)*(ai*RA+aj*RB) 
if |KIJ|<TCut then reject shell pair

Store KIJ, P in memory or on disk



Move Work out of the Inner Loops: Split-J
Choosing intermediates wisely such that redundant work is move out of the inner loops helps 
performance 

Example: Integrate integral evaluation as early as possible into the target quantities. 
For the Coulomb matrix, (Ahmadi & Almlöf):

J
µν
= P

κτ
(µν |κτ)

κτ
∑
= P

κτ
E
tuv
µν

tuv
∑

independentof κτ
! "## $##

(−1) ′t + ′u + ′v E ′t ′u ′v
κτ R

t+ ′t ,u+ ′u ,v+ ′v
′t ′u ′v
∑

κτ
∑

= E
tuv
µν

tuv
∑ R

t+ ′t ,u+ ′u ,v+ ′v
(−1) ′t + ′u + ′v P

κτ
κτ
∑ E ′t ′u ′v

κτ

≡P ′t ′u ′v independentof µν,tuv

! "######### $#########′t ′u ′v
∑

= E
tuv
µν P ′t ′u ′v Rt+ ′t ,u+ ′u ,v+ ′v

′t ′u ′v
∑

tuv
∑

Hermite basis 
repulsion

Hermite basis 
density

Hermite  to Slm 
Transformation

When we calculate the integrals one by 
one, we repeatedly re-calculate this 
quantity N2 times  although it is 
independent of µ,n.Likewise: 
Transformation to spherical harmonics

FN J. Comp. Chem. 2003, 24, 1740-1747; FN J. Comp. Chem., 2022,  1-16



Performance example
def2-TZVP=667 BFs

Traditional treatment

Split-J algorithm

=Ahmadi-Almlöf

=Head-Gordon J-engine

Coulomb term (sec) 
(20-builds)

Identical numerical result, same scaling, but significant speedup realized through 
thoughtful structuring of the entire computational process

5796 sec

2834 sec



Chapter 2.6 

Be careful with Input/Output



Example: I/O Heavy Algorithms

  Loop i=1…Nocc 
    loop a=1..Nvir 
     Write NULL matrix Kia into buffer IABC 
    end loop a 
    loop a=1..Nvir  
      Read matrix Kia(b,c) = (ib|ac) from IABC 
      loop b=1..Nvir  
        Read matrix Kib(c,d) = (ic|bd) from IABC 
        loop c=1..Nvir 
          Kib(a,c)=+Kib(a,c)+Kia(b,c); 
        end loop c 
        Store matrix Kib in IABC 
      end loop b 
    end loop a 
  end loop i 

The I/O system is the slowest part of your computer! 

➢ Use it as little as possible

➢ Move its usage as far outside in the loop structure as reasonably possible

➢ Avoid reading small chunks of data

Example: Integral symmetrization in EOM-CCSD

Loop i=1..Nocc 
  Initialize buffer Kib for all b 
  loop a=1..Nvir 
    read matrix Kia(b,c) from IABC 
    loop b=1..Nvir 
      loop c=1..Nvir 
        Kib(a,c)+=Kia(b,c); 
      end loop c 
    end loop b 
   end loop a 
   Write entire buffer Kib into IABC  
end loop i

6641 sec 31 sec

SAME operation count! 
Factor 200 performance difference!!  



Chapter 2.7 

Parallelization in a nutshell



Single CPU Clockspeed / Single Thread Performance

Copyright © 2011, Elsevier Inc. All rights Reserved. 

Growth in clock rate of microprocessors. Between 1978 and 1986, the clock rate improved less than 15% per 
year while performance improved by 25% per year. During the �renaissance period� of 52% performance improvement per year between 
1986 and 2003, clock rates shot up almost 40% per year. Since then, the clock rate has been nearly flat, growing at less than 1% per year, 
while single processor performance improved at less than 22% per year. 







So far consistent with Moore‘s law (processor 
performance doubles every 12-24 months)


Optimistic estimates claim that Moore‘s law 
can be fulfilled until ~2020-2030 


Physical limits of miniturization will ultimately 
be reached

Performance: Moore’s Law



“From this historical perspective, 

it’s startling that the whole IT industry has bet its future that 

programmers will finally successfully switch to explicitly parallel 

programming”


(Patterson, Hennessy: The Hardware/Software Interface, 2009)

Paradigm Change: 

Requires explicit parallelization by the programmer!


