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General Frame of Reference
▶ In a simplistic and generalized view of spectroscopy, the observable

is the number of detected particles (e.g. photons or electrons) per
unit time in a narrow energy interval and into a small solid angle

▶ The observable is recorded under certain conditions regarding
parameters such as temperature, pressure, concentration, and there
exist a model (or connection) from which one can deduce molecular
properties from the set of measured data

▶ Under typical circumstances in molecular spectroscopies, these
connections can be viewed upon as measures of changes in an
observable due to the presence of electromagnetic fields with origins
attributed to external sources

▶ Compared to atomic fields, the electric fields of conventional lasers
are relatively weak. A laser delivering pulses of 10 ns duration and 1
mJ in energy and with a spot size of 100 µm produces an intensity
of about 0.3 GW/cm2. This intensity corresponds to an electric
field amplitude of some Fω = 5× 10−5 a.u., which is several orders
of magnitude smaller than the internal electric fields that bind
electrons in atomic and molecular systems
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Reasons to employ Perturbation Theory

Why do we not simply time propagate the Schrödinger equation in
a direct and nonperturbational manner?

▶ The response functions defined in perturbation theory provide
the natural meeting point between experiment and theory
with a distinct separation of one-, two-, three-photon, etc.,
optical processes

▶ Error control is difficult to achieve as the accuracy depends on
the propagation scheme, time length, and time step

▶ It is a numerically elaborate process to separate out
nonlinearities from dominant lower-order components in the
polarization

▶ Calculation of vibrational contributions can hardly be made
practical in a nonperturbational approach.
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Response Theory and Perturbation Theory

Response theory may be thought of as a reformulation of standard
time-dependent perturbation theory into a form suitable for
approximate state theory.

Virtually all spectroscopic properties are encompassed by the
theory.

Possible perturbations are:

▶ time-independent or time-dependent

▶ electric or magnetic

▶ internal or external

▶ geometric distortions
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Selection of molecular properties

Electric
▶ Polarizability

▶ Hyperpolarizabilities

Magnetic

▶ Magnetizability

Electric–Magnetic

▶ Optical rotation

▶ Circular dichroism

▶ Faraday rotation

▶ Magnetic circular
dichroism

Electric–Geometric
▶ IR intensities

▶ Raman intensities

▶ Vibrational polarizabilities

▶ ZPVA polarizabilities

Internal fields
▶ g -tensor

▶ Fine-structure

▶ Spin-spin coupling

▶ Shieldings
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A few selected motivations for derivation of exact-state
response functions

▶ The formulations of quantum mechanics and perturbation
theory that are suitable for approximate state theories are best
illustrated in exact state theory

▶ It reveals the dependence of molecular response properties on
intrinsic properties of the system, such as excitation energies
and transition moments, and it thereby connects different
spectroscopies

▶ It reveals general properties and symmetries of response
functions that are also valid in approximate state theories

▶ It suggests the identification of excited state properties from a
study of poles and residues of ground state response
functions, e.g., excitation energies are identified as poles of
linear response functions
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The Schrödinger equation and time dependence

The Schrödinger equation reads as

iℏ
∂

∂t
ψ(t) = Ĥ(t)ψ(t).

The time-independent Schrödinger equation reads as

Ĥ0ψn(x) = Enψn(x),

ψ(t) = ψn(x)e
−iEnt/ℏ.

The wave function ψ(t) is always time-dependent, but for a
stationary state the probability density is time-independent.

x0 0 x0
x

t = 0.49T t = T/4 t = 0

V(x) = 1
2m x2
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Time-evolution for conservative systems: Ĥ(t) = Ĥ0

The evolution of the wave function from some initial time t0 to
time t is given by

ψ(t) = Û(t, t0)ψ(t0),

where
Û(t, t0) = e−i Ĥ0(t−t0)/ℏ.

The operator Û(t, t0) is referred to as the time evolution operator,
or time propagator.

Note:
For cases when the Hamiltonian is time-dependent, a time
propagator cannot be constructed in such a simple manner.
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Molecular properties from the “exact” wave function

We will now study a simple system for which we, for an arbitrary
external electric field turned on at t = 0, will have access to the
exact time-dependent wave function that solves the Schrödinger
equation.

By exact, we mean ”for all practical purposes exact” and limited
only by the numerical representation on the computer, but this
aspect is a side-issue to the present discussion.

- -iℏψ̇ = Ĥψ
ψ(t0) ψ(t)

t > t0

This toolbox will let us explore the different formulations of the
theory of molecular properties without relying on perturbation
theory.
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Two-level atom in static electric field (conservative system)

In the electric dipole approximation, the
Hamiltonian of the system will equal

Ĥ = Ĥ0 − µ̂F 0

where Ĥ0 is the Hamiltonian of the
isolated atom, µ̂ is the electric dipole
operator, and F 0 is the amplitude of the
external static electric field.

