
Lectures 1 & 2: Algorithm Design

Frank Neese

European Summer School of Quantum Chemistry
2024 Torre Normanna Sicily

MPI für Kohlenforschung

Kaiser-Wilhelm Platz 1

45470 Mülheim an der Ruhr

You have an Equation, what now?
Let us assume that you have derived an equation, e.g. using Wick’s theorem

a
j b

c dk l

i

You are charged (or simply want) to implement that. What do you do?

i,j,k,l=occupied
a,b,c,d=virtual

Or diagrams …

See coupled  
cluster

lectures!

Goals of Quantum Chemical Method Development

✓ To be able to calculate ‚things‘ (energies, properties) that could not be calculated

before or on systems that were not accessible before

✓ To develop a better (more accurate, more elegant, more compact, more transparent,

…) theory for a known property.

✓ Develop new approximations to known equations

✓ …

✓ To obtain the same number faster than before

✓ To obtain an approximate number faster (and in ‚improved scaling’) than before

Prelude

A little information on Computers

Computer Architecture and Algorithm Design

Disk
CPUCACHEMAIN

MEMORY

~1ms

I/O bus Mem. bus Cacheline

~100 ns ~1 ns

~1 ns

✓ Disk access is very slow

✓ Memory to CPU transfer is slow }
Algorithms need to carefully

balance I/O and memory
operations, not just minimize FLOP

count

Main Memory: Stack vs Heap

Stack: Fixed Size Reserved Main Memory region of static variables

Heap: Variable Size Main Memory region of dynamic variables

void SignOfLife()
{
 int i;
 double x[1024];
 double *y = new double[1024];
 printf(„This is SignOfLife - still hanging in there!“);
 delete[] y;
};

Memory allocated on the Stack

Main memory

Stack

Heap

Memory allocated on the Heap

Release memory allocated on the heap

NOTE
‣ memory allocated on the Stack will be released automatically when the

variable goes out of scope.
‣ Memory allocated on the Heap you need to de-allocate yourself or you are

created a memory leak (very common mistake)

The Stack can Overflow
✓ The Stack is usually small (e.g. default on a Mac is 8MB)

➡ If you are putting a lot of data on the stack if may overflow
➡ Core dump / Segmentation fault

frankneese@MacBook-Pro-von-Frank 2024 - ESQC-24 % ./stack
Sign of Life - still hanging in there!

void SignOfLife()
{
 double x[1024];
 printf("Sign of Life - still hanging in there!\n");
 fflush(stdout);
};

frankneese@MacBook-Pro-von-Frank 2024 - ESQC-24 % ./stack
zsh: segmentation fault ./stack

void SignOfLife()
{
 double x[1024*1024];
…

✓ The Heap can overflow too of course. In this case there might be chance to recover using
„exception handlers“ (e.g. C++ try … catch ….)

Side Remark: Call by Reference vs Call by Value

An argument passed by value:
‣ creates the copy of the variable on the stack
‣ unchanged after the function call is done
‣ Potentially creates overhead from copying or stack overflows

An argument passed by reference:
‣ What is passed is a pointer to the storage location of the variable (Heap or Stack)
‣ Potentially changed after the function call is done
‣ Creates no overhead

void foo(int i){ i=i+1; };

int i=1; foo(i); printf("i=%d"); The printout will be i=1

void foo(int &i){ i=i+1; };

int i=1; foo(i); printf("i=%d"); The printout will be i=2

Summary: Hardware components

Hard-disk: ‣ Potentially large (assumed infinite in the „von Neumann machine“ or
the abstract „Turing machine“

‣ Very slow compared to the rest. Avoid as much as you can!

Bus: ‣ Transfer from main memory to CPU/Cache
‣ Often rate limiting in actual calculations

Main memory: ‣ Small Stack (static), large Heap (dynamic)
‣ Relatively slow. It takes time to dig data out from there.

Cache: ‣ Fast memory directly attached to the CPU
‣ Relatively small. You want all the data the is being processed there

Register: ‣ Central part of the CPU that holds the data or instructions that are
being processed next

CPU: ‣ Runs instructions in sequence (e.g. GHz means nsec for individual
instructions) - make sure it does not run idle!

„The greatest performance gains are coming from

the calculations that you don’t do at all“

PART 1

Before we talk about how to compute things

efficiently:

3 Ways to Avoid Unproductive Computation

1. Use of symmetry Integrals have selection rules, e.g. in

The direct product

Must contain the totally symmetric irrep, provided

Are adapted to the irreps of the point group

2. Use of permutation symmetry

Integrals have permutation symmetry that usually should be used

3. Avoid terms that are (near) zero or factors that are (near) one

… here is where the art & science of thresholding starts!

Avoid small numbers but make sure errors don’t add up!

Self Consistent Field

A
B

e-

VNN

VeN

Vee

Te VeN

“Mean Field”

Hartree-Fock

One
Electron Coulomb HF Exchange XC Potential

F(c)c
i
= ε

i
Sc
i

S
µν
= µ | ν

P
µν
= c

µi
c
νi

i
∑

h
µν
= µ |− 1

2
∇2 − Z

A
r
A
−1

A∑ | ν

Almlöf’s Revolutionary Proposals
For decades progress in quantum chemistry was prevented by the O(N4) of two-
electron integrals.

The integral bottleneck was finally overcome by Almlöfs revolutionary proposals
1. Do NOT store integrals. Recalculate when needed (direct SCF)

2. Split the calculation of the Coulomb and exchange terms and use the most

efficient approximation for each rather than use the same integrals for both.

Even if the integrals can be stored for a 1000 basis
function calculation, the I/O penalty is huge and
the CPU remains largely idle while waiting for data
to arrive from the hard drive

Let’s take a look at Electron Repulsion Integrals

Look at an ERI:

This can be viewed as the electrostatic interaction of two smeared out

charge distributions:

And it is advantageous to take the basis functions themselves as Gaussians:

Negligible Integrals: Gaussian Product Theorem

-2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

line along centers A and B

Gaussian
product

center Bcenter A

exp(−αr
A
2)exp(−βr

B
2)

= exp(−qQ2)
KAB

! "#### $####
exp(−pr

P
2)

p = α+ β
q = αβ / p

Q= R
A
−R

B

r
P
= 1
p
(αR

A
+ βR

B
)

➡ In a large system there are only O(N) ‚significant‘ Gaussian products.

➡ The should be precomputed and stored as a list (e.g. cut-off KAB>=Tcut)

➡ The significant bra- and ket-products interact via the 1/r operator (never small!).

➡ There are O(N2) non-negligible integrals

The principle of „Direct SCF“

➡ Only contributions >= Thresh go into the Fock matrix

 G=0
 loop µ
 loop ν≤µ
 loop κ
 loop τ≤κ (µν≤κτ)
 test= IntegralEstimate(µ,ν,κ,τ)
 *max(P(κ,τ),P(ν,τ),…)
 if (test<Thresh) skip
 else
 Calculate (µν|κτ)
 add G(µ,ν)+=P(κ,τ)(µν|κτ) (Coulomb)
 add G(µ,κ)-=P(ν,τ)(µν|κτ) (Exchange)
 (and permutations of indices)
 end (else)
 end loops µ,ν, κ,

F
µν
= h

µν
+G

µν
G
µν
= P

κτ
(µν |κτ)−(µκ | ντ)⎡
⎣⎢

⎤
⎦⎥

κτ
∑

➡ Better than testing for small integrals alone since P can be large

Kohn’s Conjecture and the Density Matrix

0 5 10 15 20 25

Atom Distance

SCF

10-10

De
ns

ity
 M

at
rix

For an insulator (finite HOMO-
LUMO gap), the density matrix
decays roughly exponentially

with distance

(what we mean by that is the
distance between the atoms the
basis functions are attached to)

P
µAνB

➡ The decay is exponential, but slow. 10-10 is only reached at 20-25 Angström!

➡ Nevertheless, in insulators, there are only O(N) significant density matrix elements

Intrinsic Scaling of Coulomb and Exchange

J
µAνB
= P

κCτD

∝exp(−const×RCD)

!
(µ

A
ν
B

∝exp(−const×RAB)

!
| κ

C
τ
D

∝exp(−const×RCD)

!
)

κτ
∑

exp(−const×(RAB+RCD+RCD))

! "################### $###################

⇒O(N 2)

Assuming exponential decay of the density, Almlöf realized that the intrinsic scaling of the
Coulomb and exchange terms is different:

Coulomb:

Exchange:

K
µAνB
= P

κCτD

∝exp(−const×RCD)

!
(µ

A
κ
C

∝exp(−const×RAC)

!
| ν

B
τ
D

∝exp(−const×RBD)

!
)

exp(const×(RAC+RBD+RCD))

! "################# $#################
κτ
∑ ⇒O(N)

Conclusion: Use the most efficient way to calculate or approximation each
term separately!

Integral Estimates (I): Almlöf’s estimate

In order to not decide that we do not calculate an integral, we need an estimate for it

Look at an ERI:

Let us preted for a moment that is not there. Then:

Now assume that the bra- and ket distributions are centered at

Now set

And arrive at

Estimate

(Over the members of the 4 shells)

➡ NOT a rigorous upper bound
➡ Reasonably cheap to compute
➡ Does take the R dependence into account to some extent

Integral Estimates (II): Ahlrich’s estimate

Häser and Ahlrichs used the Schwartz inequality to show:

(Over the members of the 4 shells)
Estimate

➡ Is a rigorous upper bound
➡ Is cheap to compute
➡ Does NOT depend on R and hence will strongly overestimate

integrals with well separated bra and ket distributions

Integral Estimates (III): Multipole Estimate

Let us take two expansion points

And express the two charge distributions in terms of their (real, spherical) multipoles:

Assuming the two local coordinate systems are aligned and the charge distributions are
not overlapping, the bipolar expansion yields:

For one-center charge distributions

Bühler, RJ, Hirschfelder, JO Bipolar Expansion of Coulombic Potentials, Phys. Rev., 1951, 83, 628-633

The multipole formula becomes fully accurate (at least 16 digits) once the charge
distributions don’t overlap.