Consequence’s of Moore’s Law
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Amdahl’s Law

Parallel Portion
   50%
   75%
   90%
   95%

Speedup:

P: Parallel portion of code

N: Number of Processors

Amdahl’s Law of Diminishing returns



Parallelization in a Nutshell

Principle idea: let a number of processors, say n, work on parts of the computational 
problem in parallel and combine sub results into the final result.

Ideal Scenario: The problem breaks down perfectly and the time required to solve the 
problem is 1/n.

Shared Memory Models: 
- Open MP, POSIX threads 
- Efficient use of resources, no memory replication 
- Difficult to debug large programs 
- Can only be used on one machine with common memory
Message Passing Models 
- Communication via messages between processes 
- Choice between replicated and distributed memory 
- Distributed memory difficult to implement efficiently 
- Can be used between machines 
Hybrid Models: 
- Threads + MPI 
- Combines shared memory on one machine with message passing between machines 
- Adaptation into official standards is slow

F=

1 2 3

F= 1

F= 2



Parallelization

Parallelization is of vital importance in modern high-performance computing, yet a 
LOT can go wrong here!  We can only scratch the surface of this complex subject.


A few rules:

1. Each process should have roughly the same amount of work to do (Load 
Balancing).


2. Do the parallelization as far ‚outside‘ as possible (e.g. distribute the outermost 
loop).


3. Excessive communication (e.g. sending large chunks of data) between processes 
should be avoided as much as possible.


4. Synchronization should not happen inside time critical loops and there should be 
as little of it as possible.


5. I/O in parallel applications is difficult if several processes access the same file.



Load Balancing Example

Integral calculation: The time required to calculate a given integral batch is a 
complicated function of angular momenta, contraction depth, orbital exponents and pre-
screening efficiency  
‣ Load balancing difficult to guarantee 
‣ Random distribution of batches among processors.  
‣ Uneveness will average out in the limit of many batches

loop i=1..N,i+=1 loop i=1..N,i+=NProcs→
Target F=0

Calculate something

Sum into Local F on processor

End loop

MPI-AllSum(F)

Local to process

Skip over i’s not „assigned“ 
to this process 

Sum up results obtained at individual processes

MPI-AllSum(F) Make sure all processes are finished before doing anything else



Parallelization and Ahmdal’s Law

Everolimus 
151 atoms,  

def2-tzvp (2606 basis functions)

Memory:		 8 GB /core

B3LYP

~3.9

~7.3 ~12.9 ~19 ~21
(~3.3 h!)



Group Parallelization

Everolimus 
151 atoms,  

def2-tzvp (2606 basis functions)

Idea: 
Divide the processes into groups that scale well (e.g. up to 8) 

and then parallelize independently over the groups 

! PAL(8x8) 

0.6 h 2 h Up to a factor of 
four faster than 

„bulk“ 
parallelization 



Chapter 3 

Some Useful Programming Techniques 

for Writing „good“ Software



Prelude: Who are you writing code for?

✓ For yourself because you want to check out some ideas

✓ Just for a paper, but not to be used later 

✓ For your boss because you want to get a Ph.D.

✓ For a program package that is supposed to be long lived

Everything is ok!

Mostly anything is ok!

… depends on your boss

… it needs to be well documented (in english)

… don’t try to be funny!

… Write the FM (so that users can avoid reading the FM)

… Make sure it compiles on any platform

… Minimize the dependence on elements that are outside your control

… put effort into making it as efficient as possible



Good Programming Habits 

... bad habits are the opposite of everything on the list

✓ Show some respect for the work that went into the package: 

‣ Communicate with the team and dont' go off on lonely tangents 

‣ Be respectful of the code organization and try to fit in 

‣ Do not rewrite code of others without prior conversation  

✓ Write lots of comments (in english!) including references to papers. 

✓ Use the existing infrastructure of the package 

✓ Debug carefully before checking into the main branch. Delete debug code 

✓ Provide plenty of test jobs with reference results. 

