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Introductory Comments

Enormous growth in DFT calculations since the early 1990s. Why?

Correlated methods based on the wavefunction scale poorly with system size and need

large basis sets to describe electron–electron cusp. Cannot apply to large molecules.

DFT is based on the electron density, which is a very simple quantity (3 variables

compared to 3N). DFT is therefore a simple theory. Many similarities to Hartree–

Fock but DFT is formally exact.

In practice, have to make approximations. Standard DFT approximations scale like

Hartree–Fock. Furthermore, basis set must describe the density, not the wavefunc-

tion. Hence less need for high angular momentum functions. Result: DFT allows

good quality correlated calculations at low cost; can be applied to very large systems.
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The electron density

The quantity |Ψ(x1,x2, . . .xN)|2dx1dx2 . . . dxN is the probability of finding electron

1 in dx1, electron 2 in dx2, etc. Integrating over the space-spin coordinates of

electrons 2, 3, . . . , N , together with the spin coordinate of electron 1, gives(∫
· · ·
∫
|Ψ(x1,x2, . . .xN)|2ds1dx2 · · · dxN

)
dr1 , (1)

which is the probability of finding electron 1 in volume element dr1, whilst the other

electrons are anywhere. Multiplying by N gives the probability of finding any electron

in dr1,(
N

∫
· · ·
∫
|Ψ(x1,x2, . . .xN)|2ds1dx2 · · · dxN

)
dr1 = ρ(r1)dr1 , (2)

The quantity ρ(r1) is the electron density

ρ(r1) = N

∫
· · ·
∫
|Ψ(x1,x2, . . .xN)|2ds1dx2 · · · dxN (3)
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Early models based on the density (1920s)

The electron–nuclear attraction and classical electron–electron repulsion energies can

be written exactly in terms of the density (see later).

Thomas, Fermi, and Dirac attempted to represent other energy contributions

Thomas-Fermi Electronic Kinetic Energy: T [ρ] = CT

∫
ρ5/3(r)dr (4)

Dirac Exchange Energy: EX[ρ] = CX

∫
ρ4/3(r)dr (5)

T [ρ] and EX[ρ] are examples of functionals. A functional is a mathematical object

that takes a function and returns a number, in an analogous way to a function, which

takes a number and returns a number.

Little quantitative use due to errors in T [ρ]. Furthermore, there was no rigorous proof

that the electronic energy could be expressed as a functional of the density.
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Rigorous Proof: The Hohenberg–Kohn Theorems

Phys. Rev. 136 B864 (1964)

The electronic Hamiltonian is

Ĥ = T̂ + V̂ne + V̂ee = −
N∑
i

1

2
∇2
i +

N∑
i

v(ri) +

N∑
i<j

1

rij
(6)

where the external potential is

v(ri) = −
∑
A

ZA
rAi

(7)

Theorem 1: ‘The electron density determines the external potential’
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Proof:

Ĥ = −
N∑
i

1

2
∇2
i +

N∑
i

v(ri) +

N∑
i<j

1

rij
(8)

Let there be two external potentials v1(r) and v2(r), differing by more than a constant,

that each give the same density ρ(r). There will be two Hamiltonians Ĥ1 and Ĥ2

with the same ground state density, but different wavefunctions Ψ1 and Ψ2. From

the variational principle

E0
1 < 〈Ψ2|Ĥ1|Ψ2〉 = 〈Ψ2|Ĥ2|Ψ2〉 + 〈Ψ2|Ĥ1 − Ĥ2|Ψ2〉 (9)

= E0
2 +

∫
ρ(r)[v1(r)− v2(r)]dr (10)

The subscripts 1 and 2 can be interchanged to give a second inequality. Adding the

two gives

E0
1 + E0

2 < E0
2 + E0

1 (11)

which is a contradiction.