✓ Evaluating the multipole formula exactly is too costly - the estimate may become as
expensive or more expensive than the actual integral calculation

✓ For the purpose of pre-screening, one should only be interested in the lowest multipole
interaction, because it is the one that covers the longest distances:

➡ Will break down for overlapping charge distributions overlap
➡ Not cheap to compute
➡ Misses higher order multipole contributions.
➡ NOT an upper bound, i.e. Will perhaps dramatically underestimate the integral

@medium R

Estimate

Integral Estimates (IV): The „QQR“ and „CSAM“
➡ Lambrecht and Ochsenfeld J. Chem. Phys., 2005, 123, 184102 derived rigorous

upper bounds on the basis of the multipole expansion (too expensive in practice)

➡ Maurer, Ochsenfeld et al. J. Chem. Phys., 2012, 136, 144107 realized that higher
multipoles can be simulated by the Schwartz integral and proposed the „QQR“
estimate:

Estimate

The extent of a charge distribution is defined by:

➡ Thompson and Ochsenfeld et al. J. Chem. Phys., 2017, 147, 144101 further tweaked

the QQR by realizing that the distance dependence can be simplified

Which features the distance dependence of the interacting bra/ket distributions.

Defining:

Gives the final (CSAM) estimate:

Estimate

Comparison of Estimates

Schwartz Almlöf

QQR CSAM

Lowest MLM

‣ Rigorous,
‣ Not tight

‣ Tight,
‣ Not Rigorous

‣ „Almost Rigorous“
‣ Slightly tighter

‣ Less Rigorous
‣ Slightly tighter

than QQR

‣ Ridiculous

(gly)3 / def2-SV(P)

Performance in practice: (Gly)15/def2-SVP

#(Cycles) Energy (Eh) #(Fock time/sec)

Schwartz 11 -3175.706180418709 1822

QQR 11 -3175.706179146775 1659

CSAM -3175.706177491313 156111

Almloef Wild divergence

(15%)

(9%)

… 0.3 Microhartree loss of accuracy for 15% performance gain

(Will be more for larger systems)

Pre-screening: Wrapping up

✓ The best way to speed up a computation is to not do it :-)
✓ Identifiying near zero’s is and art & science that is not done even after 30+ years
✓ In skipping small contributions:

‣ It is good but not strictly necessary to have rigorous upper bounds

‣ Numerical stability must never be sacrificed

Always remember:

‣ Computing a bad number fast is useless

because it is still a bad number

‣ First the approximation has to meet a specified

accuracy goal, then it can be fast

PART 2

How to compute things you cannot avoid
efficiently

Chapter 1:

Scaling Laws and Their Impact on Algorithms

Scaling Laws

A quantum chemical algorithm can be characterized by it’s scaling behavior:

Scaling with respect to system size (#(Atoms), #(Basis functions),…)
Scaling with respect to basis set (Size, Angular momentum,…)

A scaling law can be written as:

T = aNb
T Time taken by algorithm

a ‚Prefactor‘

b Scaling Exponent

Optimizing an algorithm: Bring down the prefactor

Bring down the scaling

Holy grail: Linear scaling with a small prefactor

Figuring out the Scaling Law

General:

Dimensionality of target quantity x Scaling of loops required to obtain it

Example: ψ
p
(r)= c

µp
ϕ
p
(r)

µ
∑

➡ The number of occupied and virtual MOs is proportional to system size

➡ The Number of AOs is proportional to system size

(µν |κτ) Number of AOs integrals proportional to N4 (O(N4))

(ia | jb)= c
µi
c
νa
c
κj
c
τb
(µν |κτ)

τ
∑

κ
∑

ν
∑

µ
∑

O(N4) O(N) O(N) O(N) O(N) O(N4)→}
O(N8)

Prefactor vs Scaling

crossover point

In developing reduced scaling algorithms one shoots for early crossover

For many applications nonlinear scaling with a small prefecture is the preferred choice

Golden Law of Development

✓ In general, the workflow of a quantum chemical algorithm contains many steps (e.g.
localization, integral transformation, equation solution, perturbative correction, …),

✓ Each step will have its own scaling law

Work on
the

Slowest
Step!

Profile your Program!
Total execution time ... 153019.575 sec

Localization of occupied MO's ... 7516.449 sec (4.9%)
Fock Matrix Formation ... 11392.614 sec (7.4%)
First Half Transformation ... 37824.285 sec (24.7%)
RI-PNO integral transformation ... 17832.376 sec (11.7%)
Initial Guess ... 5376.961 sec (3.5%)
DIIS Solver ... 8855.850 sec (5.8%)
State Vector Update ... 1.744 sec (0.0%)
Sigma-vector construction ... 8177.969 sec (5.3%)
 <0|H|D> ... 0.072 sec (0.0% of sigma)
 <0|H|S> ... 0.003 sec (0.0% of sigma)
 <D|H|D>(0-ext) ... 575.591 sec (7.0% of sigma)
 <D|H|D>(2-ext Fock) ... 1.921 sec (0.0% of sigma)
 <D|H|D>(2-ext) ... 1512.608 sec (18.5% of sigma)
 <D|H|D>(4-ext) ... 684.157 sec (8.4% of sigma)
 <D|H|D>(4-ext-corr) ... 2880.920 sec (35.2% of sigma)
 CCSD doubles correction ... 33.534 sec (0.4% of sigma)
 <S|H|S> ... 78.695 sec (1.0% of sigma)
 <S|H|D>(1-ext) ... 79.135 sec (1.0% of sigma)
 <D|H|S>(1-ext) ... 5.117 sec (0.1% of sigma)
 <S|H|D>(3-ext) ... 28.949 sec (0.4% of sigma)
 CCSD singles correction ... 0.108 sec (0.0% of sigma)
 Fock-dressing ... 1541.152 sec (18.8% of sigma)
 Singles amplitudes ... 15.255 sec (0.2% of sigma)
 (ik|jl)-dressing ... 441.823 sec (5.4% of sigma)
 (ij|ab),(ia|jb)-dressing ... 213.171 sec (2.6% of sigma)
 Pair energies ... 1.235 sec (0.0% of sigma)
Total Time for the density ... 632.934 sec (0.4% of ALL)
Total Time for computing (T) ... 32529.433 sec (21.3% of ALL)

How much can you
gain from optimizing

these steps?

This is worth your
while!

Chapter 2

Writing Efficient Programs

The Do’s and Don’t’s of Programming: Overview

‣ Avoid short, nested Loops

‣ Avoid Multidimensional Arrays

‣ Access arrays in „Unit Stride“

‣ Avoid indirect addressing

‣ Make use of matrix multiplications and BLAS

‣ Make use of LAPACK

‣ Move redundant work out of the inner loops

‣ Minimize disk I/O, do it in larger chunks and do it as far ‚outside‘ as possible

‣ Watch out of Load Balancing in parallel programming

Some rules for scientific programming that are relevant for obtaining high performance:

Instruction Pipelines and Logic

Ideal: The CPU has preloaded a ‚pipeline‘ of instructions and the data required to perform
the next operations is in the CACHE

CPUCACHE Cacheline

LD x
MOV x y
ADD y z
…x,y,z,…

A logical instruction whose outcome can not be predicted at compile time brings the CPU
and CACHE out of the ‚groove‘

if (x<y)
 z=x+y
else
 n=n+1
 xp= sin(2*yp)
end

GOOD: x,y,z are in the CACHE,
performance is optimal

BAD: xp, yp and n are not in the
CACHE. The pipeline must be
cleared and a slow memory
operation (MOP) is performed to
get this data

} careful optimization
avoids logical

decisions in time
critical parts of the

program

Chapter 2.1

Unit stride and avoiding short loops

Unit Stride Access

The CACHE has a finite size that is rather small. If one loads an array into the CACHE that
is larger than the CACHE size, one should avoid ‚jumping‘ around in the array but rather
only access consecutive positions in the array (unit stride access)

x=0
for (i=0;i<2048;i++) x=x+y[i]

Example: Say, the CACHE holds 1024 array elements and we want to add up the
elements of an array y that contains 2048 elements.

Good:

Bad: x=0
for (i=0;i<2048;i++) x=x+y[yorder[i]]

Two problems:
- yorder[i] may be anything in the range 0..2047 for any i and hence we may have to reload y into

the CACHE multiple times
- We use ‚indirect addressing‘. There is no way for the compiler to know the value of yorder[i] and

hence after each addition we have to look again which element of y we need next.