✓ Profile and optimize the code carefully 

✓ Be feature complete (e.g. not just closed shell) 

✓ Program as simple as possible and only as fancy as necessary. Do not "show off" 

✓ Do not write 50000 line functions - break it down, be modular, make it reusable   

✓ Use logical, recognizable file names



Chapter 3.1 

Using Recursion



Recursion

Recursion can be a very effective way to arrive at compact, elegant code.

1. Define the starting point of the recursion 
2. Define the recursive conditions strategy 
3. Define the termination conditions 

Easy example: the factorial number: 

Straightforward linear programming: 
int fac_n = 1; 
for (int i=1;i<=n;i++) fac_n = fac_n*i;

Recursive programming: 
int factorial(int n){ 
  if (n>0) return n*factorial(n-1); 
  else return 1;  
};

must be passed by value!

termination 
condition



Recursion: Finding the shortest path from A to B

Start

End

6-steps
5-steps
6-steps



// ------------------------------------------------------------------------------------------------- 
// FN 08/18 
// Find a pathway between A and B (if it exists) 
// 
// ON INPUT  A             - the first atom one is looking for 
//           B             - the target atom for the pathway 
//           XAB           - the list of connectivities XAB(A,k) - k'th atom connected to A; k<NAB(A) 
//           NAB           - the number of connectivities for each atom NAB(A)=number of bonds at A 
//           ActualLength  - the recursion depth 
//           MaxLength     - the maximal length of the path that is allowed 
//           abortAtLength - abort the search if a path of this length or shorter has been found 
// ON OUTPUT Length        - the length of the pathway found 
// ------------------------------------------------------------------------------------------------- 
void GEO_FindPathway(int A, int B, TIMatrix &XAB, TIVector &NAB, int ActualLength, int &Length, int &MaxLength, int abortAtLength) 
{ 
  // Abort if a path with abortAtLength is found 
  if (Length <= abortAtLength && Length > 0) return; 

  // Abort, if no path is found or we have exceeded the allowed maximal length 
  if (ActualLength> MaxLength) return; 

  // The number of connections made by atom A  
  int NA= NAB(A); 
  for (int k=0;k<NA;k++){ 
     // C is the actual k'th atom connected to A 
    int C= XAB(A,k); 
    // If we have found our target atom, we stop the recursion 
    if (C==B){ 
      // first pathway found 
      if (Length<0){ 
        Length= ActualLength; 
      } 
      // if we had one before, check whether this one 
      // is shorter. We take the shortest 
      else{ 
        if (ActualLength<Length) Length=ActualLength; 
      } 
      // There can be no path shorter than one bond. 
      if (Length==1) return; 
      // In any other case, we keep recursing 
      GEO_FindPathway(C,B,XAB,NAB,ActualLength+1,Length,MaxLength, abortAtLength); 
      // .... but stop here, since no other atom in that list 
      // can match B 
      return; 
    } 
    // and otherwise continue the recursion with the actual atom along the pathway 
    else{ 
      GEO_FindPathway(C,B,XAB,NAB,ActualLength+1,Length,MaxLength, abortAtLength); 
    } 
  } 
}

Recursion. New 
origin of search is C

Recursion. New 
origin of search is C

Termination
Check whether actual walk is shorter

Start condition



Recursion: Setting up ORMAS CI Spaces

ORMAS (Occupation Restricted Multiple Active Spaces)

✓ The orbital space is divides into N subspaces 
✓ Subspace K can have Kmin ... Kmax electrons  
✓ Subspace K has NORBK orbitals 
✓ Inside each subspace a CAS(NELK,NORBK) is formed 
✓ All combinations of subspaces that give the correct NEL are wanted

 GAS      (Generalized Active Space)