Hence, external potential is uniquely determined (to within trivial constant) by ρ(r).
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The density also trivially determines the number of electrons N∫
ρ(r)dr = N (12)

Now look back at the Hamiltonian

Ĥ = −
N∑
i

1

2
∇2
i +

N∑
i

v(ri) +

N∑
i<j

1

rij
(13)

The density ρ(r) determines both v(ri) AND the number of electrons N .

Hence the density determines the Hamiltonian Ĥ.

Hence the density determines the wavefunction Ψ and everything about the system!

Hence can develop a theory that uses the electron density as the fundamental variable.

→ Density Functional Theory (DFT)
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The Bright Wilson observation

To know the Hamiltonian, we need to know the number of electrons and the external

potential, ie the number of electrons, the nuclear charges, and their positions. All of

these can be determined from a knowledge of the density:∫
ρ(r)dr = N

∂

∂rA
ρ(rA)|rA=0 = −2ZAρ(0) (14)

where ρ is the spherical average of the density. The cusps of the density tell us where

the nuclei are.

ρ(r) therefore determines the Hamiltonian and hence everything about the system.
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We therefore write the electronic energy as a functional of the density

E[ρ] = Vne[ρ] + T [ρ] + Vee[ρ] =

∫
ρ(r)v(r)dr + F [ρ] (15)

where T [ρ] is the electronic kinetic energy, Vee[ρ] is the electron–electron interaction

energy, and F [ρ] is a universal functional of ρ

F [ρ] = T [ρ] + Vee[ρ] = 〈Ψ|T̂ + V̂ee|Ψ〉 (16)

The second Hohenberg–Kohn theorem allows us to introduce a variational principle.

Any approximate density ρ̃ determines ṽ and hence its own wavefunction Ψ̃. Using

this wavefunction in the usual variational principle gives

〈Ψ̃|H|Ψ̃〉 =

∫
ρ̃(r)v(r)dr + F [ρ̃] = E[ρ̃] ≥ E[ρ] (17)

We therefore need to minimise the energy with respect to density variations, subject

to the constraint
∫
ρ(r)dr = N .
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To minimise a function E(x) wrt x, subject to a constraint G(x) = c, we set

∂

∂x
(E(x)− µ [G(x)− c]) = 0

∂E(x)

∂x
− µ∂G(x)

∂x
= 0 (18)

where ∂E(x)
∂x is defined by

E(x + δx)− E(x) =
∂E(x)

∂x
δx + . . . (19)

To minimise a functional E[ρ] wrt ρ(r), subject to a constraint G[ρ] = c, we set

δ

δρ(r)
(E[ρ]− µ [G[ρ]− c]) = 0

δE[ρ]

δρ(r)
− µδG[ρ]

δρ(r)
= 0 (20)

where δE[ρ]
∂ρ(r) is the functional derivative, defined by

E[ρ + δρ]− E[ρ] =

∫
δE[ρ]

δρ(r)
δρ(r)dr + . . . (21)

Often encounter functionals of the form E[ρ] =
∫
F (ρ,∇ρ)dr for which

δE[ρ]

δρ(r)
=
∂F

∂ρ
−∇ · ∂F

∂∇ρ (22)

See Appendix in book for more details.
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So for our DFT minimisation with constraint
∫
ρ(r)dr = N , we have

δ

δρ(r)

(
E[ρ]− µ

[∫
ρ(r)dr−N

])
= 0 (23)

which gives

µ =
δE[ρ]

δρ(r)
(24)

This equation is known as the Euler-Lagrange (or just Euler) equation and it can be

solved for the exact density.

Given that

E[ρ] =

∫
ρ(r)v(r)dr + F [ρ] (25)

the Euler-Lagrange equation is often expressed as

µ = v(r) +
δF [ρ]

δρ(r)
(26)

The Lagrange multiplier µ is identified as the chemical potential, µ = ∂E
∂N .
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The Levy Constrained Search Formulation (1979)

The original Hohenberg–Kohn analysis involved a minimisation over all v-representable

densities (ie those associated with an antisymmetric ground state wavefunction of a

Hamiltonian of the form H = −∑N
i

1
2∇2

i +
∑N

i v(ri) +
∑N

i<j
1
rij

). Conditions for

v-representable density are not known! Problem!