E 6

Eb ψb

Ea ψa

∆E = Eb − Ea

Ĥ0 =

[
Ea 0
0 Eb

]
µ̂ =

[
0 µab
µba 0

]
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The energies of the ground and excited states are given as the
eigenvalues of the Hamiltonian:

det
(
Ĥ − ℏωÎ

)
= 0

The two eigenvalues become

ℏω =
Ea + Eb

2
±
√

(Eb − Ea)2

4
+ (µabF 0)2

from which, for small fields, the electric-field dependent energies
are found to be

E ′
a(F

0) = Ea −
(µabF

0)2

∆E
+

(µabF
0)4

(∆E )3
+ · · ·

E ′
b(F

0) = Eb +
(µabF

0)2

∆E
− (µabF

0)4

(∆E )3
+ · · ·
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From these energy expansions we readily determine the electric
polarization properties by taking the field derivatives of the energy
in the limit of zero field strength. For the ground state, we get

µa = − ∂E ′
a

∂F 0

∣∣∣∣
F 0=0

= 0

αa = − ∂2E ′
a

∂(F 0)2

∣∣∣∣
F 0=0

= 2
(µab)

2

∆E

βa = − ∂3E ′
a

∂(F 0)3

∣∣∣∣
F 0=0

= 0

γa = − ∂4E ′
a

∂(F 0)4

∣∣∣∣
F 0=0

= −24
(µab)

4

(∆E )3

where we have introduced the electric dipole moment (µ),
polarizability (α), first-order hyperpolarizability (β), and
second-order hyperpolarizability (γ).
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Two-level atom in optical field (nonconservative system)

In the electric dipole approximation, the
Hamiltonian of the system will equal

Ĥ(t) = Ĥ0 − µ̂F (t)

where Ĥ0 is the Hamiltonian of the
isolated atom, µ̂ is the electric dipole
operator, and F (t) is the external
electric field.

E 6

Eb ψb

Ea ψa

∆E = Eb − Ea

Ĥ0 =

[
Ea 0
0 Eb

]
µ̂ =

[
0 µab
µba 0

]
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Nonconservative system: Study of Induced Dipole Moment

By ψ(t) we will denote the time-dependent wave function that is a
solution to the Schrödinger equation

iℏ
∂

∂t
ψ(t) = Ĥψ(t).

We will assume that a nonresonant (ω = 0.1 a.u.) external
perturbation is slowly switched on (a = 1/100 a.u.) in accordance
with

F (t) = Fω sinωt × erf(at).

0 100 200 300 400 500
time

-5

0

5

F
(t
)

×10
−5

10 fs
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Initial Condition
The initial condition for our system is that it resides in the ground
state prior to exposure of the perturbation and with a phase that is
zero at t = 0, i.e.

ψ(t) = ψa e
−iEat/ℏ for t ≤ 0

Infinitesimal Time Propagation

With a time step ∆t that is small, we can consider the external
field to be constant between t0 and t0 +∆t and thereby get

ψ(t0 +∆t) = Û(t0, t0 +∆t)ψ(t0)

where the time-evolution propagator equals

Û(t0, t0 +∆t) = e−i Ĥ(t0)∆t/ℏ
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Time Propagation

Repeated application of Û enables us to determine the wave
function in the region t > 0, and, given the time-dependent wave
function, the dipole moment is obtained as the expectation value
of the electric dipole operator according to

µ(t) = ⟨ψ(t)|µ̂|ψ(t)⟩

Initialization

psi[:,0]=[1, 0]

H=array([[Ea, 0],

[0, Eb]])

mu=array([[0, muab],

[muba, 0]])

F=Fw*sin(w*t)*erf

Time propagation

for k in range(1,n):

psi[:,k]=dot(expm(-1j*(H-mu*F[k-1])*delta),psi[:,k-1])

P[k]=dot(conj(psi[:,k]),dot(mu,psi[:,k]))
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Populations of States

As a measure of the effect of the perturbation on the system, we
may study the population in the ground and excited states which
we denote by ρa(t) and ρb(t), respectively. The populations are
given by the projections of the wave function on the eigenfunctions
of Ĥ0 according to

ρa(t) = |⟨ψa|ψ(t)⟩|2 ρb(t) = |⟨ψb|ψ(t)⟩|2

Program code

popa=conj(psi[0,:])*psi[0,:]

popb=conj(psi[1,:])*psi[1,:]
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Induced Dipole Moment

Molecular properties are defined by an expansion of the induced
dipole moment in orders the time-dependent electric field

µ(t) = αF (t) +
1

6
γF 3(t) + · · ·

Polarizability

The linear polarizability can be read off directly as the ratio of the
amplitudes of the polarization and the electric field

α =
max[µ(t)]

Fω
≈ 4.17 a.u.