/* ------------------------------------------------------------------------------ 
 * FN 08/2024 
 * 
 *  Recursive function to figure out the combination of subspace lists that lead 
 *  to the correct number of electrons in the active space 
 * 
 *  ON INPUT  ORMAS         - the information about the subspaces 
 *            NELTARGET     - target number of electrons 
 *            ACTNEL        - actual number of electron during recursion 
 *            ACTLEVEL      - actual level of recursion (e.g. LEVEL=subspace level) 
 *            ACTCOMBO      - actual combination 
 *            JustCount     - only count combinations or also store them 
 * 
 *  ON OUTPUT NCOMBINATIONS - number of combinations that lead to the correct NEL 
 *            COMBO         - if we store, the combinations themselves 
 *  ------------------------------------------------------------------------------ 
 */ 
void ORMAS_FindSubSpaceCombos(TIVector &ORMAS, 
                              int       NELTARGET, 
                              int       ACTNEL, 
                              int       ACTLEVEL, 
                              TIVector &ACTCOMBO, 
                              int      &NCOMBOS, 
                              TIMatrix &COMBO){ 
  int64 NLEVELS= ORMAS(0); 
  int64 norb   = ORMAS(1+3*ACTLEVEL+0); 
  int64 nmin   = ORMAS(1+3*ACTLEVEL+1); 
  int64 nmax   = ORMAS(1+3*ACTLEVEL+2); 
  TIVector TCOMBO; 
  TCOMBO.CopyVec(ACTCOMBO); 
  // Loop over all electron numbers of this level 
  int ACTNEL0= ACTNEL; 
  for (int64 n=nmin; n<=nmax; n++){ 
    // Remember where we are at this level 
    TCOMBO(ACTLEVEL)=n; 
    // current number of electrons 
    ACTNEL= ACTNEL0 + n; 
    // if that is already too large we can skip 
    if (ACTNEL>NELTARGET) break; 
    // We arrived at the bottom level: see what we have 
    if (ACTLEVEL == NLEVELS -1){ 
      // That is the correct number of electrons 
      if (ACTNEL==NELTARGET){ 
        for (int64 i=0;i<NLEVELS;i++){ 
          COMBO(NCOMBOS,i)= TCOMBO(i); 
        }; 
        NCOMBOS++; 
     } else{ 
        // nothing to do: number of electrons is incorrect 
      } 
    } 

    // ------------------------------------------------- 
    // NOT bottom level: recurse to the next level 
    // ------------------------------------------------- 
    else{ 
      ORMAS_FindSubSpaceCombos(ORMAS, 
                               NELTARGET, 
                               ACTNEL, 
                               ACTLEVEL+1, 
                               TCOMBO, 
                               NCOMBOS, 
                               COMBO, 
                               JustCount); 
    }; 
  }; 
}; 

Recursion to next 
next subspace 

Reached last 
subspace

Correct number of  
electrons found



ORMAS(14: 6  10 12 / 2 0 4 / 50 0 2)

no of electrons 
(total) Subspace 1 

(domos) 
6 MOs, 0-2 holes

Subspace 2 
(active) 

any  
occupation

Subspace 3 
(virtuals) 
50 MOs 

0-2 electrons

Subspace   1:  10 electrons in   6 orbitals => 21 configurations 
Subspace   1:  11 electrons in   6 orbitals => 6 configurations 
Subspace   1:  12 electrons in   6 orbitals => 1 configurations 
Subspace   2:   0 electrons in   2 orbitals => 1 configurations 
Subspace   2:   1 electrons in   2 orbitals => 2 configurations 
Subspace   2:   2 electrons in   2 orbitals => 3 configurations 
Subspace   2:   3 electrons in   2 orbitals => 2 configurations 
Subspace   2:   4 electrons in   2 orbitals => 1 configurations 
Subspace   3:   0 electrons in  50 orbitals => 1 configurations 
Subspace   3:   1 electrons in  50 orbitals => 50 configurations 
Subspace   3:   2 electrons in  50 orbitals => 1275 configurations 

Number of valid subspace combinations = 9 

COMBO   1:  10   2   2  =>    80325 CFGs 
COMBO   2:  10   3   1  =>     2100 CFGs 
COMBO   3:  10   4   0  =>       21 CFGs 
COMBO   4:  11   1   2  =>    15300 CFGs 
COMBO   5:  11   2   1  =>      900 CFGs 
COMBO   6:  11   3   0  =>       12 CFGs 
COMBO   7:  12   0   2  =>     1275 CFGs 
COMBO   8:  12   1   1  =>      100 CFGs 
COMBO   9:  12   2   0  =>        3 CFGs 

