
Exercise Session on Response Theory

1. Consider a system described by a time-independent Hamiltonian Ĥ, which, at time t = 0, is found in state
ψ(0). Show that the wave function of the system at time t > 0 is given by

ψ(t) = Û(t)ψ(0)

with
Û(t) = e−iĤt/h̄.

Use this result to prove that the Schrödinger equation is norm conserving.

Note: This general result in quantum mechanics is of interest to us due to the form similarity with our
parametrization of the phase isolated wave function.

2. Consider a system described by a time-dependent Hamiltonian Ĥ(t), which begins its journey in reference
state |0⟩. A time propagator cannot readily be formed in this case. We instead choose to parameterize the
phase-isolated wave function with an explicitly unitary operator that in form is similar to the time propagator
in the time-independent case.

(a) With

|ψ̄(t)⟩ = e−iP̂ (t)|0⟩; P̂ (t) =
∑
n>0

[
Pn(t)|n⟩⟨0|+ P ∗

n(t)|0⟩⟨n|
]

show

|ψ̄(t)⟩ = |0⟩ cosα− i
∑
n>0

Pn|n⟩
sinα

α
; α =

√∑
n>0

|Pn|2.

Do so by looking at the first three terms in the Taylor expansion of the operator and note a pattern.

(b) Show by explicit calculation and using the final result that

⟨ψ̄(t)|ψ̄(t)⟩ = 1

Note: Our parametrization based on rotations is thus unconstrained which stands in contrast to the
more commonly adopted parameterizations based on projections.

Hints:

• The function of an operator is defined by the Taylor series of the function.

• ex = 1 + x+ 1
2x

2 + 1
6x

3 + . . .

• cosx = 1− 1
2x

2 + . . .

• sinx = x− 1
6x

3 + . . .

3. The polarizability is a molecular property defined from the expansion of the dipole moment according to

µ(t) = µ0 +
∑
ω

α(ω)Fωe−iωt + . . . .

Given the result

|ψ̄(1)⟩ = −i
∑
n>0

P (1)
n |n⟩; P (1)

n (t) =
1

ih̄

∑
ω

⟨n|V̂ ω|0⟩Fωe−iωt

ωn0 − ω

form the first-order correction to an expectation value of the electric dipole moment operator, Ω̂ = µ̂, in
the electric-dipole approximation, V̂ ω = −µ̂, and identify the well-known sum-over-states expression for the
polarizability

α(ω) =
1

h̄

∑
n>0

[
⟨0|µ̂|n⟩⟨n|µ̂|0⟩

ωn0 − ω
+

⟨0|µ̂|n⟩⟨n|µ̂|0⟩
ωn0 + ω

]
.

Note: Such a sum-over-states expression relates a molecular property to other properties, in this case ground-
to-excited state excitation energies and transition moments. This is very useful not only for property calcu-
lations but also interpretations and formations of molecular design strategies.



4. The electronic Hessian, or second-order derivative of the energy, has the block structure

E[2] =

[
A B
B∗ A∗

]
where the elements of the block matrices equal

Anm =
∂2E

∂Pn∂P ∗
m

∣∣∣∣
P=0

; Bnm =
∂2E

∂Pn∂Pm

∣∣∣∣
P=0

We have the BCH expansion

eiP̂ (t)Ω̂e−iP̂ (t) = Ω̂ + i[P̂ , Ω̂]− 1

2
[P̂ , [P̂ , Ω̂]]− i

6
[P̂ , [P̂ , [P̂ , Ω̂]]] + . . . .

(a) Convince yourself that all contributions to the Hessian stem from the third term in the BCH expansion.

(b) Convince yourself that all off-diagonal elements of the Hessian are zero.

(c) Determine the matrix elements on the diagonal. You should here be able to identfy excitation energies.

5. Property gradients have the structure

V [1] =

[
g

−g∗
]

where the elements of the block vectors equal

gn = ⟨0|
[
|0⟩⟨n|, V̂ ω

]
|0⟩

Further, with an overlap matrix defined as

S[2] =

[
I 0
0 −I

]
show that the polarizability can be written

α(ω) = −
[
Ω[1]

]†(
E[2] − h̄ωS[2]

)−1

V [1]

Note: This matrix form of the polarizability thus embeds both terms in the sum-over-states expression. It is
identical in form to expressions implemented for several approximate-state approaches, amongst them time-
dependent DFT. The key difference in TDDFT is that the Hessian is not diagonal but instead becomes a
diagonal-dominant matrix with orbital energy differences appearing on the diagonal.