Dispersion

The dependency of the molecular property (in this case the
polarizability) to the frequency of the perturbation is referred to as
the dispersion of the property.
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Dispersion and Rayleigh scattering: practical example

A clear cloudless day-time sky is blue because molecules in the air
scatter blue light from the sun more than they scatter red light.
When we look towards the sun at sunset, we see red and orange
colors because the blue light has been scattered out and away from
the line of sight.

Source: http://math.ucr.edu/home/baez/physics/General/BlueSky/blue sky.html
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Where are the nonlinearities?

µ(t) = αF (t) +
1

6
γF 3(t) + · · ·

There are three ways to enhance nonlinear responses:

▶ Design system with large γ-value

▶ Increase the electric field strength

▶ Tune the frequency to multi-photon resonances
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Nonlinear responses

Choose: Fω = 0.02 a.u. and ω = 0.166 a.u.:
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Fourier transform of response signal

µ(t) = α(−ω;ω)Fω sin(ωt)+
1

6
γ(−3ω;ω, ω, ω)FωFωFω sin(3ωt)+. . .
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Nonlinear responses: practical example

A robust fiber-coupled PPLN frequency-conversion waveguide
device is suitable for use with fiber-based frequency combs and
spectroscopy. The device shown is designed to accept a
supercontinuum light source in the 2000 nm region and outputs a
frequency-doubled signal centered at 1064 nm.

Source: http://www.laserfocusworld.com/
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Nonconservative system: expectation value summary

▶ The energy of the system is not well defined as energy transfer
occurs between field and system

▶ The dipole moment and other observables (expectation
values) are well defined and time-dependent

▶ Molecular properties (response functions) are defined as
expansion coefficients of the observable in terms of field
strengths

▶ The overall phase of the wave function is of no concern

▶ Linear response functions are directly identified as ratios of
induced dipole moments and field strengths (in the small field
limit

▶ Nonlinear response functions can be obtained in the same
manner but the procedure is hampered by numerical issues
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Nonconservative system: Study of quasi-energy

We write the wave function ψ(t) as the product of two
time-dependent functions in the following manner

ψ(t) = e−iϕ(t)ψ̄(t)

This division is made unique by requiring that ϕ(t) is a real
function (a phase) and that the phase of the projection of ψ̄(t)
onto ψa is zero.
In absence of the external field, the wave function becomes equal
to

ψ(t) = ψae
−iEat/ℏ

and the two requirements on ϕ(t) and ψ̄(t) lead to the division

ψ̄(t) = ψa ϕ(t) = Eat/ℏ

This is the reason why ψ̄(t) is referred to as the phase isolated
wave function.
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Equation of motion for phase-isolated wave function

We substitute the product function into the Schrödinger equation
to arrive at (

Ĥ − iℏ
∂

∂t

)
ψ̄(t) = Q(t) ψ̄(t)

where Q(t), which is known as the time-dependent quasi-energy,
has been introduced for the time derivative of the phase function,
i.e.,

Q(t) = ℏϕ̇(t)

It is clear that, given Q(t), the phase function ϕ(t) is obtained by
time integration according to

ϕ(t) =
1

ℏ

∫ t

Q(t ′) dt ′
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We obtain two coupled differential equations

Q(t) = ⟨ψ̄|
(
Ĥ − iℏ

∂

∂t

)
|ψ̄⟩

and

⟨ψ̄⊥|
(
Ĥ − iℏ

∂

∂t

)
|ψ̄⟩ = 0.

As orthogonal complement vector, we may choose

ψ̄⊥(t) = ψb − b∗(t)ψa,

and, we arrive at

ℏḃ(t) = −i∆E b(t) + iµabF (t)[1− b2(t)].
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Variations of the wave function

The square norm of the wave function is a functional

N[ψ] =

∫
ψ∗ψ dτ = ⟨ψ|ψ⟩

The first variation of N is

δN =
d

dε
N[ψ + εδψ]

∣∣∣∣
ε=0

=
d

dε

∫
(ψ + εδψ)∗(ψ + εδψ) dτ

∣∣∣∣
ε=0

=

∫
(δψ∗ψ + ψ∗δψ) dτ = ⟨δψ|ψ⟩+ ⟨ψ|δψ⟩

Since δN must be zero, we have that variations in the wave
function must fulfill

δψ(t) = δψ⊥ + δψ∥; δψ∥ = iϵ(t)ψ; ϵ(t) ∈ R
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Allowed variations in phase isolated wave functions