Subspace CAS lists

Subspace combinations



Chapter 3.1 

Object Oriented Programming



Object Oriented Programming

In object oriented programming you celebrate the unity of code and data by creating 
classes, that contain 

- Data that are private to the object  
- Functions that work on these data  

➡ MUCH safer than having global data that is passed around the program 
➡ MUCH easier to build up and administrate complicated data structures 



class TGaussianShell{ 
  private: 
  int nprim;      // number of primitives  
  int l;          // angular momentum  
  int ofs;        // position in the basis function list   
  double *a, *d;  // exponents, contraction coefficients  
  public: 
  // Constructor and Destructor 

  TGaussianShell(){  
     nprim =0; l=0; ofs=0; a=nullptr; d=nullptr;  
  }; 

  ~TGaussianShell(){ 
     if (a!=nullptr){ delete[] a; a=nullptr; 
     if (d!=nullptr){ delete[] d; d=nullptr; 
   }; 

  // Setters and Getters  

  int GetNPrim(){ return nprim; }; 
  double *GetA(){ return a; }; 
  ... 

  // Productive functions 

  void Copy(int xnprim, int xl, int xofs, double *xa, double *xd){  
          nprim= xnprim; .... }; 

  void Copy(TGaussianShell &SH){ Copy(SH.GetNPrim(),SH.GetL(),SH.GetOfs(),SH.GetA(), SH.GetD());}; 
  void Normalize(); 
  void Store(FILE *f); 
  void Read(FILE *f);  
  void Print();  
};

data

Constructor and Destructor

Access to data

Productive functions



class TGaussianAtom{ 
  private: 
  int lmaxA;      // Highest L for this atom  
  int *NShells;   // Number of shells in each angular momentum  
  TGaussianShell **Shells;    

 public: 
  TGaussianAtom(){ ... };   // initialize  
  ~TGaussianAtom(){ ....};  // delete data 
  // Getters and Setters  

  TGaussianAtom *GetShell(int l, int ish){ return &(Shells[l][ish]); }; 
  // Productive functions 

  void GetMemory(int xlmaxA, int *xNShells;){ 
    lmaxA= xlmaxA;   NShells= new int[lmaxA+1]; 

    for (int l=0;l<=lmaxA;i++) NShells[l]= xNShells[l];  
    Shells= new TGaussianShell *[lmaxA+1]; 
    for (int l=0; l<=lmaxA; l++) Shells[l]=new TGaussianShell[NShells[l]; 
  }; 

  void Normalize(){  
    for (int l=0;l<=lmaxA; l++) 
      for (int ish=0; ish<NShells[l];ish++) Shells[l][ish].Normalize(); 
  }; 

  void Copy(TGaussianAtom &GA){ 
    GetMemory( GA.GetLmax(), GA.GetNShells() );   

    for (int l=0;l<=lmaxA; l++) 
      for (int ish=0; ish<NShells[l];ish++)  
        Shells[l][ish].Copy(*GA.GetShell(l, ish)); 

  }; 

  void Store(FILE *f); 
  void Read(FILE *f);  
  void Print();  
};



class TSegmentedBasisSet{ 
  private: 
  int NAtoms;           // Number of atoms   
  TGaussianAtom *Gauss; // the actual Gaussians for each atom    

  public: 
  TSegmentedBasisSet(){ ... };   // initialize  
  ~TSegmentedBasisSet(){ ....};  // delete data 
  // Productive functions 

  void GetMemory(int xNAtoms){ 
    NAtoms= xNAtoms;  

    Gauss= new TGaussianAtom[NAtoms]; 

  }; 

  void SetAtomBasis(int A,TGaussianAtom &GA){ 
    if (xAtom>=0 and xAtom<NAtoms) Gauss[A].Copy(GA); 
    else <throw exception>; 
 }; 

  void Normalize(){  
    for (int A=0;A<NAtoms; A++) Gauss[A].Normalize(); 

  }; 

  void CalcOverlap(TSymmetricMatrix &S); 
  void Read(FILE *f);  
  void Print();  
};



Inheritance and Virtual Functions

✓ Very often, you have a bunch of tasks to do that have something in common and they 
are embedded in larger tasks, where they perform one specific action. 

