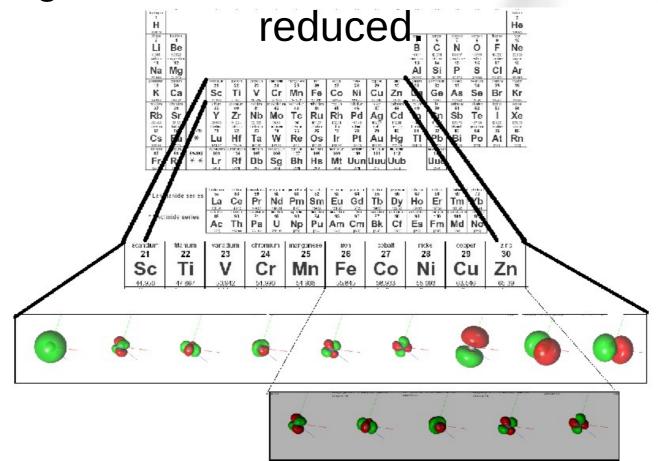

Some rules and tricks for selecting active orbitals

Roland Lindh @ ESQC 2024

2nd row elements: 2*s* and 2*p* (more than 4 valence electrons skip the 2*s*).


3rd row elements: 3s and 3p (more than 3 valence electrons skip the 3s).

As the sp^x hybridization is reduced down the periodic table do not include the *s*-shell.

															0			
1	Periodic Table												IIIA	IVA	٧A	VIA	VIIA	He
2	3 Li	4 Be		of	[t]	ne	5 B	°c	7 N	8 0	9 F	10 Ne						
3	11 Na	12 Mg	ШB	IVB	٧B	ΥIB	VIIB		— VII -		IB	IB	13 A I	14 Si	15 P	16 S	17 CI	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 Y	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Z r	41 ND	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 ₩	75 Re	76 OS	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89 +Ac	104 Rf	105 Ha	106 Sg	107 NS	108 Hs	109 Mt	110 110	111 111	112 112	113 113					
						Ū												

*Lanthanide Series	58 Ce		60 Nd	61 Pm	62 Sm	63 Eu		65 Tb	66 Dy	67 Ho		69 Tm	70 Yb	71 Lu
+ Actinide	90	91	92	93	94	95	96	97	98		100	101	102	103
Series	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf		Fm	Md	No	Lr

1st Transition Metals: 4s, 3d and 4p (more than 5 d-electrons might need 4d – double-shell effect).
For higher row TMs the double-shell effect is

Lanthanides: 4*f*, 6*s*, 6*p* and 5*d* Actinides: 5*f*, 7*s*, 7*p* and 6*d*

Be careful wrt double-shell effects for the *f*-orbitals

1	1 H	Periodic Table													٧A	YIA	VIIA	0 2 He
2	3 Li	4 Be		of	tl	ne	Е	5 B	° C	7 N	* 0	9 F	10 Ne					
3	11 Na	12 Mg	ШB	IVB	٧B	ΥIB	VIIB		— VII –		IB	IB	13 Al	14 Si	15 P	16 S	17 CI	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 Y	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 ₩	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89 +Ac	104 Rf	105 Ha	106 Sg	107 Ns	108 Hs	109 Mt	110 110	111 111	112 112	113 113					

* Lanthanide	58	59	60	61		63			66	67	68	69 	70	71
Series	Ce	Pr	Na	РШ	Sm	Eu	Gđ	ТЬ	Dy	но	Er	Im	TD	Lu
+ Acamae	90 Th	91 Da	92	93 No	94 Du	95 Am	96	97 DV	98 C E	99 E c	100 Em	101	102 No	103
Series		гa	о 1	ΠP	Fu	АШ	Cm	DK		E3	гш	MIC	NO	LI

For Rydberg states: include these in the active space.