- The compiler can optimize well: load the first 1024 elements of y and the next 1024 elements.
Performs optimally without any ‚CACHE misses‘

for (i=0;i<2048;i++) x=x+y[i]-y[N-i-1]or

Example: Loop Unrolling

Time critical routines should not contain logic and should not contain nested loops. The
process of eliminating short loops in favor of hand optimized, explicit code is called ‚Loop
unrolling‘

Example: Calculation of integrals using the McMurchie/Davidson method

In the MD method, molecular integrals can be very elegantly calculated using
an expansion of the Gaussian product in a Gaussian Hermite basis

Cartesian Gaussian on center A: Gabc;α
A = (x −X

A
)a(y−Y

A
)b (z −Z

A
)c exp(−αr

A
2)

Repulsion integral in MD:

(G
abc;α
A G ′a ′b ′c ;β

B |G
def ;γ
C G ′d ′e ′f ;δ

D)= f
αβγδ

E
t
ABE

u
ABE

v
AB

v=0

c+ ′c

∑
u=0

b+ ′b

∑
t=0

a+ ′a

∑ (−1) ′t + ′u + ′v E ′t
CDE ′u

CDE ′v
CDR

t+ ′t ,u+ ′u ,v+ ′v
′v =0

f+ ′f

∑
′u =0

e+ ′e

∑
′t =0

d+ ′d

∑

const
Expansion of

GAGB in
Hermite basis

Expansion of
GCGD in

Hermite basis

Integrals in
Hermite basis

Example: Short Loops and Multidimensional Arrays
Pseudocode for a general MD integral routine
Calculate Array EAB

Calculate Array ECD

loop ixyz over Cartesian components of A

loop jxyz over Cartesian components of B

loop kxyz over Cartesian components of C

loop lxyz over Cartesian components of D
x=0
loop t =0..a+a’
loop u =0..b+b’
loop v =0..c+c’

loop t’ =0..d+d’
loop u’ =0..e+e’

loop v’ =0..f+f’

Calculate Array R
} recursive formulas. Nested loops of length ~lA+lB (or lc+lD)

x=x+ EAB[x][a][a’][t]*EAB[y][b][b’][u]*EAB[z][c][c’][v]
 *ECD[x][d][d’][t’]*ECD[y][e][e’][u’]*ECD[z][f][f’][v’]*(-1)t’+u’+v’
 *R[t+t’][u+u’][v+v’]

end loops t’,u’,v’
end loops t,u,v

end loops i,j,k,lxyz

ELREP[ixyz][jxyz][kxyz][lxyz]=x

10 nested loops!
For s and p functions these run basically from 0 to 1

Example: Short Loops and Multidimensional Arrays
Alternative: For low angular momenta create hand optimized routines and store integrals in
linearized arrays

Calc_ssss()
 ab = a+b
 cd = c+d
 abcd = ab+cd;
 pprim = 4.0*ab*cd*sqrt(abcd);
 SR = Kab*Kcd/pprim;
 PQX = (PX-QX);
 PQY = (PY-QY);
 PQZ = (PZ-QZ);
 RPQ2 = PQX*PQX+PQY*PQY+PQZ*PQZ;
 W = ab*cd/abcd;
 RT = W*RPQ2;
 Calc_F_Function(F)
 ELREP[0]= F[0]*SR;

Calc_sssp()
 ab = a+b
 cd = c+d
 abcd = ab+cd;
 pprim = 4.0*ab*cd*sqrt(abcd);
 SR = Kab*Kcd/pprim;
 PQX = (PX-QX);
 PQY = (PY-QY);
 PQZ = (PZ-QZ);
 RPQ2 = PQX*PQX+PQY*PQY+PQZ*PQZ;
 W = ab*cd/abcd;
 RT = W*RPQ2;
 Calc_F_Function(F)
 t1 = W/cd*F[1];
 ELREP[0]= (QDZ*F[0]+PQZ*t1)*SR;
 ELREP[1]= (QDX*F[0]+PQX*t1)*SR;
 ELREP[2]= (QDY*F[0]+PQY*t1)*SR;

NO logic, NO short loops ➢ The compiler can optimize this code most efficiently
 ➢ Efficient modern integral libraries (e.g. libint) make use of
 machine generated, highly unrolled code

Numerical Example

(ss|ss)

(pp|pp)

(dd|dd)

unoptimized
code

unrolled
code libint

„to a large extend the efficiency of a computer code is a result of the care taken

during the implementation stage and not due to the particular method selected

for implementation.“ — Roland Lindh

(107 times)

(106 times)

(104 times)

(ff|ff)
(103 times)

1.8

8.3

4.1

9.1

1.2

2.6

0.4

0.5

0.7

0.4

0.1

0.2

(3x)

(21x)

(41x)

(45x)

speedup

A Real Life Example

In the theory of multipole interactions, There occurs the multipole interaction tensor:

(RP, RQ are the multipole expansion centers, we need all l=0..L, l'=0..L')

Let us write a subroutine for that - easy, we only have to evaluate some spherical
harmonics, right?

... Better version

void MultipoleInteractionTensor_ILMreal_Fame(double *PQ, double &RPQ, int LmaxBra, int LmaxKet, TRMatrix &T){

 //Load all required ILM at once
 Load_AllIlm_stddef(LmaxBra+LmaxKet,X,Y,Z,R,ILM.p);

 // Start looping over angular momenta
 int64 LM1=0;
 double *TLM1 = &(T(0,0));
 for (int64 L1=0;L1<=LmaxBra;L1++){
 for (int64 M1=-L1;M1<0;M1++){
 int64 LM2 = 0;
 for (int64 L2=0;L2<=LmaxKet; L2++){
 // Pointer to correct ILM vector
 double *ILre = &(ILM(L12,0));
 double phase1 = (L2%2==0)? 1.0 : -1.0;
 // Now we have to distinguish four cases to form Trygve's real interaction tensor
 for (int64 M2=-L2;M2<0;M2++){
 // Common prefactor
 double PreFac = phase1 * 2.0;
 double ILM_P_re = ILre[M12Paddr]; // Real part of I(L1+L2, M1+M2)
 double ILM_M_re = ILre[M12Maddr]; // Real part of I(L1+L2, M1-M2)
 TLM1[LM2] = PreFac* (-ILM_P_re + phase2 * ILM_M_re);
 LM2++;
 //////////////////////////
 }// M2
 ... three more loops like this for the three other cases

no redundant computation

Correct loop order for unit stride access (Bra indices)

Correct loop order for unit stride access (Ket indices)

No silly array access for phase factors

No Logic in the innermost loop

MultipoleInteractionTensor Shame vs Fame

➡ The version of the same function that has memory optimized unit stride
access performs a FACTOR of 2-4 faster for non-trivial angular momenta

Ra
tio

 o
f t

im
e

ta
ke

n
fo

r 1
06

 E
va

lu
at

io
ns

Sh

am
e/

Fa
m

e

Chapter 2.2

Making the most out of using  

External Libraries

Libraries: The only ones you really need
Relying on third party software that may or may not be maintained in long term or may or
may not be portable between platforms can be dangerous! There are three you likely
cannot avoid:
1. BLAS (Basic Linear Algebra System)

a) Level 1: Vector/Vector operations
b) Level 2: Matrix/Vector operations
c) Level 3: Matrix/Matrix operations

2. LAPACK (Linear Algebra Package)

Linear algebra routines (Diagonalization, Linear equation systems, Cholesky
decomposition, singular value decomposition, …)

3. MPI (Message Passing Interface)

Low level routines for parallelization using a distributed memory paradigm

These are highly efficient, standardized and portable libraries.
(In ORCA, we nevertheless have put one software layer above them in order to have no direct calls to third party software whatsoever)

Example: The power of BLAS

Let us look at two ‚innocent‘ matrix multiplications:

C= AB C
ij
= A

ik
B
kj

k
∑

C= ABT C
ij
= A

ik
B
jk

k
∑

Which we can program as follows:

loop i = 1 … N
 loop j = 1 … N
 x=0.0;
 loop k = 1 … N
 x=x+A(i,k)*B(k,j); or x=x+A(i,k)*B(j,k)
 end loop k
 C(i,j)=x;
 end loop j
end loop i

Example: The power of BLAS (II)

For two densely filled essentially random, square matrices A and B with N=2750

C= AB

C= ABT

C= ATB

:

:

:

directly programmed BLAS (dgemm)

99

11

Why that?

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

A =

!
✓ The matrices are arrange row-wise in contiguous memory

places. Hence A(i,k) is accessing the matrix in unit stride while
A(k,i) is not!

✓ Huge (factor 10!) performance penalty!
✓ Even worse would be to have rows scattered somewhere in

the main memory (e.g. Numerical Recipes matrix routines in C)

104

USE BLAS LEVEL 3
(DGEMM) WHENEVER YOU

CAN!)