Alternative view:

E0 = min
Ψ
〈Ψ|T̂ + V̂ee +

N∑
i

v(ri)|Ψ〉

= min
ρ

(
min
Ψ→ρ
〈Ψ|T̂ + V̂ee +

N∑
i

v(ri)|Ψ〉
)

= min
ρ

(
min
Ψ→ρ
〈Ψ|T̂ + V̂ee|Ψ〉 +

∫
v(r)ρ(r)dr

)
= min

ρ

(
F [ρ] +

∫
v(r)ρ(r)dr

)
(27)

Fully consistent with earlier, but demonstrates that we only need to consider N -

representable densities (ie those associated with an antisymmetric N -electron wave-

function Ψ). v-representability problem eliminated; easier.
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So we have equation for the exact ρ(r) . . .

µ = v(r) +
δF [ρ]

δρ(r)

= v(r) +
δT [ρ]

δρ(r)
+
δVee[ρ]

δρ(r)
(28)

Problem: In practice, we need to approximate T [ρ] and Vee[ρ]. The former is very

large (Virial theorem!), so even small errors in this term can make the theory useless

(recall Thomas–Fermi).

Solution . . .
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Kohn–Sham Theory
Phys. Rev. 140 A1133 (1965)

Introduce orbitals into the problem, such that the kinetic energy can be computed to

good accuracy, leaving a small residual correction.

The Kohn–Sham analysis is as follows . . .
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Recall that the electronic energy can be written exactly as

E[ρ] =

∫
ρ(r)v(r)dr + F [ρ] (29)

Kohn and Sham defined

F [ρ] = Ts[ρ] + J [ρ] + EXC[ρ] (30)

where J is the classical Hartree (Coulomb) repulsion of the density

J [ρ] =
1

2

∫∫
ρ(r1)ρ(r2)

r12
dr1dr2 (31)

and Ts[ρ] is the kinetic energy of a system of non-interacting electrons with density

ρ. Given that

F [ρ] = T [ρ] + Vee[ρ] (32)

it follows that the the exchange–correlation energy is

EXC[ρ] = T [ρ]− Ts[ρ] + Vee[ρ]− J [ρ] (33)
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Within the Kohn–Sham formalism, the exact electronic energy is therefore written

E =

∫
ρ(r)v(r)dr + Ts[ρ] + J [ρ] + EXC[ρ] (34)

for which the Euler-Lagrange equation is

µ = v(r) +
δTs[ρ]

δρ(r)
+
δJ [ρ]

δρ(r)
+
δEXC[ρ]

δρ(r)
(35)

We can write this as

µ = veff(r) +
δTs[ρ]

δρ(r)
(36)

where

veff(r) = v(r) +
δJ [ρ]

δρ(r)
+
δEXC[ρ]

δρ(r)
(37)

Eqn. (36) yields the exact density of the system.

17



Instead of considering the real system, let us now consider a fictitious system of non-

interacting electrons (Vee = 0; T = Ts) moving in an external potential veff(r). For

this system, the electronic energy is

E =

∫
ρ(r)veff(r)dr + Ts[ρ] (38)

and so the Euler-Lagrange equation is

µ = veff(r) +
δTs[ρ]

δρ(r)
(39)

This is identical to the Euler-Lagrange equation for the exact system in Eqn. (36)!

Hence the density of the real (interacting) system is exactly the same as the density

of a non-interacting system with external potential veff(r).