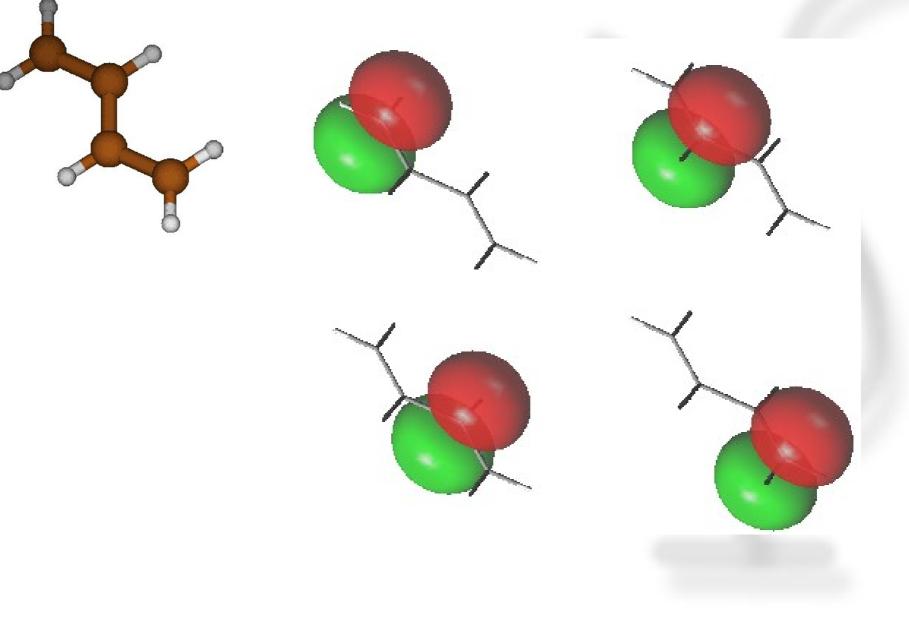
Note: use Rydberg specific basis sets!

General rules for selecting active orbitals: Molecules

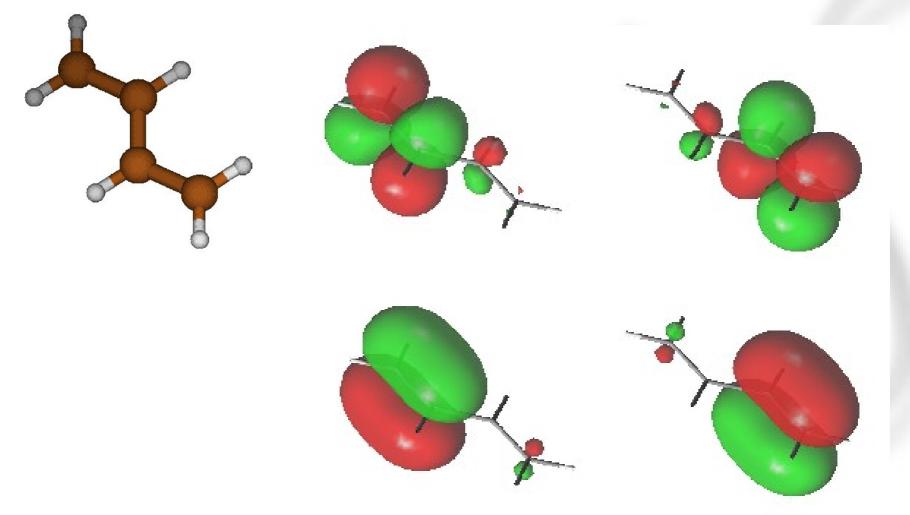
Look for:

- "correlating pairs": σ - σ *, π - π *, etc.
- orbitals of the excited state: n and Rydberg
- "equivalent" partners

What is the process we are studying?