1.7

1.7

1.7

Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz

Example: The power of LAPACK

Diagonalization

Example: 3000x3000 matrix

Intel(R) Core(TM) i7-4810MQ CPU @ 2.80GHz

Hand written

28.1 sec 5.3 sec

2.4 sec 0.2 sec

315.0 sec 21.7 sec Singular value decomposition

Cholesky decomposition

Intel-MKL

~5x

~12x

~25xdgesvd

dsyevr

dpotrf

Application: Integrals over Gaussians

ϕ
µ
A(r)= N

abc
(x −X

A
)
aµ(y−Y

A
)
bµ(z −Z

A
)
cµ exp(−α

µ
r
A
2)The form of a Gaussian

Multiplying two Gaussians
ϕ
µ
A(r)ϕ

ν
B(r)= N

µ
N
ν
K
AB
(x −X

A
)
aµ(y−Y

A
)
bµ(z −Z

A
)
cµ(x −X

B
)aν (y−Y

B
)bν (z −Z

B
)cν

VERY NASTY!
! "########################### $###########################

exp(−α
P
r
P
2)

Nice!
! "#### $####

difficult to integrate in 3
dimensions

The McMurchie Davidson Method (I)

If we have a nasty polynomial, we can expand it in terms of nice polynomials

➡ Orthonormal harmonic oscillator eigenfunctions (Hermite polynomials)

H
n
(x)= (−1)n exp(x 2)

d
n

dx
n
exp(x 2) H

0
(x)= 1

H
1
(x)= 2x

H
2
(x)= 4x 2−2

H
3
(x)= 8x 3−12x

In one dimension: (x −X
A
)
aµ(x −X

B
)aν = E

t

aµaν
H
t
(x −X

P
)

t=0

aµ+aν

∑

(a) McMurchie, L.E.; Davidson, E. (1978) J. Comp. Phys. 26,218

(b) Helgaker, T.; Raylor, P.R. (1995) in: Yarkony (Ed.) Modern Electronic Structure Theory, World Scientific, 725ff

E
t
i+1,j = 1

2p
E
t−1
ij + (X

P
−X

A
)E
t
ij + (t +1)E

t+1
ijRecursion relation

E
0
00 = 1

McMurchie-Davidson in Matrix Form

Think of E
t

aµaνE
u

bµbνE
v

cµcν

Then we have: (µAνB |κCτD)= (Ebra+REket)
µν,κτ

As matrices Ebra(tuv,µν)

E ′t
aκaτE ′u

bκbτE ′v

cκcτ

Eket(′t ′u ′v ,κτ)

R
t+ ′t ,u+ ′u ,v+ ′v

R(tuv, ′t ′u ′v)

Obviously, not all tuv combinations occur for each member of the shell pair

Lµ / Ln 0 1 2 3 4
0 1 4 10 20 35
1 10 20 35 56
2 35 56 84
3 84 120
4 165

#(tuv) combinations as a function of angular momenta

Advantage of Factorisation

E-Matrix E tuv,µν()
L3 L2

R-Matrix R tuv, ′t ′u ′v()
L3 L3

RE-product T(tuv,κτ)=
′t ′u ′v
∑ R(tuv, ′t ′u ′v)E ′t ′u ′v ,κτ()

L2L3L2

O(L5)

O(L6)

O(L8)

TE-product I(µν,κτ)= E tuv,µν()
tuv
∑ T(tuv,κτ)

L2L2L3
O(L7)

➡ Never worse than O(L8) which is better than O(L10) in the original MD

L3 L2

L2 L2

L3

L3

(Pre-computed; linear scaling)

(Generated on the fly)

 FN The SHARK integral generation and digestion system, J. Comp. Chem., 2022, 1-16 (DOI: 10.1002/jcc.26942)

SHARK vs Libint: „in vitro“

<1 Libint is faster
>1 SHARK is faster

Contraction Depth

An
gu

la
r M

om
en

tu
m

 FN The SHARK integral generation and digestion system, J. Comp. Chem., 2022, 1-16 (DOI: 10.1002/jcc.26942)

Chapter 2.3

Finding Algorithms with Minimal  

FLoating Point Operations

(… and whether this is the ultimate goal)

Design of an algorithm: FLOP count

In the early days of algorithm design, developers were carefully minimizing the number of
floating point operations (FLOPs) required to accomplish a given task

Example: Partial integral transformation (µν |κτ)→ (ia | jb)

i,j= occupied MOs (#=O), a,b, unoccupied MOs (#=V), µ,n,k,t=basis functions (#=B)

Naive: (ia | jb)= c
µi
c
νa
c
κj
c
τb
(µν |κτ)

τ
∑

κ
∑

ν
∑

µ
∑ FLOPS = B 4O2V 2

ψ
p
(r)= c

µp
ϕ
p
(r)

µ
∑

O(N8) scaling

Must be possible to do better than that

FLOP Count: Partial Integral transformation

(iν |κτ)= c
µi
(µν |κτ)

µ
∑ (B 4O)

(iν | jτ)= c
κj
(iν |κτ)

κ
∑ (O2B3)

(ia | jτ)= c
νa
(iν | jτ)

ν
∑ (O2VB2)

(ia | jb)= c
τb
(ia | jτ)

τ
∑ (O2V 2B)

(µa |κτ)= c
νa
(µν |κτ)

ν
∑ (B 4V)

(µa | νb)= c
τb
(µa |κτ)

τ
∑ (V 2B3)

(ia | νb)= c
µi
(µa | νb)

µ
∑ (OV 2B2)

(ia | jb)= c
νj
(ia | νb)

ν
∑ (O2V 2B)

Algorithm A: occupied indices first Algorithm B: virtual indices first

}
Four O(N5) steps

ratio of FLOP counts: #(FLOPS)
A

#(FLOPS)
B

=
O
V

(2B3−V 3)

(B2 + 3B2V −3BV 2 +V 3)
<1

Example: GFLOPS for B=500, O=50, V=450

0.07

3125 28215

312 25312

281 2531

253 253

Always transform the index first that offers the largest data reduction!

FLOP count versus Performance

In order to capitalize on the efficiency of the BLAS routines, it is sometimes advantageous
to sacrifice optimal FLOP count.

Example: Integral direct partial integral transformation for MP2

E
MP2
=− 1

4

[(ia | jb)−(ib | ja)]2

ε
a
+ ε

b
− ε

i
− ε

ji,j ,a,b
∑

(ia | jb)= c
µi
c
νa
c
κj
c
τb
(µν |κτ)

τ
∑

κ
∑

ν
∑

µ
∑

Key step: integral transformation

loop ibatch over batches of occupied MOs
 loop p=1..NBas
 loop q=1…p
 loop r=1…p
 loop s=1..r|q
 Calculate(pq|rs)
 loop i=1..Nocc (in ibatch)
 ITMP[p,q,r,i]+= Cocc[s,i]*(pq|rs) and non-redundant permutations of indices
 end i in ibatch
 end loops p,q,r,s
 loop p=1..NBas
 loop r=1..NBas
 loop i=1,…Nocc (in ibatch)
 loop j=1..i
 loop q=1..NBas
 JTMP[p,j,r,i]+= Cocc[q,j]*ITMP[p,q,r,i]
 end loop q
 end loops j,i,r,p
 loop i=1..Nocc (in ibatch)
 loop j=1..i
 loop p over AO’s
 loop b=1..NVirt
 loop r over AO’s
 ATMP(p,b)+=C[r,b]*JTMP[p,j,r,i]
 end loops r,b,p
 loop a=1..Nvirt
 loop b=1..Nvirt
 loop p over AO’s
 KIJ[a,b]+= C[p,a]*ATMP[p,b]
 end loops p,a,b
 Evaluate MP2 amplitudes and pair energy
 end loops i,j
 end loop i
end loop ibatch

Full eightfold permutation symmetry used
FLOP count optimized algorithm

have to be able to store NBas3 integrals for each
occupied MO. Hence need batches of occupied

MOs

Transformation of 2nd index

Transformation of 3rd index

Transformation of 4th index

loop p=1..NBas
 loop r= 1..p
 loop q=1..NBas
 loop s=1..NBas
 calculate K[p,r](q,s)= (pq|rs)
 end loop q,s
 Perform transformation K[p,r](i,j)=(CoccT*K[p,r]*Cocc)ij
 Write matrix K[p,r] to disk
end loops p,r
Resort Integrals K[p,r](i,j) to give K[i,j](p,r) (i<=j)
Loop i= 1..Nocc
 loop j=1..i
 Read integrals K[i,j](p,r)
 Perform transformation K[i,j](a,b)=(CvirtT*K[i,j]*Cvirt)ab
 Calculate MP2 amplitudes T[i,j](a,b)
 Calculate MP2 pair energy e(i,j)
 Sum up MP2 correlation energy
end loops i,j

BLAS optimized algorithm

We only use one out of eightfold permutational
symmetry, which means that we generate the

integrals effectively 4 times

We only use one
permutational symmetry

here too, which means we
store 4 times too many

integrals

Two BLAS level 3
multiplications in the rate

determining step

Two BLAS level 3
multiplications

Awkward: Lots of I/O

Performance Test

FLOP optimized algorithm BLAS optimized algorithm

Diclophenac
def2-TZVP (667 basis functions)
4 GB main memory used

1732 sec
TOTAL TIME for half transformation: 1697.0 sec
AO-integral generation : 1078.9 sec
Half transformation : 354.0 sec
K-integral sorting : 60.4 sec

(25 batches necessary)

>100,000 sec

Chapter 2.4

Using Factorizations and Finding the ones

with the best FLOP count

Example: Factorization in Coupled Cluster

The scaling of an algorithm can sometimes be reduced through factorization. This
happens if intermediates can be defined that only depend on a subset of the summation
indices. In this case the summations can be carried out in two steps:

O(N8) scaling

Look at one nonlinear term in the CCSD equations:

σ
ab
ij ← kl ||cd t

cd
ij t
ab
kl

cd
∑

kl
∑

➡ 4 target indices
➡ 4 summation indices
➡ … But any quantity depends on only 2 target indices at a time
➡ Must be able to re-arrange loops more cleverly

Two possibilities:

σ
ab
ij ← t

ab
kl kl ||cd t

cd
ij

cd
∑

Xkl
ij

! "###### $######kl
∑ σ

ab
ij ← t

cd
ij

cd
∑ t

ab
kl kl ||cd

kl
∑

Ycd
ab

! "###### $######
or

Example: Factorization in Coupled Cluster

Algorithm 1 Nocc2 <—— MUCH better and MUCH less Storage!
————— = ——— FLOPS <<1
Algorithm 2 Nvirt2

σ
ab
ij ← t

ab
kl kl ||cd t

cd
ij

cd
∑

Xkl
ij

! "###### $######kl
∑ : X

kl
ij = kl ||cd t

cd
ij

cd
∑ Nocc4 Storage

Nocc4Nvirt2 FLOPS

σ
ab
ij ← t

ab
klX

kl
ij

kl
∑ Nocc4Nvirt2 FLOPS

σ
ab
ij ← t

cd
ij

cd
∑ t

ab
kl kl ||cd

kl
∑

Ycd
ab

! "###### $######
: Y

cd
ab = t

ab
kl kl ||cd

kl
∑

2xNocc4Nvirt2 FLOPS
Nocc4 Storage

σ
ab
ij ← t

cd
ijY
cd
ab

cd
∑

Nvirt4 Storage
Nocc2Nvirt4 FLOPS

Nocc2Nvirt4 FLOPS

2xNocc2Nvirt4 FLOPS
Nvirt4 Storage

O(N6) scaling

O(N6) scaling

Let us return to our initial question!

a
j b

c
dk l

We had:
i

STEP 1: What is your data and how do you store what?