✓ In order to help you streamlining such situations, C++ let’s you design „virtual functions“

✓ Example: 

/* -------------------------------------------------------
 * First we define an abstract task that is supposed to
 * do something. What it is we leave unspecified
 *
 * This is the content of the virtual function DoSomething
 * NOTE: the "=0" tells the compiler that any "child" of
 *       the class AbstractTask MUST overload this function
 * -------------------------------------------------------
 */
class AbstractTask{
public:
  virtual void DoSomething(const char* ) = 0;
};



Making Virtual Functions Concrete
/* -------------------------------------------------------
 * Now we define one concrete task.
 *
 * The concrete task is an "heir" of Abstract task and
 * overloads the virtual function "DoSomething" which is
 * will do something concrete.
 *
 * NOTE: the virtual function here is declared with "=0"
 * -------------------------------------------------------
 */
class WindowCleaner : public AbstractTask{
public:
  virtual void DoSomething(const char *house);
};

void WindowCleaner::DoSomething(const char *house)
{
  printf("Cleaning Windows in house %8s\n",house);
}

/* -------------------------------------------------------
 *
 * Another concrete task
 *
 * -------------------------------------------------------
 */
class FloorCleaner : public AbstractTask{
public:
  virtual void DoSomething(const char *house);
};

void FloorCleaner::DoSomething(const char *house)
{
  printf("Cleaning floors in house %8s\n",house);
}



Incorporating virtual functions

/* -------------------------------------------------------
 * Here is how to use it:
 * We have a function that is in need of performaing a
 * certain task, and pass the concrete task onto it
 * -------------------------------------------------------
 */
void CleaningForce(AbstractTask &MyTask)
{
  int NHouses = 5;
  const char *House[5] = {"Miller","Smith","Jones","Mayer","Trump"};

  for (int i=0;i<NHouses; i++){
    printf("Now working on house %d, the home of %s\n",i+1,House[i]);
    printf(" task is -> ");
    MyTask.DoSomething(House[i]);
    printf("\n");
  };
};



How it looks in practice
int main(int argc, char **argv)
{
  // These are our "workers" - the ones who do something concrete
  WindowCleaner W;
  FloorCleaner  F;
  JewelThief    J;

  // Now we can drive the performance of concrete tasks easily
  printf("First cleaning task\n");
  printf("-------------------\n");
  CleaningForce(W);
  printf("Second cleaning task\n");
  printf("-------------------\n");
  CleaningForce(F);
  printf("Third cleaning task\n");
  printf("-------------------\n");
  CleaningForce(J);

  // But this will work too
  AbstractTask  *X;

  printf("Dynamic cleaning task\n");
  printf("----------------------\n");
  X= new JewelThief;
  CleaningForce(*X);
}



Program output





Example: Calculating One-Electron Integrals 
SUBROUTINE OneElectronLoop(TIntegralKernel   &K,
                           TIntegralConsumer &C)

BEGIN
  Loop ish over shells 
    Loop jsh<=ish over shells
      Compute or get la, lb, P, PA, PB
      ICART=0
      For iprim=0..nprim-1 
        CALL K.PrimitiveIntegrals(IPRIM)
        Sum ICART += da*db*IPRIM
      end
      Tranform ICART to Spherical harm. ILM
        CALL C.IntegralConsumer(ILM)
    End jsh
  End ish
END

Only one such loop (and one for general contraction) in the 
entire program package! Covers ALL one-electron integrals 

