Exercise Session on Response Theory

1. Consider a system described by a time-independent Hamiltonian H , which, at time ¢t = 0, is found in state
1(0). Show that the wave function of the system at time ¢ > 0 is given by
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Use this result to prove that the Schrédinger equation is norm conserving.

Note: This general result in quantum mechanics is of interest to us due to the form similarity with our
parametrization of the phase isolated wave function.

2. Consider a system described by a time-dependent Hamiltonian H (t), which begins its journey in reference
state |0). A time propagator cannot readily be formed in this case. We instead choose to parameterize the
phase-isolated wave function with an explicitly unitary operator that in form is similar to the time propagator
in the time-independent case.
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Do so by looking at the first three terms in the Taylor expansion of the operator and note a pattern.
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(b) Show by explicit calculation and using the final result that
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Note: Our parametrization based on rotations is thus unconstrained which stands in contrast to the
more commonly adopted parameterizations based on projections.

Hints:

The function of an operator is defined by the Taylor series of the function.
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3. The polarizability is a molecular property defined from the expansion of the dipole moment according to
t)=pu’ + Z a(w)FYe™ ™t 4.
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Given the result
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form the first-order correction to an expectation value of the electric dipole moment operator, 0= i, in
the electric-dipole approximation, V¥ = —f, and identify the well-known sum-over-states expression for the
polarizability
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Note: Such a sum-over-states expression relates a molecular property to other properties, in this case ground-

to-excited state excitation energies and transition moments. This is very useful not only for property calcu-
lations but also interpretations and formations of molecular design strategies.



4. The electronic Hessian, or second-order derivative of the energy, has the block structure
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where the elements of the block matrices equal
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We have the BCH expansion
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(a) Convince yourself that all contributions to the Hessian stem from the third term in the BCH expansion.
(b) Convince yourself that all off-diagonal elements of the Hessian are zero.

(c) Determine the matrix elements on the diagonal. You should here be able to identfy excitation energies.
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5. Property gradients have the structure
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Further, with an overlap matrix defined as
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show that the polarizability can be written
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Note: This matrix form of the polarizability thus embeds both terms in the sum-over-states expression. It is
identical in form to expressions implemented for several approximate-state approaches, amongst them time-
dependent DFT. The key difference in TDDFT is that the Hessian is not diagonal but instead becomes a
diagonal-dominant matrix with orbital energy differences appearing on the diagonal.