We can calculate this!!
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The Hamiltonian for a system of non-interacting electrons moving in an external

potential veff(r) is

Ĥ = −
N∑
i

1

2
∇2
i +

N∑
i

veff(ri) (40)

This is separable—the exact wavefunction is just a single determinant constructed

from orbitals that are the solutions to(
−1

2
∇2 + veff(r)

)
ϕi(r) = εiϕi(r) (41)

The density and kinetic energy of this non-interacting system are just

ρ(r) =

N∑
i

ϕ2
i (r) Ts[ρ] =

N∑
i

〈ϕi| −
1

2
∇2|ϕi〉 (42)

Summary: Solve Eqns (41) (the ‘Kohn–Sham equations’) using veff = v(r) + δJ [ρ]
δρ(r) +

δEXC[ρ]
δρ(r) and evaluate ρ(r) and Ts[ρ] using Eqn. (42). Then evaluate the total energy

of the real system as E =
∫
ρ(r)v(r)dr + Ts[ρ] + J [ρ] + EXC[ρ].

An exact theory! Nobel Prize, 1998

Majority of T [ρ] now described exactly; just need to approximate smaller EXC[ρ].
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The equations of Kohn–Sham (KS) theory

E =

N∑
i

〈ϕi| −
1

2
∇2|ϕi〉 +

∫
ρ(r)v(r)dr + J [ρ] + EXC[ρ] (43)

(
−1

2
∇2 + v(r) +

δJ [ρ]

δρ(r)
+
δEXC[ρ]

δρ(r)

)
ϕi(r) = εiϕi(r) (44)

bear a striking resemblance to those of Hartree–Fock (HF) theory

E =

N∑
i

〈ϕi| −
1

2
∇2|ϕi〉 +

∫
ρ(r)v(r)dr + J [ρ] + E0

X (45)

(
−1

2
∇2 + v(r) +

δJ [ρ]

δρ(r)

)
ϕi(r) +

∫
X(r, r′)ϕi(r

′)dr′ = εiϕi(r) (46)

To go from HF (no correlation) to KS (correlated), replace the HF exchange energy

and non-multiplicative exchange operator with the exchange–correlation energy and

multiplicative exchange–correlation potential

vXC(r) =
δEXC[ρ]

δρ(r)
(47)
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As with Hartree–Fock theory, expand the molecular orbitals in a Gaussian (or other)

basis set to form the matrix secular equations.

Only difference is that the X contribution to the Fock matrix is replaced by an XC

contribution ∫
ηα vXC ηβ dr (48)

Solve SCF equations as in Hartree–Fock (DIIS, etc).

Should use unrestricted for open-shells, in order to allow negative spin densities. Pro-

grams will indicate ‘spin contamination’, meaning 〈S2〉 6= S(S + 1). However, this

refers to the non-interacing system, not the physical system.

Chemistry is much more than just the electronic energy—also need to calculate

molecular properties. To do so, replace the X terms of HF theory with the XC

terms of KS theory.
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Numerical Quadrature

We have seen that new integrals arise in DFT. They cannot be evaluated analytically

due to fractional powers of the density. Must use numerical quadrature. Consider

the general molecular integral∫
F (r)dr eg F = ρ4/3 (49)

First, following Becke (JCP 88 2547), we decompose the integrand into components

localised on the nuclei. To do this, we define atomic weights wA(r), which are near

unity near nucleus A, but zero near all other nuclei, and which satisfy
∑

AwA(r) = 1.

Inserting this into Eqn. (49) gives∫
F (r)dr =

∫ (∑
A

wA(r)

)
F (r)dr =

∑
A

∫
wA(r)F (r)dr =

∑
A

∫
FA(r)dr

where FA(r) is a function localised around nucleus A. Each localised integral is then

evaluated using standard r, θ, φ numerical integration, centered on that nucleus∫
FA(r)dr ≈

∑
i

FA(ri)wi (50)
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Excited States Ann. Rev. Phys. Chem. 55 427

HK theorems use the variational principle. Hence can only apply DFT to lowest state

of any space-spin symmetry. Excitation energies determined from these energies are

termed ‘delta SCF’ excitations. Limited applicability. Rigorous approach is to use

time-dependent DFT (TDDFT).
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Vertical excitation energies ω are determined from(
A B

B A

)(
X

Y

)
= ω

(
1 0

0 −1

)(
X

Y

)
(51)

which can be derived either from a density-matrix linear-response approach or from

the poles of the dynamic polarisability. In practical calculations, the dimension of

the problem can then be reduced by one half by exploiting the fact that the matrix

(A−B) is positive definite for real orbitals, leading to the alternative expression

(A−B)1/2(A + B)(A−B)1/2Z = ω2Z (52)

where

Z = (A−B)−1/2(X + Y) (53)

provides information about which occupied orbital rotates into which virtual orbital,

allowing the excitation energies to be assigned.