Since ψ̄ and ψ differ by a mere overall phase factor, we have

N[ψ̄] = ⟨ψ̄|ψ̄⟩ = ⟨ψ|ψ⟩ = 1

and, since,

dN

dFω
= ⟨ dψ̄

dFω
|ψ̄⟩+ ⟨ψ̄| dψ̄

dFω
⟩ = 0

we conclude that

δψ̄(t) =
dψ̄

dFω

is an allowed variation.
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First variation of the energy

The energy associated with a time-independent wave function is a
functional

E [ψ] =

∫
ψ∗Ĥψ dτ = ⟨ψ|Ĥ|ψ⟩

At points ψ = ψn with Ĥψn = Enψn, the first variation of E is

δE =
d

dε
E [ψn + εδψ]

∣∣∣∣
ε=0

=
d

dε

∫
(ψn + εδψ)∗Ĥ(ψn + εδψ) dτ

∣∣∣∣
ε=0

= En

∫
(δψ∗ψn + ψ∗

nδψ) dτ = EnδN = 0

As a consequence for a system in a static field F 0, we get

dE

dF 0
= ⟨ψn|

∂Ĥ

∂F 0
|ψn⟩+ δE = −⟨ψn|µ̂|ψn⟩

which is known as the Hellmann–Feynman theorem.
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First variation of the quasi-energy

The quasi-energy

Q(t) = ⟨ψ̄|
(
Ĥ − iℏ

∂

∂t

)
|ψ̄⟩

is a functional that depends on ψ̄.

It is real since

Q(t) = ⟨ψ̄|
(
Ĥ − iℏ

∂

∂t

)
|ψ̄⟩

= ⟨ψ̄|
(
Ĥ − iℏ

∂

∂t

)
|ψ̄⟩∗ − iℏ

∂

∂t
⟨ψ̄|ψ̄⟩

= Q∗(t)
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The first variation of the quasi-energy becomes

δQ = ⟨δψ̄|
(
Ĥ − iℏ

∂

∂t

)
|ψ̄⟩+ ⟨ψ̄|

(
Ĥ − iℏ

∂

∂t

)
|δψ̄⟩

= ⟨δψ̄|
(
Ĥ − iℏ

∂

∂t

)
|ψ̄⟩+ ⟨δψ̄|

(
Ĥ − iℏ

∂

∂t

)
|ψ̄⟩∗ − iℏ

∂

∂t
⟨ψ̄|δψ̄⟩

= Q(t)
[
⟨δψ̄|ψ̄⟩+ ⟨δψ̄|ψ̄⟩∗

]
− iℏ

∂

∂t
⟨ψ̄|δψ̄⟩

= −iℏ
∂

∂t
⟨ψ̄|δψ̄⟩ = ℏ

∂ϵ(t)

∂t

or

δQ(t) + iℏ
∂

∂t
⟨ψ̄|δψ̄⟩ = 0

which may be used as the starting point for the formulation of a
time-dependent variational principle.
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Time-dependent Hellmann–Feynman theorem

We consider as an allowed variation

δψ̄(t) =
dψ̄(t)

dFω

As a consequence, we get

dQ(t)

dFω
= ⟨ψ̄| ∂Ĥ

∂Fω
|ψ̄⟩+ δQ(t) = ⟨ψ̄| ∂Ĥ

∂Fω
|ψ̄⟩ − iℏ

∂

∂t
⟨ψ̄| dψ̄

dFω
⟩

which is known as the time-dependent Hellmann–Feynman
theorem.

To first order in the field strength Fω, the last term vanishes in our simple
example and we get

dQ(t)

dFω
= ⟨ψ̄| ∂Ĥ

∂Fω
|ψ̄⟩ = −⟨ψ̄|µ̂|ψ̄⟩ sinωt × erf(at)
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α = −min [dQ(t)/dFω]

Fω
≈ 4.17 a.u.
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Time-averaged quasi-energy

Since

1

T

∫ T

0
ḟ (t)dt = 0

for any periodic function f (t) with period time T , we have for

QT =
1

T

∫ t+T

t
Q(t ′) dt ′

that the time-dependent variational principle reduces to

δQT = 0

The time-dependent Hellmann–Feynman theorem assumes the
form

dQT

dFω
=

1

T

∫ t+T

t
⟨ψ̄(t ′)| ∂Ĥ

∂Fω
|ψ̄(t ′)⟩ dt ′
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Nonconservative system: quasi-energy summary

▶ Based on the overall phase factor of the wave function we
define a quantity known as the quasi-energy

▶ This quasi-energy is not an observable

▶ The formulation of a time-dependent Hellmann–Feynman
theorem allows us to identify molecular properties (response
functions) as the expansion coefficients of the time-averaged
quasi-energy

▶ The quasi-energy technique becomes similar to energy
derivative techniques in the time-independent case