calculates 
integrals for one 
primitive pair

Does something 
with one batch of 
integrals 



Example of an Integral Kernel

// Calculation of the overlap integral
void TOverlapIntegral::CalcPrimitiveIntegrals(int64 la, int64 lb, double a, double b,
                                              double R2, double *P, double *PA, double *PB,
                                              Tensor<5, double> &ET, Tensor<5, double> &RT,
                                              Tensor<3, double> &INTS)
{ 
  auto E     = ET.SubTensor<4>({0},{0});
  // Compute the constant SAB
  double ab  = a+b;
  double ABI = 0.5/ab;
  double SAB = pow(2.0 * M_PI * ABI, 1.5) * exp(-2.0 * ABI * a * b * R2);
  // Compute the auxiliary array E
  E_Function(la, lb, ABI, SAB, PA, PB,  E);
  // Loop over Cartesian components and make S
  int64 dimi= CDIM(la);
  int64 dimj= CDIM(lb);
  for (int64 i = 0; i < dimi; i++) {
    int64 l1 = GTO_xyz[la][i][0];
    int64 m1 = GTO_xyz[la][i][1];
    int64 n1 = GTO_xyz[la][i][2];
    for (int64 j = 0; j < dimj; j++) {
      int64 l2 = GTO_xyz[lb][j][0];
      int64 m2 = GTO_xyz[lb][j][1];
      int64 n2 = GTO_xyz[lb][j][2];
      INTS(0, i, j) = E(0,l1,l2,0) * E(1,m1,m2,0) * E(2,n1,n2,0);
    }; // j
  }; // i
};



Example of an Integral Consumer 

/* ------------------------------------------------
 *  FN 03/2021
 *
 *  For most integrals the right action is to just 
 *  simply store it in a matrix. 
 * ------------------------------------------------
 */
class TSymOneElectronIntegralStorer 
                      : public TOneElectronConsumer{
  int64 KernelLength;
  TSharkBasis *BAS;
  TRMatrixSym *IOUT;
public:
  TSymOneElectronIntegralStorer(){
    KernelLength=0;
    BAS=0;
    IOUT=0;
  };
  void SetKernelLength(int64 x){
    KernelLength=x;
  }
  void SetBasis(TSharkBasis *x){
    BAS=x;
  }
  void SetOutput(TRMatrixSym *x){
    IOUT=x;
  }
  virtual void DigestIntegrals(int64 ish, int64 jsh,Tensor<3> &INTS);
};



void TSymOneElectronIntegralStorer::DigestIntegrals
                                (int64 ish, int64 jsh,Tensor<3> &INTS)
{
  int64 li  = BAS->BG[ish].l;
  int64 lj  = BAS->BG[jsh].l;
  int64 ofsi= BAS->BG[ish].ofs;
  int64 ofsj= BAS->BG[jsh].ofs;
  int64 dimi= SHARK_LDIM(li);
  int64 dimj= SHARK_LDIM(lj);
  for (int64 i=0;i<dimi; i++){
    int64 addri= ofsi+i;
    int64 jend= dimj;
    if (Diagonal) jend=i+1;
    for (int64 j=0;j<jend; j++){
      int64 addrj= ofsj+j;
      for (int64 nk=0; nk<KernelLength; nk++){
        IOUT[nk](addri, addrj) = INTS(nk, i, j);
      }
    }
  }
}



PART 4 

Automatic Code Generation



Problems with Method Development

Idea Production 
Program

! "############### $###############
Just technicalities!

That would be nice!

5 min

Derive 
Equations

Days

Write  
Code

Weeks

Debug

Months

Opti- 
mize

Years

Conclusions:

‣ The technicalities of development occupy most of our time 
‣ Humans make mistakes, Debugging takes a lot of time 
‣ The human brain can only deal with so much complexity. Beyond it is hopeless 

➡ We need programming tools that take us directly from the Ansatz (our idea) 
to efficient, production level code 

➡ Automatic Code Generation



Code Generation Tools
✓ Janssen & Schaefer, ROCCSD, pioneering work 1991 
✓ Tensor contraction engine in NWCHEM, various CC (Hirata, Auer & Co) 
✓ Diagram based arbitrary order CC/MRCC (Kallay) 
✓ Gecco Internally contracted MRCC (Köhn)   
✓ Genetic algorithm based code generator, MRCC (Hanrath) 
✓ Automatic code generator, FIC-MRCI (Knizia, Werner) 
✓ MREOM-CC (Huntington, Nooijen) 
✓ General active space EOM CC (Kong, Demel, Shamsundar, Nooijen) 
✓ Bagel/Smith CASPT2 gradient, (Shiozaki) 
✓ Yanai, Saitow, DMRG-CASPT2, various contracted variants 
✓ ACES III programming ‚super-language‘ (Deumens, Bartlett & Co) 
✓ Cyclops (Solomonik) 
✓ Tiled Arrays (Valeev) 
✓ …. many others 