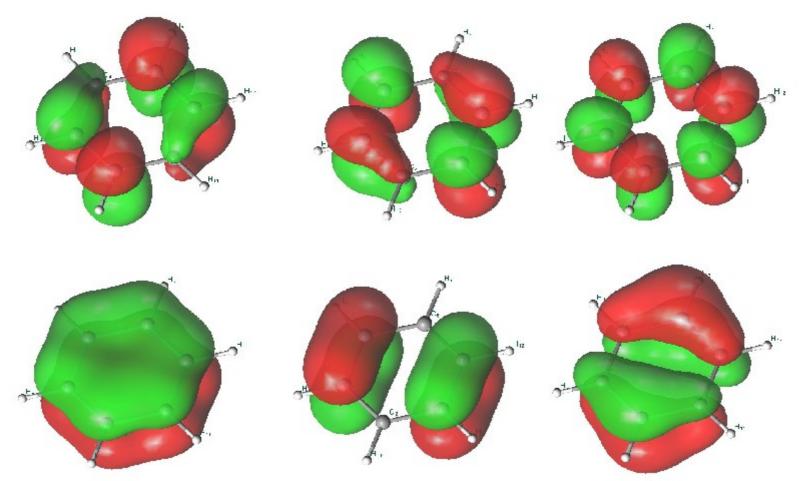

Some sloppy rules:

- CH bonds can be inactive
- All p orbitals in unsaturated molecule
- Rydberg orbitals for excited states above 5 eV


Orbital Representation

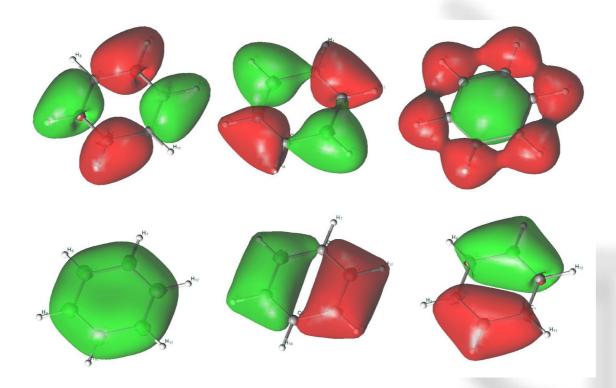
After we have selected the active space (x-in-y), which is an intellectual challenge, we have to generate it, this is more of a technical challenge!

Orbital Representations: atomic orbitals



Orbital Representations: localized molecular orbitals

Localized occupied and virtual SCF orbitals, respectively.


Orbital Representations: the SCF orbitals

The SCF orbitals are delocalized! Virtual orbitals are not well defined!

Note that these orbitals are from a minimal basis calculation.

Orbital Representations: the SCF orbitals

The SCF orbitals are delocalized! Useless for localized processes (e.g. H abstraction)

Orbital Representations: the virtual SCF orbitals

Virtual Orbitals are not well define! The six lowest virtual SCF π orbitals in a triple- ζ basis.

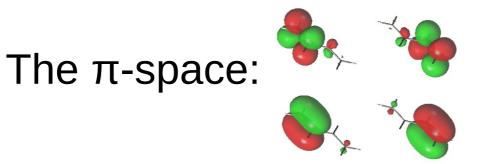
Orbital representations: Strategy

- Use localized orbitals, AOs or MOs
- Do never use SCF orbitals
- Start with a MB basis and expand
- Double check all the time!
- Protect your orbitals once you have found them
- Be paranoid

Same-but-Different

The MCSCF solution to a specific active space is **not** unique!

Demonstration:

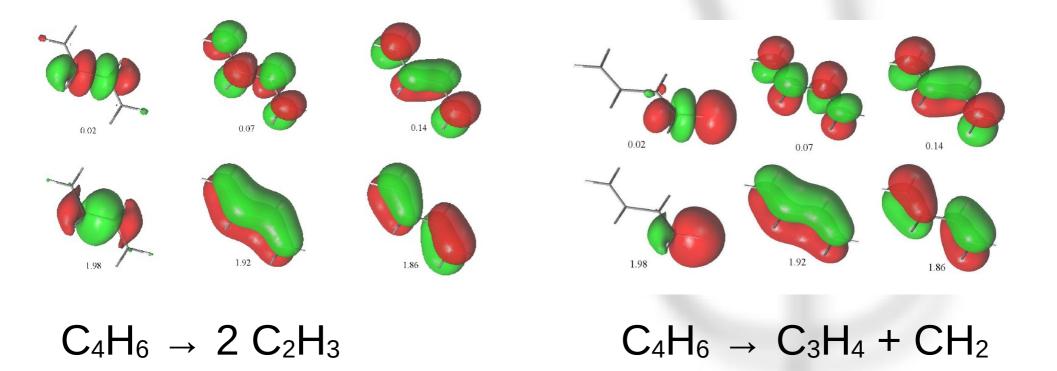

For butadiene we would like to study the fragmentation process of:

a)
$$C_4H_6 \rightarrow 2 C_2H_3$$

b) $C_4H_6 \rightarrow C_3H_4 + CH_2$

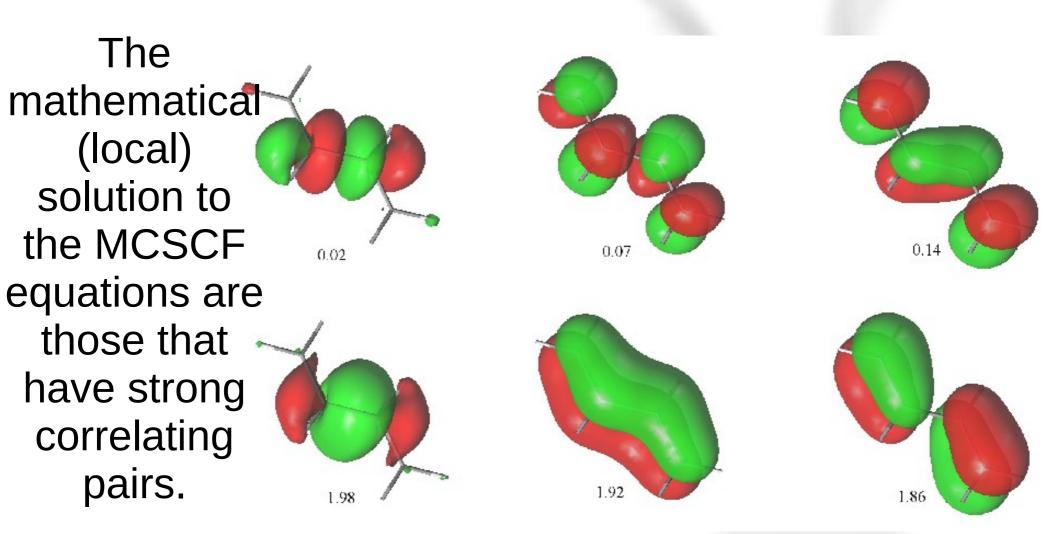
In both cases we will have the 4 π orbitals active together with the correlating pair of the bond which we are breaking (σ - σ *), that is a 6-in-6 CAS in both cases.

Same-but-Different: The Starting Orbitals


The correlating pairs in the σ -space:

 $C_4H_6 \rightarrow 2 C_2H_3$

 $C_4H_6 \rightarrow C_3H_4 + CH_2$


By carefully selecting the starting orbitals I select the "most likely" CASSCF solution.

Same-but-Different: The CASSCF Orbitals

Bingo! Note the active space on the right does not preserve equivalent methyl bonds.

Dirty Tricks: Active Space Stabilization

The σ bonds and lone pairs are the general problems.

Dirty Tricks:

Two near-degeneracies destabilize the (local) mathematical solution:

- Active orbitals with an occupation close to 2
- Active orbitals with an occupation close to 0 The orbitals can slip into the inactive or the virtual space, respectively.

We need to have a mathematical model for which the occupation number are not close to 2 or 0!

Dirty Tricks:

The solution to the problem is SA-CASSCF!

The SA-CASSCF occupation numbers depend on the average occupation numbers of all the states that are included in the calculation.

-Stabilize σ orbitals by including a state in which you have some excitation out of the σ orbital. -Stabilize n orbitals by including a state in which you have some (n- σ * or) n- π * excitation.

This trick is only possible if you start with the correct active orbital manifold!!!

Summary

- Different orbital representations
- Be careful with SCF orbitals expand
- Standard AO active orbitals
- MO active orbitals
- Localized starting MO orbitals
- The solution to the MSCF eq. is not unique!!!
- Tricks