Integrals:

➡ Series of matrices orderd by internal label pairs

i,j,k,l=occupied
a,b,c,d=virtual

How many occupied (no) and virtual (nv) orbitals do I have?
➡ Say no=50, nv=400, then (no*nv)2~3 GB storage, (nv)4=190 GB

➡ Probably need to store that on disk and retrieve in portions

Amplitudes:

➡ Always look for matrices and vectors!

STEP 2: Rewrite the equations in matrix form

→O(N8)?O(N4) O(N4)

How it is REALLY NOT done
Get array SIGMA(i,j,a,b)

Loop over k,l

SIGMA(i,ja,b,)+= T(i,k,a,c)
 *T(j,l,d,b)
 *KS(k,l,c,d)

End i,j

Loop over i>=j

End k,l

O(N2)
O(N2)

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

Overall O(N8)
With heavy

Memory
demands
and no
BLAS

Get array T(i,j,a,b)

Get array KS(i,j,a,b)

Loop over a,b

Loop over c,d
O(N2)

O(N2)

End c,d

End a,b

How it is ALSO NOT done

Get matrix SIGMA(i,j)

Loop over k,l

Form intermediate X= KS(k,l)*T(j,l)

Get matrix T(j,l)

Get matrix KS(k,l) (KS=K-squiggle)

Add to SIGMA(i,j)+= X(k,j)*T(j,l)

End i,j

Store matrix SIGMA(i,j)

Loop over pairs i>=j

Get matrix T(i,k)

End k,l

O(N2)

O(N2)

O(N3)
O(N3)

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

Overall O(N7)
With heavy

I/O

How it IS done
Loop over pairs kl

Get matrix SIGMA(i,j)
Loop over k

Form intermediate X(k,j)= KS(k,l)*T(j,l)

Loop over j
Get matrix T(j,l)

Get matrix KS(k,l) (KS=K-squiggle)

Add to SIGMA(i,j)+= X(k,j)*T(j,l)
End k

End i,j
Store matrix SIGMA(i,j)

BLAS matrix x matrix

BLAS matrix x matrix

O(N2)

O(N)

O(N2)

(Let’s drop P(ij)P(ab) for the
moment to keep things simple)

Store X(k,j)
End j

O(N3)

End kl
Loop over pairs i>=j

Get matrix X(k,j)
Get matrix T(i,k)

O(N)

O(N3)

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

Overall O(N6)

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

Overall O(N6)

Chapter 2.5

Precompute what you can afford to avoid

redundant re-computation

Precomputed quantities

Example: shell pair data

Loop ish>= jsh

Loop ksh, lsh(ish==ksh?jsh:ksh)

Calculate KIJ=di*dj*exp(-ai*aj/(ai+aj)*RAB2)

Calculate P = 1/(ai+aj)*(ai*RA+aj*RB)

Calculate KKL=dk*dl*exp(-ak*al/(ak+al)*RCD2)

Calculate Q = 1/(ak+al)*(ak*RC+al*RD)

Calculate (IJ|KL) {P,Q,KAB,KCD,…}

…

Highly redundant since independent of ish,jsh, A or B!

Better: Precompute shell pair data AND screen for negligible shell pairs

Loop ish>= jsh

Calculate KIJ=di*dj*exp(-ai*aj/(ai+aj)*RAB2)

Calculate P = 1/(ai+aj)*(ai*RA+aj*RB)
if |KIJ|<TCut then reject shell pair

Store KIJ, P in memory or on disk

Move Work out of the Inner Loops: Split-J
Choosing intermediates wisely such that redundant work is move out of the inner loops helps
performance

Example: Integrate integral evaluation as early as possible into the target quantities.
For the Coulomb matrix, (Ahmadi & Almlöf):

J
µν
= P

κτ
(µν |κτ)

κτ
∑
= P

κτ
E
tuv
µν

tuv
∑

independentof κτ
! "## $##

(−1) ′t + ′u + ′v E ′t ′u ′v
κτ R

t+ ′t ,u+ ′u ,v+ ′v
′t ′u ′v
∑

κτ
∑

= E
tuv
µν

tuv
∑ R

t+ ′t ,u+ ′u ,v+ ′v
(−1) ′t + ′u + ′v P

κτ
κτ
∑ E ′t ′u ′v

κτ

≡P ′t ′u ′v independentof µν,tuv

! "######### $#########′t ′u ′v
∑

= E
tuv
µν P ′t ′u ′v Rt+ ′t ,u+ ′u ,v+ ′v

′t ′u ′v
∑

tuv
∑

Hermite basis
repulsion

Hermite basis
density

Hermite to Slm 
Transformation

When we calculate the integrals one by
one, we repeatedly re-calculate this
quantity N2 times although it is
independent of µ,n.Likewise:
Transformation to spherical harmonics

FN J. Comp. Chem. 2003, 24, 1740-1747; FN J. Comp. Chem., 2022, 1-16

Performance example
def2-TZVP=667 BFs

Traditional treatment

Split-J algorithm

=Ahmadi-Almlöf

=Head-Gordon J-engine

Coulomb term (sec)
(20-builds)

Identical numerical result, same scaling, but significant speedup realized through
thoughtful structuring of the entire computational process

5796 sec

2834 sec

Chapter 2.6

Be careful with Input/Output

Example: I/O Heavy Algorithms

 Loop i=1…Nocc
 loop a=1..Nvir
 Write NULL matrix Kia into buffer IABC
 end loop a
 loop a=1..Nvir
 Read matrix Kia(b,c) = (ib|ac) from IABC
 loop b=1..Nvir
 Read matrix Kib(c,d) = (ic|bd) from IABC
 loop c=1..Nvir
 Kib(a,c)=+Kib(a,c)+Kia(b,c);
 end loop c
 Store matrix Kib in IABC
 end loop b
 end loop a
 end loop i

The I/O system is the slowest part of your computer!

➢ Use it as little as possible

➢ Move its usage as far outside in the loop structure as reasonably possible

➢ Avoid reading small chunks of data

Example: Integral symmetrization in EOM-CCSD

Loop i=1..Nocc
 Initialize buffer Kib for all b
 loop a=1..Nvir
 read matrix Kia(b,c) from IABC
 loop b=1..Nvir
 loop c=1..Nvir
 Kib(a,c)+=Kia(b,c);
 end loop c
 end loop b
 end loop a
 Write entire buffer Kib into IABC
end loop i

6641 sec 31 sec

SAME operation count!
Factor 200 performance difference!!

Chapter 2.7

Parallelization in a nutshell

Single CPU Clockspeed / Single Thread Performance

Copyright © 2011, Elsevier Inc. All rights Reserved.

Growth in clock rate of microprocessors. Between 1978 and 1986, the clock rate improved less than 15% per
year while performance improved by 25% per year. During the �renaissance period� of 52% performance improvement per year between
1986 and 2003, clock rates shot up almost 40% per year. Since then, the clock rate has been nearly flat, growing at less than 1% per year,
while single processor performance improved at less than 22% per year.

So far consistent with Moore‘s law (processor
performance doubles every 12-24 months)

Optimistic estimates claim that Moore‘s law
can be fulfilled until ~2020-2030

Physical limits of miniturization will ultimately
be reached

Performance: Moore’s Law

“From this historical perspective,

it’s startling that the whole IT industry has bet its future that

programmers will finally successfully switch to explicitly parallel

programming”

(Patterson, Hennessy: The Hardware/Software Interface, 2009)

Paradigm Change:

Requires explicit parallelization by the programmer!

Consequence’s of Moore’s Law

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

Sp
ee

du
p

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Number of Processors

Amdahl’s Law

Parallel Portion
 50%
 75%
 90%
 95%

Speedup:

P: Parallel portion of code

N: Number of Processors

Amdahl’s Law of Diminishing returns

Parallelization in a Nutshell

Principle idea: let a number of processors, say n, work on parts of the computational
problem in parallel and combine sub results into the final result.

Ideal Scenario: The problem breaks down perfectly and the time required to solve the
problem is 1/n.

Shared Memory Models:
- Open MP, POSIX threads
- Efficient use of resources, no memory replication
- Difficult to debug large programs
- Can only be used on one machine with common memory
Message Passing Models
- Communication via messages between processes
- Choice between replicated and distributed memory
- Distributed memory difficult to implement efficiently
- Can be used between machines
Hybrid Models:
- Threads + MPI
- Combines shared memory on one machine with message passing between machines
- Adaptation into official standards is slow

F=

1 2 3

F= 1

F= 2

Parallelization

Parallelization is of vital importance in modern high-performance computing, yet a
LOT can go wrong here! We can only scratch the surface of this complex subject.