The precise form of the matrices A and B depends on the nature of the exchange–

correlation functional (see later). For hybrid functionals, for example, which combine

24



a GGA functional with a fraction ξ of exactly computed exchange, they are

Aia,jb = δijδab(εa − εi) + (ia|jb)− ξ(ij|ab) + (1− ξ)(ia|fXC|jb)
Bia,jb = (ia|bj)− ξ(ij|ab) + (1− ξ)(ia|fXC|jb) (54)

where

(ia|fXC|jb) =

∫
drdr′ϕi(r)ϕa(r)

δ2EGGA
XC

δρ(r)ρ(r′)
ϕb(r)ϕj(r) (55)

Note that we have used the usual adiabatic approximation, which assumes that the

density varies slowly in time; the time-dependent exchange–correlation potential is

replaced by the conventional (time-independent) potential, evaluated using the time-

dependent density.
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Integer discontinuity and self-interaction

Thorough understanding—particularly for excited states—requires an understanding

of fractional numbers of electrons!

Exact E vs N curve is piecewise linear (PRL 49 1691) with slopes of −I and −A:

N
M − 1 M M + 1

E

I

A

A functional that satisfies this behaviour between N = 0 and N = 1 is said to be

1-electron self-interaction free; this simply requires EXC[ρ] = −J [ρ].

Generalise: A functional satisfying this behaviour for N > 1 is said to be many-

electron self-interaction free.
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Implication of energy linearity: Exact vXC(r) jumps discontinuously by an amount

∆XC (several eV!) as N crosses the integer:

-4 

-3.5 

-3 

-2.5 

-2 

-1.5 

-1 

-0.5 

0 

0.5 

1 

0 1 2 3 4 5 6 7 8 9 10 r 

Exchange-correlation 
potential of Ne atom 

v+
XC

v−XC

... and the exact Kohn–Sham orbital energies satisfy

ε−HOMO = −I ε+
LUMO = −A (56)
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The exchange–correlation energy

Fundamental problem: don’t know how to write down the exchange–correlation en-

ergy EXC[ρ]. Common approximations include (omitting spin labels for clarity):

Local density approximation (LDA)

EXC =

∫
F (ρ)dr (57)

Generalised gradient approximation (GGA)

EXC =

∫
F (ρ,∇ρ)dr (58)

Meta GGAs

EXC =

∫
F (ρ,∇ρ,∇2ρ)dr (59)

Hybrids

EXC =

∫
F (ρ,∇ρ)dr + ξE0

X (60)

Jacob’s Ladder! We now consider all these (and others) in turn . . .
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The local density approximation (LDA, 1965)

Start with a model where exact results can be derived: the uniform electron gas. This

is an infinite system of constant electron density (balanced by a positive background).

The exchange energy is defined by (recall Hartree–Fock)

EX = −1

4

∫∫ |ρ1(r1, r2)|2
r12

dr1dr2 (61)

where ρ1 is the 1-particle density matrix

ρ1(r1, r2) = 2
∑
i

ϕi(r1)ϕ∗i (r2) (62)

Evaluating the exchange energy using the KS orbitals for a uniform gas

ϕ(kx, ky, kz) =
1

V 1/2
exp(ik.r) (63)

gives (after some maths—see book)

EX = CX

∫
ρ4/3(r)dr CX = −3

4

(
3

π

)1/3

[Dirac] (64)
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A similar analysis for the non-interacting kinetic energy gives

Ts = CF

∫
ρ5/3(r)dr CF =

3

10

(
3π2
)2/3

[Thomas− Fermi] (65)

Ceperley and Alder used quantum Monte-Carlo to simulate the uniform electron gas

and hence determined the correlation energy. This was put into a functional form

by Vosko, Wilk, and Nusair (VWN) and later updated by Perdew and Wang (PW).