▶ The quasi-energy approach allows for a common formulation
of response theory for variational and non-variational wave
function models
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Molecular properties from perturbation theory
expansions of the wave function

Expansions are made in the basis of the exact eigenstates of the
zeroth-order Hamiltonian
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The response theory cookbook recipe:

1. Find an efficient parameterization of wave function
▶ redundancy
▶ state vector normalization
▶ phase isolation and secular divergences

2. Choose an appropriate equations-of-motion
▶ based on Schrödinger equation
▶ equivalent in exact state theory
▶ important in approximate state theory

3. Apply perturbation theory
▶ a lot of algebra

4. Form a well-defined quantity of interest, e.g. Q(t) or µ(t),
and identify response functions

42 / 76



Parametrization by projections

ψ(t) =
∑
n

cn(t)ψn; cn(t) = ⟨n|ψ(t)⟩

requires that ∑
n

|cn(t)|2 = 1.
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Parametrization by rotations

|ψ̄(t)⟩ = e−i P̂(t)|0⟩; P̂(t) =
∑
n>0

[
Pn(t)|n⟩⟨0|+ P∗

n(t)|0⟩⟨n|
]

e−i P̂(t)|0⟩ = |0⟩ cosα− i
∑
n>0

Pn|n⟩
sinα

α
; α =

√∑
n>0

|Pn|2.
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Ehrenfest theorem

The time-change of an observable associated with a
time-independent Hermitian operator Ω̂ equals

dΩ(t)

dt
=

d

dt
⟨ψ̄(t)|Ω̂|ψ̄(t)⟩ = d

dt
⟨ψ(t)|Ω̂|ψ(t)⟩

= ⟨ψ(t)|Ω̂|dψ(t)
dt

⟩+ ⟨dψ(t)
dt

|Ω̂|ψ(t)⟩

=
1

iℏ
⟨ψ(t)|[Ω̂, Ĥ]|ψ(t)⟩ = 1

iℏ
⟨ψ̄(t)|[Ω̂, Ĥ]|ψ̄(t)⟩

where, in the intermediate step, we have used that ψ(t) is a
solution to the Schrödinger equation.

This equation of motion is known as the Ehrenfest theorem.
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Liouville equation

The density operator for a pure state equals

ρ̂(t) = |ψ(t)⟩⟨ψ(t)| = |ψ̄(t)⟩⟨ψ̄(t)|

Its time dependence obeys

d ρ̂(t)

dt
= |dψ(t)

dt
⟩⟨ψ(t)|+ |ψ(t)⟩⟨dψ(t)

dt
|

=
1

iℏ
[Ĥ, ρ̂]

where, in the intermediate step, we have used that ψ(t) is a
solution to the Schrödinger equation.

This equation of motion is known as the Liouville equation. It is
readily extended to describe non-pure states and include relaxation
processes.
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Choice of Equation of Motion

▶ Rayleigh–Schrödinger
iℏ ∂

∂tψ(t) = Ĥψ(t); ψ(t) =
∑

n cn(t)ψn

▶ Ehrenfest theorem
∂
∂t ⟨ψ̄(t)|Ω̂|ψ̄(t)⟩ =

1
iℏ⟨ψ̄(t)|[Ω̂, Ĥ]|ψ̄(t)⟩

▶ Quasi-energy

Q(t) = ⟨ψ̄|
(
Ĥ − iℏ ∂

∂t

)
|ψ̄⟩

▶ Liouville equation
∂
∂t ρmn = 1

iℏ [Ĥ, ρ̂]mn − γmn(ρmn − ρeqmn)
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Perturbation theory

The Hamiltonian can be divided according to

Ĥ = Ĥ0 + V̂ (t); V̂ (t) =
∑
ω

V̂ ωFωe−iωteϵt .

The solutions to the eigenvalue problem of Ĥ0 are known:

Ĥ0|n⟩ = En|n⟩,

where |n⟩ are the exact eigenstates and En the respective energies.
Before being exposed to the perturbation, we assume the molecule
to be in a reference state |0⟩—in most cases the molecular ground
state—which corresponds to Pn(−∞) = 0 for all n > 0.
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Response Functions from the Polarization

The time-evolution of Pn(t) is determined from the Ehrenfest
theorem applied to Ω̂ = |0⟩⟨n|:

∂

∂t
⟨ψ̄(t)|Ω̂|ψ̄(t)⟩ = 1

iℏ
⟨ψ̄(t)|[Ω̂, Ĥ0 + V̂ (t)]|ψ̄(t)⟩.