A few rules:

1. Each process should have roughly the same amount of work to do (Load
Balancing).

2. Do the parallelization as far ‚outside‘ as possible (e.g. distribute the outermost
loop).

3. Excessive communication (e.g. sending large chunks of data) between processes
should be avoided as much as possible.

4. Synchronization should not happen inside time critical loops and there should be
as little of it as possible.

5. I/O in parallel applications is difficult if several processes access the same file.

Load Balancing Example

Integral calculation: The time required to calculate a given integral batch is a
complicated function of angular momenta, contraction depth, orbital exponents and pre-
screening efficiency
‣ Load balancing difficult to guarantee
‣ Random distribution of batches among processors.
‣ Uneveness will average out in the limit of many batches

loop i=1..N,i+=1 loop i=1..N,i+=NProcs→
Target F=0

Calculate something

Sum into Local F on processor

End loop

MPI-AllSum(F)

Local to process

Skip over i’s not „assigned“
to this process

Sum up results obtained at individual processes

MPI-AllSum(F) Make sure all processes are finished before doing anything else

Parallelization and Ahmdal’s Law

Everolimus
151 atoms,

def2-tzvp (2606 basis functions)

Memory:		 8 GB /core

B3LYP

~3.9

~7.3 ~12.9 ~19 ~21
(~3.3 h!)

Group Parallelization

Everolimus
151 atoms,

def2-tzvp (2606 basis functions)

Idea:
Divide the processes into groups that scale well (e.g. up to 8)

and then parallelize independently over the groups

! PAL(8x8)

0.6 h 2 h Up to a factor of
four faster than

„bulk“
parallelization

Chapter 3

Some Useful Programming Techniques 

for Writing „good“ Software

Prelude: Who are you writing code for?

✓ For yourself because you want to check out some ideas

✓ Just for a paper, but not to be used later

✓ For your boss because you want to get a Ph.D.

✓ For a program package that is supposed to be long lived

Everything is ok!

Mostly anything is ok!

… depends on your boss

… it needs to be well documented (in english)

… don’t try to be funny!

… Write the FM (so that users can avoid reading the FM)

… Make sure it compiles on any platform

… Minimize the dependence on elements that are outside your control

… put effort into making it as efficient as possible

Good Programming Habits

... bad habits are the opposite of everything on the list

✓ Show some respect for the work that went into the package:

‣ Communicate with the team and dont' go off on lonely tangents

‣ Be respectful of the code organization and try to fit in

‣ Do not rewrite code of others without prior conversation

✓ Write lots of comments (in english!) including references to papers.

✓ Use the existing infrastructure of the package

✓ Debug carefully before checking into the main branch. Delete debug code

✓ Provide plenty of test jobs with reference results.

✓ Profile and optimize the code carefully

✓ Be feature complete (e.g. not just closed shell)

✓ Program as simple as possible and only as fancy as necessary. Do not "show off"

✓ Do not write 50000 line functions - break it down, be modular, make it reusable

✓ Use logical, recognizable file names

Chapter 3.1

Using Recursion

Recursion

Recursion can be a very effective way to arrive at compact, elegant code.

1. Define the starting point of the recursion
2. Define the recursive conditions strategy
3. Define the termination conditions

Easy example: the factorial number:

Straightforward linear programming:
int fac_n = 1;
for (int i=1;i<=n;i++) fac_n = fac_n*i;

Recursive programming:
int factorial(int n){
 if (n>0) return n*factorial(n-1);
 else return 1;
};

must be passed by value!

termination
condition

Recursion: Finding the shortest path from A to B

Start

End

6-steps
5-steps
6-steps

// ---
// FN 08/18
// Find a pathway between A and B (if it exists)
//
// ON INPUT A - the first atom one is looking for
// B - the target atom for the pathway
// XAB - the list of connectivities XAB(A,k) - k'th atom connected to A; k<NAB(A)
// NAB - the number of connectivities for each atom NAB(A)=number of bonds at A
// ActualLength - the recursion depth
// MaxLength - the maximal length of the path that is allowed
// abortAtLength - abort the search if a path of this length or shorter has been found
// ON OUTPUT Length - the length of the pathway found
// ---
void GEO_FindPathway(int A, int B, TIMatrix &XAB, TIVector &NAB, int ActualLength, int &Length, int &MaxLength, int abortAtLength)
{
 // Abort if a path with abortAtLength is found
 if (Length <= abortAtLength && Length > 0) return;

 // Abort, if no path is found or we have exceeded the allowed maximal length
 if (ActualLength> MaxLength) return;

 // The number of connections made by atom A
 int NA= NAB(A);
 for (int k=0;k<NA;k++){
 // C is the actual k'th atom connected to A
 int C= XAB(A,k);
 // If we have found our target atom, we stop the recursion
 if (C==B){
 // first pathway found
 if (Length<0){
 Length= ActualLength;
 }
 // if we had one before, check whether this one
 // is shorter. We take the shortest
 else{
 if (ActualLength<Length) Length=ActualLength;
 }
 // There can be no path shorter than one bond.
 if (Length==1) return;
 // In any other case, we keep recursing
 GEO_FindPathway(C,B,XAB,NAB,ActualLength+1,Length,MaxLength, abortAtLength);
 // but stop here, since no other atom in that list
 // can match B
 return;
 }
 // and otherwise continue the recursion with the actual atom along the pathway
 else{
 GEO_FindPathway(C,B,XAB,NAB,ActualLength+1,Length,MaxLength, abortAtLength);
 }
 }
}

Recursion. New
origin of search is C

Recursion. New
origin of search is C

Termination
Check whether actual walk is shorter

Start condition

Recursion: Setting up ORMAS CI Spaces

ORMAS (Occupation Restricted Multiple Active Spaces)

✓ The orbital space is divides into N subspaces
✓ Subspace K can have Kmin ... Kmax electrons
✓ Subspace K has NORBK orbitals
✓ Inside each subspace a CAS(NELK,NORBK) is formed
✓ All combinations of subspaces that give the correct NEL are wanted

 GAS (Generalized Active Space)

/* --
 * FN 08/2024
 *
 * Recursive function to figure out the combination of subspace lists that lead
 * to the correct number of electrons in the active space
 *
 * ON INPUT ORMAS - the information about the subspaces
 * NELTARGET - target number of electrons
 * ACTNEL - actual number of electron during recursion
 * ACTLEVEL - actual level of recursion (e.g. LEVEL=subspace level)
 * ACTCOMBO - actual combination
 * JustCount - only count combinations or also store them
 *
 * ON OUTPUT NCOMBINATIONS - number of combinations that lead to the correct NEL
 * COMBO - if we store, the combinations themselves
 * --
 */
void ORMAS_FindSubSpaceCombos(TIVector &ORMAS,
 int NELTARGET,
 int ACTNEL,
 int ACTLEVEL,
 TIVector &ACTCOMBO,
 int &NCOMBOS,
 TIMatrix &COMBO){
 int64 NLEVELS= ORMAS(0);
 int64 norb = ORMAS(1+3*ACTLEVEL+0);
 int64 nmin = ORMAS(1+3*ACTLEVEL+1);
 int64 nmax = ORMAS(1+3*ACTLEVEL+2);
 TIVector TCOMBO;
 TCOMBO.CopyVec(ACTCOMBO);
 // Loop over all electron numbers of this level
 int ACTNEL0= ACTNEL;
 for (int64 n=nmin; n<=nmax; n++){
 // Remember where we are at this level
 TCOMBO(ACTLEVEL)=n;
 // current number of electrons
 ACTNEL= ACTNEL0 + n;
 // if that is already too large we can skip
 if (ACTNEL>NELTARGET) break;
 // We arrived at the bottom level: see what we have
 if (ACTLEVEL == NLEVELS -1){
 // That is the correct number of electrons
 if (ACTNEL==NELTARGET){
 for (int64 i=0;i<NLEVELS;i++){
 COMBO(NCOMBOS,i)= TCOMBO(i);
 };
 NCOMBOS++;
 } else{
 // nothing to do: number of electrons is incorrect
 }
 }

 // ---
 // NOT bottom level: recurse to the next level
 // ---
 else{
 ORMAS_FindSubSpaceCombos(ORMAS,
 NELTARGET,
 ACTNEL,
 ACTLEVEL+1,
 TCOMBO,
 NCOMBOS,
 COMBO,
 JustCount);
 };
 };
};

Recursion to next
next subspace

Reached last
subspace

Correct number of
electrons found

ORMAS(14: 6 10 12 / 2 0 4 / 50 0 2)

no of electrons
(total) Subspace 1

(domos)
6 MOs, 0-2 holes

Subspace 2
(active)

any
occupation

Subspace 3
(virtuals)
50 MOs

0-2 electrons

Subspace 1: 10 electrons in 6 orbitals => 21 configurations
Subspace 1: 11 electrons in 6 orbitals => 6 configurations
Subspace 1: 12 electrons in 6 orbitals => 1 configurations
Subspace 2: 0 electrons in 2 orbitals => 1 configurations
Subspace 2: 1 electrons in 2 orbitals => 2 configurations
Subspace 2: 2 electrons in 2 orbitals => 3 configurations
Subspace 2: 3 electrons in 2 orbitals => 2 configurations
Subspace 2: 4 electrons in 2 orbitals => 1 configurations
Subspace 3: 0 electrons in 50 orbitals => 1 configurations
Subspace 3: 1 electrons in 50 orbitals => 50 configurations
Subspace 3: 2 electrons in 50 orbitals => 1275 configurations