Again, it is a functional of just the density.

In the LDA, the exchange and correlation components of EXC are approximated using

the Dirac and VWN/PW expressions, i.e. we apply locally a result that is valid for a

uniform gas of electrons.

The LDA can be surprising successful in some cases (eg molecular structures), but

there is one very serious problem—it significantly overbinds molecules. It is therefore

of limited use in Chemistry, although it is still widely used in Physics. Why?!
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Coordinate Scaling

The form of the LDA exchange and kinetic energies can be derived very simply from

coordinate scaling arguments. This will also help us understand more advanced ex-

change approximations . . .

Consider the following density and 1-particle density matrix involving a scaled elec-

tronic coordinate

ρλ(r) = λ3ρ(λr) ρ1λ(r1, r2) = λ3ρ1(λr1, λr2) (66)

where the λ3 ensures that the scaled density still integrates to N electrons. Evaluation

of the exact (HF) exchange energy using the latter gives

E0
X[ρλ] =

∫ |ρ1λ(r1, r2)|2
r12

dr1dr2 = λ6

∫ |ρ1(λr1, λr2)|2
r12

dr1dr2

= λ6

∫ |ρ1(r′1, r′2)|2
λ−1r′12

dr′1
λ3

dr′2
λ3

= λE0
X[ρ] (67)

which can be viewed as an exact exchange condition. We say that the exact exchange

functional is homogeneous of degree one under coordinate scaling.
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If we now assume that the DFT exchange energy takes the form

EX[ρ] =

∫
ρn(r)dr (68)

then

EX[ρλ] =

∫
ρnλ(r)dr = λ3n

∫
ρn(λr)dr = λ3n

∫
ρn(r′)

dr′

λ3
= λ3n−3EX[ρ] (69)

Hence, to satisfy the scaling condition, we must have

3n− 3 = 1 (70)

n = 4/3 (71)

which is exactly the Dirac form!

A similar analysis for the non-interacting kinetic energy gives

Ts[ρλ] = λ2Ts[ρ] (72)

The increased power of λ explains why the kinetic term has 5/3 rather than 4/3.
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Generalised gradient approximations (GGA, 1980s)

Problem with LDA—assumes constant electron density. Not true! Natural next step

is to introduce information about the density gradient → GGAs.

x(r) = ∇ρ(r)

ρ4/3(r)
is dimensionless, meaning that it does not introduce any powers of λ

when ρ→ ρλ. Correct exchange scaling can therefore be achieved from the form

EX[ρ] =

∫
ρ4/3(r)f (x(r))dr (73)

A natural choice is the gradient expansion f = CX + γx2, but the XC potential

diverges. The famous Becke 1988 (B88X) functional uses f = CX + βx2/(1 +

6βxsinh−1x), in order to ensure correct long-range behaviour of the energy density

and a non-divergent potential. Parameter β fitted to atomic exchange energies.

Also in 1988, Lee, Yang and Parr (LYP) and Miehlich et al derived a correlation func-

tional from the Colle–Salvetti formula for the He atom, again depending on ρ and∇ρ.

The combination of B88X + LYP = BLYP was responsible for the acceptance of

DFT by quantum chemists. See book for further details.
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Note that for GGA functionals,

EXC[ρ] =

∫
F (ρ,∇ρ)dr (74)

the XC contribution to the Kohn–Sham (Fock) matrix is∫
ηα vXC ηβ dr =

∫
ηα

(
∂F

∂ρ
−∇ · ∂F

∂∇ρ

)
ηβ dr (75)

which requires the second derivative of F . In practical calculations, we avoid this by

evaluating the mathematically equivalent (integration by parts)∫
ηα vXC ηβ dr =

∫
ηα

∂F

∂ρ
ηβ dr +

∫
∂F

∂∇ρ · ∇(ηαηβ) dr (76)

Many other GGAs in the literature! Two approaches

1. Derived from theoretical arguments, eg PW91,PBE

2. Derived from a semi-empirical fit, eg (BLYP), OLYP, HCTH
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Why do GGAs work?