Simple & Straightforward Equation Generation
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Any Ansatz (single- or multi-reference) that can be formulated in terms of 2nd 
quantization, quickly leads to expectation values of the form 

Or, in terms of elementary spin-orbital operators:
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If the orbital space is divided in internal (i,j,k,l), active (t,u,v,w) and virtual (a,b,c,d), 
the important commutation relations apply:
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Equation Generation

Strategy:

✓ Use the commutation relation to change the order of operators 
✓ Move lower internal labels to the right 
✓ Move upper internal labels to the left 
✓ Move lower external labels to the right 
✓ Move upper external labels to the left 

➡ Creates 0’s, Kronecker deltas and ‚pre-densities‘ (MR case)
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Awkward 
by hand, 
easy for a 
computer

Issues: ✓ redundant terms are generated 
✓ terms that cancel each other are generated 
✓ Equivalent terms may have inequivalent labels 
✓ …

⎫
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⎭
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Post- 
processing 

required



Code Generation Chain

1. Equation Generator:

✓ Takes the Ansatz and generates equations 
✓ Identifies identical, redundant and cancelling terms 
✓ brings all labels into a ‚canonical form‘

2. Factorizer
✓ Identifies possible intermediates 
✓ Finds the best possible intermediates and contraction order  
✓ Finds common intermediates in different terms  
✓ Ensures that all terms have their correct formal scaling

3. Code generator
✓ Writes code for a specific electronic structure package 
✓ Recognizes patterns/contractions for which highly optimized code exists  
✓ Ensures that all terms have their correct formal scaling 
✓ Ensures minimal I/O and maximal use of BLAS 
✓ Generates parallel code, code for specific machines, ….



Realization of a Code generation chain (AGE)



Cost model 
In order to find the best possible intermediates and factorization, we need to have a 
prediction how long each contraction should take. 



Generated vs Hand Written Code 
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Speed-Ups  ➡ Canonical Coupled Cluster gradients with perhaps >500 basis functions possible 
➡ Parallel Scaling is good 
➡ More than 10x faster than numerical gradients 

RHF-CCSD UHF-CCSD
4-processes
8-processes

4-processes
8-processes



Reduced Scaling FIC-MRCC Implementation
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Active Space Enlargement Molecular Size Enlargement

➡ Accessible molecular size roughly the same as single reference CCSD 
➡ Without reduced scaling limit about 8 active orbitals  
➡ With reduced scaling limit about 12 active orbitals

Stilbene Biphenyl

def2-SVP

def2-TZVP



Complexity: Example
Fully internal contracted MRCI (or MRCC, also CASPT2/NEVPT2) works with contracted 
functions in the first-order interacting space (FOIS)

Φ
ij
ta = E

ij
ta Ψ

0
= C

I
(CASSCF )E

ij
ta Φ

I
(CAS )

I
∑

✓ 10 Excitation classes  -> 100 Blocks of matrix elements 
✓ Not orthogonal 
✓ Not linearly independent 
➡ Extremely complicated matrix elements 
➡ 1945 equations including up to four body density 
➡ Factorized into 3674 equations 
➡ Removed 1222 redundant intermediates

➡ Nearly hopeless to program by hand. Readily done with code generator as a 
matter of hours (perhaps days)



… found a (small) bug in the hand coded version of the CASPT2 method

… Fully automated, large scale nuclear gradient for CASPT2. Optimizations 
of metalloporphyrins



Code generation: Summary

✓ Code generation enables the implementation of ‚impossibly complicated‘ methods 
✓ Code generation reduces development times from years to hours/days 
✓ Code generation can produce code for specific hardware, thus ensuring optimal 

performance 
✓ Code generation can ensure that all parts of the code have consistent quality 
✓ Once the code generation chain produces correct results, it is extremely reliable (e.g. a 

small bug was  identified in the original CASPT2 code in 2015, CASPT2 is from 1990!) 
➡ Code generation will play an important part in future quantum chemistry 
➡ Generated code can be made almost as efficient as the best hand optimized code 
➡ In the future we keep just a wavefunction Ansatz in the source code repository and 

generate the code during compile time. Any improvement in the code generation chain 
is the immediately applied to all parts of the program. 