Number of valid subspace combinations = 9

COMBO 1: 10 2 2 => 80325 CFGs
COMBO 2: 10 3 1 => 2100 CFGs
COMBO 3: 10 4 0 => 21 CFGs
COMBO 4: 11 1 2 => 15300 CFGs
COMBO 5: 11 2 1 => 900 CFGs
COMBO 6: 11 3 0 => 12 CFGs
COMBO 7: 12 0 2 => 1275 CFGs
COMBO 8: 12 1 1 => 100 CFGs
COMBO 9: 12 2 0 => 3 CFGs

Subspace CAS lists

Subspace combinations

Chapter 3.1

Object Oriented Programming

Object Oriented Programming

In object oriented programming you celebrate the unity of code and data by creating
classes, that contain

- Data that are private to the object
- Functions that work on these data

➡ MUCH safer than having global data that is passed around the program
➡ MUCH easier to build up and administrate complicated data structures

class TGaussianShell{
 private:
 int nprim; // number of primitives
 int l; // angular momentum
 int ofs; // position in the basis function list
 double *a, *d; // exponents, contraction coefficients
 public:
 // Constructor and Destructor

 TGaussianShell(){
 nprim =0; l=0; ofs=0; a=nullptr; d=nullptr;
 };

 ~TGaussianShell(){
 if (a!=nullptr){ delete[] a; a=nullptr;
 if (d!=nullptr){ delete[] d; d=nullptr;
 };

 // Setters and Getters

 int GetNPrim(){ return nprim; };
 double *GetA(){ return a; };
 ...

 // Productive functions

 void Copy(int xnprim, int xl, int xofs, double *xa, double *xd){
 nprim= xnprim; };

 void Copy(TGaussianShell &SH){ Copy(SH.GetNPrim(),SH.GetL(),SH.GetOfs(),SH.GetA(), SH.GetD());};
 void Normalize();
 void Store(FILE *f);
 void Read(FILE *f);
 void Print();
};

data

Constructor and Destructor

Access to data

Productive functions

class TGaussianAtom{
 private:
 int lmaxA; // Highest L for this atom
 int *NShells; // Number of shells in each angular momentum
 TGaussianShell **Shells;

 public:
 TGaussianAtom(){ ... }; // initialize
 ~TGaussianAtom(){}; // delete data
 // Getters and Setters

 TGaussianAtom *GetShell(int l, int ish){ return &(Shells[l][ish]); };
 // Productive functions

 void GetMemory(int xlmaxA, int *xNShells;){
 lmaxA= xlmaxA; NShells= new int[lmaxA+1];

 for (int l=0;l<=lmaxA;i++) NShells[l]= xNShells[l];
 Shells= new TGaussianShell *[lmaxA+1];
 for (int l=0; l<=lmaxA; l++) Shells[l]=new TGaussianShell[NShells[l];
 };

 void Normalize(){
 for (int l=0;l<=lmaxA; l++)
 for (int ish=0; ish<NShells[l];ish++) Shells[l][ish].Normalize();
 };

 void Copy(TGaussianAtom &GA){
 GetMemory(GA.GetLmax(), GA.GetNShells());

 for (int l=0;l<=lmaxA; l++)
 for (int ish=0; ish<NShells[l];ish++)
 Shells[l][ish].Copy(*GA.GetShell(l, ish));

 };

 void Store(FILE *f);
 void Read(FILE *f);
 void Print();
};

class TSegmentedBasisSet{
 private:
 int NAtoms; // Number of atoms
 TGaussianAtom *Gauss; // the actual Gaussians for each atom

 public:
 TSegmentedBasisSet(){ ... }; // initialize
 ~TSegmentedBasisSet(){}; // delete data
 // Productive functions

 void GetMemory(int xNAtoms){
 NAtoms= xNAtoms;

 Gauss= new TGaussianAtom[NAtoms];

 };

 void SetAtomBasis(int A,TGaussianAtom &GA){
 if (xAtom>=0 and xAtom<NAtoms) Gauss[A].Copy(GA);
 else <throw exception>;
 };

 void Normalize(){
 for (int A=0;A<NAtoms; A++) Gauss[A].Normalize();

 };

 void CalcOverlap(TSymmetricMatrix &S);
 void Read(FILE *f);
 void Print();
};

Inheritance and Virtual Functions

✓ Very often, you have a bunch of tasks to do that have something in common and they
are embedded in larger tasks, where they perform one specific action.

✓ In order to help you streamlining such situations, C++ let’s you design „virtual functions“

✓ Example:

/* ---
 * First we define an abstract task that is supposed to
 * do something. What it is we leave unspecified
 *
 * This is the content of the virtual function DoSomething
 * NOTE: the "=0" tells the compiler that any "child" of
 * the class AbstractTask MUST overload this function
 * ---
 */
class AbstractTask{
public:
 virtual void DoSomething(const char*) = 0;
};

Making Virtual Functions Concrete
/* ---
 * Now we define one concrete task.
 *
 * The concrete task is an "heir" of Abstract task and
 * overloads the virtual function "DoSomething" which is
 * will do something concrete.
 *
 * NOTE: the virtual function here is declared with "=0"
 * ---
 */
class WindowCleaner : public AbstractTask{
public:
 virtual void DoSomething(const char *house);
};

void WindowCleaner::DoSomething(const char *house)
{
 printf("Cleaning Windows in house %8s\n",house);
}

/* ---
 *
 * Another concrete task
 *
 * ---
 */
class FloorCleaner : public AbstractTask{
public:
 virtual void DoSomething(const char *house);
};

void FloorCleaner::DoSomething(const char *house)
{
 printf("Cleaning floors in house %8s\n",house);
}

Incorporating virtual functions

/* ---
 * Here is how to use it:
 * We have a function that is in need of performaing a
 * certain task, and pass the concrete task onto it
 * ---
 */
void CleaningForce(AbstractTask &MyTask)
{
 int NHouses = 5;
 const char *House[5] = {"Miller","Smith","Jones","Mayer","Trump"};

 for (int i=0;i<NHouses; i++){
 printf("Now working on house %d, the home of %s\n",i+1,House[i]);
 printf(" task is -> ");
 MyTask.DoSomething(House[i]);
 printf("\n");
 };
};

How it looks in practice
int main(int argc, char **argv)
{
 // These are our "workers" - the ones who do something concrete
 WindowCleaner W;
 FloorCleaner F;
 JewelThief J;

 // Now we can drive the performance of concrete tasks easily
 printf("First cleaning task\n");
 printf("-------------------\n");
 CleaningForce(W);
 printf("Second cleaning task\n");
 printf("-------------------\n");
 CleaningForce(F);
 printf("Third cleaning task\n");
 printf("-------------------\n");
 CleaningForce(J);

 // But this will work too
 AbstractTask *X;

 printf("Dynamic cleaning task\n");
 printf("----------------------\n");
 X= new JewelThief;
 CleaningForce(*X);
}

Program output

Example: Calculating One-Electron Integrals
SUBROUTINE OneElectronLoop(TIntegralKernel &K,
 TIntegralConsumer &C)

BEGIN
 Loop ish over shells
 Loop jsh<=ish over shells
 Compute or get la, lb, P, PA, PB
 ICART=0
 For iprim=0..nprim-1
 CALL K.PrimitiveIntegrals(IPRIM)
 Sum ICART += da*db*IPRIM
 end
 Tranform ICART to Spherical harm. ILM
 CALL C.IntegralConsumer(ILM)
 End jsh
 End ish
END

Only one such loop (and one for general contraction) in the
entire program package! Covers ALL one-electron integrals

calculates
integrals for one
primitive pair

Does something
with one batch of
integrals

Example of an Integral Kernel

// Calculation of the overlap integral
void TOverlapIntegral::CalcPrimitiveIntegrals(int64 la, int64 lb, double a, double b,
 double R2, double *P, double *PA, double *PB,
 Tensor<5, double> &ET, Tensor<5, double> &RT,
 Tensor<3, double> &INTS)
{
 auto E = ET.SubTensor<4>({0},{0});
 // Compute the constant SAB
 double ab = a+b;
 double ABI = 0.5/ab;
 double SAB = pow(2.0 * M_PI * ABI, 1.5) * exp(-2.0 * ABI * a * b * R2);
 // Compute the auxiliary array E
 E_Function(la, lb, ABI, SAB, PA, PB, E);
 // Loop over Cartesian components and make S
 int64 dimi= CDIM(la);
 int64 dimj= CDIM(lb);
 for (int64 i = 0; i < dimi; i++) {
 int64 l1 = GTO_xyz[la][i][0];
 int64 m1 = GTO_xyz[la][i][1];
 int64 n1 = GTO_xyz[la][i][2];
 for (int64 j = 0; j < dimj; j++) {
 int64 l2 = GTO_xyz[lb][j][0];
 int64 m2 = GTO_xyz[lb][j][1];
 int64 n2 = GTO_xyz[lb][j][2];
 INTS(0, i, j) = E(0,l1,l2,0) * E(1,m1,m2,0) * E(2,n1,n2,0);
 }; // j
 }; // i
};

Example of an Integral Consumer

/* --
 * FN 03/2021
 *
 * For most integrals the right action is to just
 * simply store it in a matrix.
 * --
 */
class TSymOneElectronIntegralStorer
 : public TOneElectronConsumer{
 int64 KernelLength;
 TSharkBasis *BAS;
 TRMatrixSym *IOUT;
public:
 TSymOneElectronIntegralStorer(){
 KernelLength=0;
 BAS=0;
 IOUT=0;
 };
 void SetKernelLength(int64 x){
 KernelLength=x;
 }
 void SetBasis(TSharkBasis *x){
 BAS=x;
 }
 void SetOutput(TRMatrixSym *x){
 IOUT=x;
 }
 virtual void DigestIntegrals(int64 ish, int64 jsh,Tensor<3> &INTS);
};

void TSymOneElectronIntegralStorer::DigestIntegrals
 (int64 ish, int64 jsh,Tensor<3> &INTS)
{
 int64 li = BAS->BG[ish].l;
 int64 lj = BAS->BG[jsh].l;
 int64 ofsi= BAS->BG[ish].ofs;
 int64 ofsj= BAS->BG[jsh].ofs;
 int64 dimi= SHARK_LDIM(li);
 int64 dimj= SHARK_LDIM(lj);
 for (int64 i=0;i<dimi; i++){
 int64 addri= ofsi+i;
 int64 jend= dimj;
 if (Diagonal) jend=i+1;
 for (int64 j=0;j<jend; j++){
 int64 addrj= ofsj+j;
 for (int64 nk=0; nk<KernelLength; nk++){
 IOUT[nk](addri, addrj) = INTS(nk, i, j);
 }
 }
 }
}

PART 4

Automatic Code Generation

Problems with Method Development

Idea Production
Program

! "############### $###############
Just technicalities!