Vee[ρ] = J [ρ] +
1

2

∫∫
ρ(r1)ρXC(r1, r2)

r12
dr1dr2 (77)

where ρXC(r1, r2) is the exchange–correlation hole of an electron at r1. This is a

unit charge with sign opposite to that of the electron, which represents a reduction

in probability around each electron. Consider stretched H2. The exact exchange

hole is −ρ(r)/2, and so it is delocalised over both centres. By contrast, the exact

exchange–correlation hole for an electron near one nucleus is localised around that

nucleus, in order to ensure that Vee = 0. The difference between the two holes

represents left–right electron correlation.

By contrast, the GGA exchange hole is localised and so it recovers both exchange

and left–right correlation. This is clear from the energy: GGA exchange energies are

very close to exact exchange energies for atoms, but are notably lower for molecules,

reflecting left–right correlation. GGA correlation functionals just model dynamic

correlation and so adding a GGA exchange to a GGA correlation functional yields a

complete picture of exchange, left–right correlation, and dynamic correlation. Simply

adding GGA correlation to exact exchange misses left–right correlation!

35



Typical GGA performance for selected properties

Mean absolute errors:

PBE HCTH

Atomisation Energies (kcal/mol) 16.5 5.5

Bond Lengths (Å) 0.015 0.013

Reaction Barriers (kcal/mol) 7.8 3.8

NMR Shieldings (ppm) 40 32

Local Excitations (eV) 0.2 0.2

Rydberg Excitations (eV) > 1 > 1

Charge Transfer Excitations (eV) > 1 > 1
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Notes

Atomisation energies and other energy quantities such as IPs, EAs, PAs, are quite

reasonable. Bond lengths also reasonable.

Barriers underestimated. Often attributed to fact that GGAs are not self-interaction

free.

NMR shieldings significantly underestimated. For GGAs, magnetic hessian matrix

is diagonal (equations collapse because the density remains real in the presence of

a magnetic field) and the paramagnetic shielding is explicitly dependent on the re-

ciprocal of occupied–virtual orbital energy differences. GGAs tend to underestimate

this quantity, hence shieldings are too paramagnetic, ie too low. Can be fixed with

specially designed functionals (JCP 121 5654), which increase energy differences.

Local excitations are quite reasonable. Rydbergs and CT can both be significantly

underestimated! Why is this?
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Exchange–correlation potentials from GGAs

To understand why local excitations are OK, but Rydberg and CT are so poor, we

must consider how GGAs handle the integer discontinuity.
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GGA!

In regions where density is significant, GGA potentials approximately average over

the discontinuity, giving HOMO and LUMO orbitals energies of

εHOMO ≈ −I +
∆XC

2
εLUMO ≈ −A−

∆XC

2
(78)

Given that the shape of the potential is reasonably accurate in this regions, it follows

that low lying excitations are reasonable.
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At larger distances, however, the potential collapses to zero, rather than approaching

the appropriate value of ∆XC
2 . Hence Rydberg excitations are much too low. Can be

fixed by grafting on the correct behaviour, which is

lim
r→∞

vXC(r) = −1/r +
∆XC

2
≈ −1/r + εHOMO + I (79)
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To understand the charge-transfer error, consider an excitation that transfers an

electron from a donor (D) to an acceptor (A), which are infinitely separated. The

exact excitation energy is just

ωexact = ID − AA (81)

Due to the lack of overlap between D and A, the GGA excitation is just

ωGGA = εA
LUMO − εD

HOMO (82)

But εA
LUMO ≈ −AA − ∆A

XC
2 and εD

HOMO ≈ −ID +
∆D

XC
2 and so

ωGGA ≈ ID − AA − 1

2

(
∆D

XC + ∆A
XC

)
≈ ωexact − 1

2

(
∆D

XC + ∆A
XC

)
(83)

Hence, GGAs approximately underestimate by the average of the integer discontinu-

ities! Several eV!