Expansion is made with

e i P̂(t)Ω̂e−i P̂(t) = Ω̂ + i [P̂, Ω̂]− 1

2
[P̂, [P̂, Ω̂]]− i

6
[P̂, [P̂, [P̂, Ω̂]]] + . . . ,

and

⟨0|[P̂, Ω̂]|0⟩ = −Pn,

⟨0|[P̂, [P̂, Ω̂]]|0⟩ = 0,

⟨0|[P̂, [P̂, [P̂, Ω̂]]]|0⟩ = −4Pn

∑
m>0

|Pm|2.

as well as [
Ω̂, Ĥ0

]
= ℏωn0Ω̂.
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Perturbation expansion

With
Pn(t) = P

(1)
n + P

(2)
n + P

(3)
n + · · · ,

the first-order equation reads

∂

∂t
⟨0|[P̂(1), Ω̂]|0⟩ = 1

iℏ
⟨0|[P̂(1), [Ω̂, Ĥ0]]|0⟩ −

1

ℏ
⟨0|[Ω̂, V̂ (t)]|0⟩.

or, equivalently,

∂

∂t
P
(1)
n = −iωn0P

(1)
n +

1

ℏ
⟨n|V̂ (t)|0⟩,

which, by direct time-integration, yields

P
(1)
n = e−iωn0t

∫ t 1

ℏ
⟨n|V̂ (t ′)|0⟩e iωn0t′dt ′

=
1

iℏ
∑
ω

⟨n|V̂ ω|0⟩Fωe−iωt

ωn0 − ω
.
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Linear response function

The response functions of the observable Ω̂ are defined by:

⟨ψ̄(t)|Ω̂|ψ̄(t)⟩ = ⟨0|Ω̂|0⟩+
∑
ω1

⟨⟨Ω̂; V̂ ω1⟩⟩Fω1e−iω1t

+
1

2

∑
ω1ω2

⟨⟨Ω̂; V̂ ω1 , V̂ ω2⟩⟩Fω1Fω2e−i(ω1+ω2)t + · · ·

We identify:

i⟨0|[P̂(1), Ω̂]|0⟩ =
∑
ω

⟨⟨Ω̂; V̂ ω⟩⟩Fωe−iωt

or, equivalently,

⟨⟨Ω̂; V̂ ω⟩⟩ = −1

ℏ
∑
n>0

[
⟨0|Ω̂|n⟩⟨n|V̂ ω|0⟩

ωn0 − ω
+

⟨0|V̂ ω|n⟩⟨n|Ω̂|0⟩
ωn0 + ω

]
.
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Two-level atom: response function value

Observable: Ω̂ = µ̂

Perturbation: V̂ ω = −µ̂

E 6

Eb ψb

Ea ψa

∆E = Eb − Ea ∆E = 0.5 a.u.

µab = 1.0 a.u.

ℏω = 0.1 a.u.

α(ω) =
|µab|2

∆E − ℏω
+

|µab|2

∆E + ℏω
= 4.16666...
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Secular divergences

The Rayleigh–Schrödinger expression for the linear response
function is:

⟨⟨Ω̂; V̂ ω⟩⟩ = −1

ℏ
∑
n

[
⟨0|Ω̂|n⟩⟨n|V̂ ω|0⟩

ωn0 − ω
+

⟨0|V̂ ω|n⟩⟨n|Ω̂|0⟩
ωn0 + ω

]

This response function is not convergent as ω → 0, and the
sum-over-states expression in this form cannot be used in the static
limit.
Response functions free of secular divergencies are obtained with
derivations based on phase-isolated wave functions.
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Overall permutation symmetry

The linear response can be compactly written as

⟨⟨Ω̂; V̂ ω1⟩⟩ =
∑

P−σ,1

∑
n>0

⟨0|Ω̂|n⟩⟨n|V̂ ω1 |0⟩
ωn0 − ωσ

where ωσ = ω1 is the sum of optical frequencies and P−σ,1

permutes pairs of operators and frequencies:
(−ωσ,Ω̂) and (ω1,V̂

ω1).

Poles and residues
A residue analysis provides a means to obtain excited state
properties from the ground state response function. The poles
equal excitation energies and the residues are given by

lim
ω1→−ωf 0

(ωf 0 − ω1) ⟨⟨Ω̂; V̂ ω1⟩⟩ = ⟨0|Ω̂|f ⟩⟨f |V̂ ω1 |0⟩
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First-order nonlinear response functions

The first-order nonlinear response function comprises six terms:

⟨⟨Ω̂; V̂ ω1 , V̂ ω2⟩⟩ = 1

ℏ2
∑

P1,2

∑
n,k>0

×

[
⟨0|Ω̂|n⟩⟨n|V̂ ω1 |k⟩⟨k |V̂ ω2 |0⟩
[ωn0 − (ω1 + ω2)][ωk0 − ω2]

+
⟨0|V̂ ω2 |n⟩⟨n|V̂ ω1 |k⟩⟨k |Ω̂|0⟩
[ωn0 + ω2][ωk0 + (ω1 + ω2)]