That would be nice!

5 min

Derive
Equations

Days

Write
Code

Weeks

Debug

Months

Opti- 
mize

Years

Conclusions:

‣ The technicalities of development occupy most of our time
‣ Humans make mistakes, Debugging takes a lot of time
‣ The human brain can only deal with so much complexity. Beyond it is hopeless

➡ We need programming tools that take us directly from the Ansatz (our idea)
to efficient, production level code

➡ Automatic Code Generation

Code Generation Tools
✓ Janssen & Schaefer, ROCCSD, pioneering work 1991
✓ Tensor contraction engine in NWCHEM, various CC (Hirata, Auer & Co)
✓ Diagram based arbitrary order CC/MRCC (Kallay)
✓ Gecco Internally contracted MRCC (Köhn)
✓ Genetic algorithm based code generator, MRCC (Hanrath)
✓ Automatic code generator, FIC-MRCI (Knizia, Werner)
✓ MREOM-CC (Huntington, Nooijen)
✓ General active space EOM CC (Kong, Demel, Shamsundar, Nooijen)
✓ Bagel/Smith CASPT2 gradient, (Shiozaki)
✓ Yanai, Saitow, DMRG-CASPT2, various contracted variants
✓ ACES III programming ‚super-language‘ (Deumens, Bartlett & Co)
✓ Cyclops (Solomonik)
✓ Tiled Arrays (Valeev)
✓ …. many others

Simple & Straightforward Equation Generation

Ψ
0
|E
m
nE
p
q ...E

r
s |Ψ

0
,

Any Ansatz (single- or multi-reference) that can be formulated in terms of 2nd
quantization, quickly leads to expectation values of the form

Or, in terms of elementary spin-orbital operators:

E
p
q = a

qβ
+a
pβ
+a

qα
+a
pα
.

Ψ
0
|a
m
na
p
q ...a

r
s |Ψ

0
,

If the orbital space is divided in internal (i,j,k,l), active (t,u,v,w) and virtual (a,b,c,d),
the important commutation relations apply:

E
p
q,E

r
s⎡

⎣⎢
⎤
⎦⎥ = Ep

sδ
qr
−E

r
qδ
ps
,

Thus: E
i
p Ψ

0
= 2δ

ip
Ψ
0
, Ψ

0
E
p
i = 2δ

ip
Ψ
0
,

E
a
p Ψ

0
= 0, Ψ

0
E
p
a = 0,

Equation Generation

Strategy:

✓ Use the commutation relation to change the order of operators
✓ Move lower internal labels to the right
✓ Move upper internal labels to the left
✓ Move lower external labels to the right
✓ Move upper external labels to the left

➡ Creates 0’s, Kronecker deltas and ‚pre-densities‘ (MR case)

γ
tv ...x
uw...y = Ψ

0
|E
t
uE
v
w ...E

x
y |Ψ

0
.

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

Awkward
by hand,
easy for a
computer

Issues: ✓ redundant terms are generated
✓ terms that cancel each other are generated
✓ Equivalent terms may have inequivalent labels
✓ …

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

Post-
processing

required

Code Generation Chain

1. Equation Generator:

✓ Takes the Ansatz and generates equations
✓ Identifies identical, redundant and cancelling terms
✓ brings all labels into a ‚canonical form‘

2. Factorizer
✓ Identifies possible intermediates
✓ Finds the best possible intermediates and contraction order
✓ Finds common intermediates in different terms
✓ Ensures that all terms have their correct formal scaling

3. Code generator
✓ Writes code for a specific electronic structure package
✓ Recognizes patterns/contractions for which highly optimized code exists
✓ Ensures that all terms have their correct formal scaling
✓ Ensures minimal I/O and maximal use of BLAS
✓ Generates parallel code, code for specific machines, ….

Realization of a Code generation chain (AGE)

Cost model
In order to find the best possible intermediates and factorization, we need to have a
prediction how long each contraction should take.

Generated vs Hand Written Code
RHF CCSD

(m
e

/ h

0,0

0,5

1,0

1,5

2,0

number of basis func(ons
0 150 300 450 600

AutoCI
MDCIGenerated

Hand Written

(Basis Functions)
0 600450300150

W
all

 T
im

e
(a

.u
.)

RHF-CCSD UHF CCSD

(m
e

/ h

0

5

9

14

18

numbe of basis func(ons
0 150 300 450 600

AutoCI
MDCIGenerated

Hand Written

(Basis Functions)
0 600450300150

W
all

 T
im

e
(a

.u
.)

UHF-CCSD

Hand code:

Generated code:

σij ← −JikCkj −

k
∑ CkjJik − JkjCik −CikJkj −CkiKkj −KikCjk + 2KikCjk + 2CikKkj

σij ←
2Cik − Cik()†⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ K

kj − 1
2
Jkj()− 1

2
Cik()† Jkj⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟− Cik()† Jkj⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

†

+

Kik − 1
2
Jik() 2Ckj − Ckj()†⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟−
1
2
Jik Ckj()†⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟− J

ik Ckj()†⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
k
∑ . 4 dgemm/k

8 dgemm/k

Where does the hand written Code win?

UHF CCSD

(m
e

(h
)

0

15

30

45

60

basis func(ons
50 125 200 275 350

1
4
8

RHF CCSD

(m
e

(h
)

0

8

15

23

30

basis func(ons
50 138 225 313 400

1
4
8

Coupled Cluster Gradients

(Basis Functions)
50 350275200125

(Basis Functions)
50 350275200125

Sp
ee

du
p

0

8

6

4

2 Sp
ee

du
p

0

8

6

4

2

Speed-Ups ➡ Canonical Coupled Cluster gradients with perhaps >500 basis functions possible
➡ Parallel Scaling is good
➡ More than 10x faster than numerical gradients

RHF-CCSD UHF-CCSD
4-processes
8-processes

4-processes
8-processes

Reduced Scaling FIC-MRCC Implementation

(m
e

/ h

0

60

120

180

240

number of basis functons

250 308 365 423 480

C8-C11 C12-C18

(m
e

/ h

0

40

80

120

160

CAS(n,n)

0 3 5 8 10

decapentaene dodecahexaene

#(Active MOs) #(Basis Functions)

W
all

 T
im

e
(a

.u
.).

0 2 6 8 104 250 308 365 423 480

Active Space Enlargement Molecular Size Enlargement

➡ Accessible molecular size roughly the same as single reference CCSD
➡ Without reduced scaling limit about 8 active orbitals
➡ With reduced scaling limit about 12 active orbitals

Stilbene Biphenyl

def2-SVP

def2-TZVP

Complexity: Example
Fully internal contracted MRCI (or MRCC, also CASPT2/NEVPT2) works with contracted
functions in the first-order interacting space (FOIS)

Φ
ij
ta = E

ij
ta Ψ

0
= C

I
(CASSCF)E

ij
ta Φ

I
(CAS)

I
∑

✓ 10 Excitation classes -> 100 Blocks of matrix elements
✓ Not orthogonal
✓ Not linearly independent
➡ Extremely complicated matrix elements
➡ 1945 equations including up to four body density
➡ Factorized into 3674 equations
➡ Removed 1222 redundant intermediates

➡ Nearly hopeless to program by hand. Readily done with code generator as a
matter of hours (perhaps days)

… found a (small) bug in the hand coded version of the CASPT2 method

… Fully automated, large scale nuclear gradient for CASPT2. Optimizations
of metalloporphyrins

Code generation: Summary

✓ Code generation enables the implementation of ‚impossibly complicated‘ methods
✓ Code generation reduces development times from years to hours/days
✓ Code generation can produce code for specific hardware, thus ensuring optimal

performance
✓ Code generation can ensure that all parts of the code have consistent quality
✓ Once the code generation chain produces correct results, it is extremely reliable (e.g. a

small bug was identified in the original CASPT2 code in 2015, CASPT2 is from 1990!)
➡ Code generation will play an important part in future quantum chemistry
➡ Generated code can be made almost as efficient as the best hand optimized code
➡ In the future we keep just a wavefunction Ansatz in the source code repository and

generate the code during compile time. Any improvement in the code generation chain
is the immediately applied to all parts of the program.