+
⟨0|V̂ ω1 |n⟩⟨n|Ω̂|k⟩⟨k |V̂ ω2 |0⟩

[ωn0 + ω1][ωk0 − ω2]

]

where the overbar denotes a fluctuation operator in accordance

with Ω̂ = Ω̂− ⟨0|Ω̂|0⟩.
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Overall permutation symmetry

The nonlinear response can be compactly written as

⟨⟨Ω̂; V̂ ω1 , V̂ ω2⟩⟩ = 1

ℏ2
∑

P−σ,1,2

×
∑
n,k>0

⟨0|Ω̂|n⟩⟨n|V̂ ω1 |k⟩⟨k|V̂ ω2 |0⟩
[ωn0 − ωσ][ωk0 − ω2]

where ωσ = ω1 + ω2 is the sum of optical frequencies.

Second-order residue
A residue analysis provides a means to obtain excited state
properties from the ground state response function:

lim
ω1→−ωf 0

(ωf 0 + ω1)

[
lim

ω2→ωg0

(ωg0 − ω2) ⟨⟨Ω̂; V̂ ω1 , V̂ ω2⟩⟩
]

= ⟨0|V̂ ω1 |f ⟩⟨f |Ω̂|g⟩⟨g |V̂ ω2 |0⟩.
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Excited state properties with Dalton2018

Transition Moments

**DALTON INPUT

.RUN RESPONSE

**WAVE FUNCTION

.DFT

B3LYP

**RESPONSE

*LINEAR

.DIPLEN

.SINGLE RESIDUE

.ROOTS

10

*END OF INPUT

Excited State Dipole Moment

**DALTON INPUT

.RUN RESPONSE

**WAVE FUNCTION

.DFT

B3LYP

**RESPONSE

.PROPAVE

ZDIPLEN

*QUADRATIC

.DIPLEN

.DOUBLE RESIDUE

.ROOTS

10

*END OF INPUT
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Summary: perturbation theory expansions

▶ Response functions identified from perturbation theory
expansions equal sum-over-states expressions

▶ In exact state theory, response function expressions are
identical regardless of whether an Ehrenfest or quasi-energy
approach is taken

▶ With use of phase isolated wave functions, response functions
are free of secular divergences

▶ From residue analyses of ground state response functions we
are able to identify excited state properties

▶ A typical calculation of an excitation energy is made by
finding a pole of the linear response function (polarizability)
rather than an eigenvalue of the molecular Hamiltonian
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Resonant fields

a

b

ΔE = 0.5 a.u.

µ   = 1.0 a.u.ab

F(t) = F  sin(ωt)
ω

ψ(0) = ψ
a

H = H  - µ F(t)
0

i ψ(t) = H ψ(t)

What happens if ℏω = ∆E?
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Absorption
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Rabi Oscillations
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Relaxation

ESA

ESA

Phosphoresc.
Fluoresc.

TPAOPA

ns

ps

ps

μs-ms

ISC

ns-μs
IC

IC

S0

S1

Sn

T1

Tn
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Density matrix formalism

The density operator is defined as

ρ̂ =
∑
s

p(s) |ψs(t)⟩⟨ψs(t)|,

where the sum denoted a classical ensemble average. If all systems
in the ensemble are identical then the summation contains a single
term with unit probability.
With wave function expansions in the form of projections onto the
eigenstates

|ψs(t)⟩ =
∑
n

csn(t)|n⟩,

the matrix elements of the density operator becomes equal to

ρmn =
∑
s

p(s) csmc
s∗
n .
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Coherence

An ensemble of systems with equal state populations, but for
which the phases of the wave function components varies in an
incoherent manner, will have vanishing elements ρmn (m ̸= n):

ρ =
1

2
×
(
1 0
0 1

)
.

An ensemble that can be described by a single wave function, on
the other hand, is fully coherent and is said to be in pure state:

|ψ⟩ = 1√
2

(
e iϕa |ψa⟩+ e iϕb |ψb⟩

)
with a density matrix:

ρ =
1

2
×
(

1 e i(ϕa−ϕb)

e i(ϕb−ϕa) 1

)
.
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Liouville equation with relaxation

∂

∂t
ρmn =

1

iℏ
[Ĥ, ρ̂]mn − γmn(ρmn − ρeqmn)

The diagonal elements of the damping parameter matrix will
govern the spontaneous population decays:

τn = 1/γnn; Γn = γnn, n ̸= 0; Γ0 = 0

we can, for a pure state, draw a conclusion that the off-diagonal
elements of the density matrix will depend on time according to

|ρmn(t)| = |cm(t)c∗n(t)| = |cm(0)c∗n(0)|e−(Γm+Γn)t/2,

and we must therefore have

γmn = (Γm + Γn)/2.
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Time propagation of density matrix

∂

∂t
ρmn =

1

iℏ
[Ĥ, ρ̂]mn − γmn(ρmn − ρeqmn)

Initialization

H=array([[Ea, 0],

[0, Eb]])

mu=array([[0, muab],

[muba, 0]])

F=Fw*sin(w*t)*erf

rho_eq=array([[1,0],

[0,0]])

rho[:,:,0]=[[1,0],

[0,0]]

Time Propagation

for k in range(1,n):

rho[:,:,k] = rho[:,:,k-1] -

delta*1.0j*(

dot(H - mu*F[k-1],rho[:,:,k-1]) -

dot(rho[:,:,k-1],H - mu*F[k-1])

) -

delta*gamma*(rho[:,:,k-1]-rho_eq)

P[k] = dot(rho[:,:,k],mu).trace()

popa=rho[0,0,:]

popb=rho[1,1,:]
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Induced polarization in two-level atom (resonant field, relaxation)

Γ = 0.025 a.u.
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Relaxation in wave function theory

Apply the Ehrenfest theorem to Ω̂ = |n⟩⟨m|:

∂

∂t
⟨m|ψ(t)⟩⟨ψ(t)|n⟩ = 1

iℏ

[
⟨m|Ĥ|ψ(t)⟩⟨ψ(t)|n⟩ − ⟨m|ψ(t)⟩⟨ψ(t)|Ĥ|n⟩

]
The above equation is thus a mere repetition of the Liouville
equation for density matrix element ρmn, and a suitable
equation-of-motion with relaxation in wave function theory is

∂

∂t
⟨ψ|Ω̂|ψ⟩ = 1

iℏ
⟨ψ|[Ω̂, Ĥ]|ψ⟩ − γmn

[
⟨ψ|Ω̂|ψ⟩ − ⟨ψeq|Ω̂|ψeq⟩

]
This formulation of response theory is known as the complex
polarization propagator (CPP) approach and it has been
implemented up to cubic response functions.
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Linear response functions

Molecular spectroscopies are interpreted as responses to
electromagnetic fields or geometric perturbations. The linear
responses of a molecular property to a perturbation are given by

⟨⟨Â; V̂ ⟩⟩ω = −1

ℏ
∑
n>0

[
⟨0|Â|n⟩⟨n|V̂ |0⟩
ωn − ω − iγn0

+
⟨0|V̂ |n⟩⟨n|Â|0⟩
ωn + ω + iγn0

]

Spectroscopies and linear response functions
UV/vis absorption Im ⟨⟨µ̂; µ̂⟩⟩ω
Refractive index Re ⟨⟨µ̂; µ̂⟩⟩ω
Optical rotation Im ⟨⟨µ̂; m̂⟩⟩ω
Electronic circular dichroism Re ⟨⟨µ̂; m̂⟩⟩ω
And more ... ...
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Complex Polarizability
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Pole structure
Im(z)

Re(z)

* * * *****

⟨⟨Â; V̂ ⟩⟩z = −1

ℏ
∑
n>0

[
⟨0|Â|n⟩⟨n|V̂ |0⟩
ωn − z − iγn

+
⟨0|V̂ |n⟩⟨n|Â|0⟩
ωn + z + iγn

]

▶ Linear response function is convergent and physically sound
for all real frequencies (but will be complex).

▶ No poles in the upper half plane is a characteristic required for
causal propagators.
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Two-level atom: response function value

Observable: Ω̂ = µ̂

Perturbation: V̂ ω = −µ̂

E 6

Eb ψb

Ea ψa

∆E = Eb − Ea ∆E = 0.5 a.u.

µab = 1.0 a.u.

ℏω = 0.5 a.u.

ℏγ = 0.0125 a.u.

α(ω) =
|µab|2

∆E − ℏω − iℏγ
+

|µab|2

∆E + ℏω + iℏγ
≈ |µab|2

−iℏγ
= 80i
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Summary

▶ Molecular properties are defined by expansions of energy,
quasi-energy, polarization, magnetization, etc. in orders of
field amplitudes.

▶ Use of explicitly unitary parameterizations embeds the
requirement of conserving the norm of the wave function.

▶ Use of phase-isolated wave functions in expansions yields
response functions that are free of secular divergences.

▶ The time-dependent Hellmann–Feynman theorem connects
the quasi-energy with molecular properties.

▶ Poles and residues of response functions are connected to
excited state properties.

▶ With spontaneous relaxation, excited state populations may
remain small under resonance conditions. The corresponding
response functions become complex.
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Announcement

Organizers and lecturers: P. Norman, K. Ruud, and T. Saue

▶ Send e-mail to panor@kth.se

▶ Include letter of motivation/support from supervisor
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