See JCP 119 12697
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Correlation between error and orbital overlap?
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Correlation between error and orbital overlap?
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Meta GGAs

The natural next step is to introduce higher derivatives into the functional, namely

the density Laplacian, ∇2ρ and the kinetic energy density, τ =
∑

i |∇ϕi|2

Examples include VSXC, PKZB, TPSS, M06-L, M11-L, SCAN

Improved simultaneous description of molecules, solids, surfaces. Can be very accu-

rate, but this is often associated with a significant number of semi-empirical param-

eters (e.g. M06-L has 36).
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The adiabatic connection → Hybrid functionals (1990s)

Recall the definition of F [ρ] from the constrained search analysis

F [ρ] = min
Ψ→ρ
〈Ψ|T̂ + V̂ee|Ψ〉 (84)

Generalise to

Fλ[ρ] = min
Ψ→ρ
〈Ψ|T̂ + λV̂ee|Ψ〉 = 〈Ψλ|T̂ + λV̂ee|Ψλ〉 (85)

where Ψλ is the wavefunction that minimises 〈T̂ + λV̂ee〉, whilst giving the exact

density. We have

F1[ρ] = T [ρ] + Vee[ρ] F0[ρ] = Ts[ρ] (86)

Hence

EXC[ρ] = T [ρ]− Ts[ρ] + Vee[ρ]− J [ρ] = F1[ρ]− F0[ρ]− J [ρ] (87)

and so

EXC[ρ] =

1∫
0

∂Fλ[ρ]

∂λ
dλ− J [ρ] =

1∫
0

〈Ψλ|V̂ee|Ψλ〉 dλ− J [ρ] (88)
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We write this as

EXC[ρ] =

1∫
0

Wλdλ (89)

where

Wλ = 〈Ψλ|V̂ee|Ψλ〉 − J [ρ] (90)
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Becke (JCP 98 1372) tried Wλ = a + bλ, determining a and b from λ = 0, 1

W0 = a = E0
X W1 = a + b = Vee − J ≈ ULDA

XC (91)

The resulting energy is then

EXC[ρ] = a +
b

2
=

1

2
E0

X +
1

2
ULDA

XC (92)

This is the ’Half and Half functional’, which is very successful for certain properties.

The key observation is that EXC must include exact exchange, E0
X!

Functionals containing some exact exchange are termed ‘hybrid’ functionals.
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By introducing semi-empirical parameters, Becke determined the B3P91 functional

B3P91 ≡ (1− A)EDirac
X + AE0

X + B∆EBecke88
X

+EVWN
C + CEPerdew91

C (93)

with optimum parameters A = 0.20, B = 0.72, C = 0.81.

A minor modification led to the ubiquitous B3LYP functional (JCP 98 5648)

B3LYP ≡ (1− A)EDirac
X + AE0

X + B∆EBecke88
X

+(1− C)EVWN
C + CELYP

C (94)

B3LYP has had an enormous impact in chemistry!
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Kohn–Sham equations for hybrid functionals

Hybrid functionals take the general form

EXC =

∫
F (ρ,∇ρ)dr + ξE0

X (95)

Electronic structure programs (Gaussian, Dalton, Cadpac, Gamess, etc, etc) solve

the following Kohn–Sham equation for the KS orbitals and orbital energies(
−1

2
∇2 + v(r) +

δJ [ρ]

δρ(r)
+
δEGGA

XC [ρ]

δρ(r)

)
ϕi + ξ

∫
X(r, r′)ϕi(r

′)dr′ = εiϕi (96)

which is a mixture of KS and HF approaches!

This is not strictly KS theory! See later for the proper solution!

Other hybrids in the literature! Two approaches

1. Derived from theoretical arguments, eg PBE0

2. Derived from a semi-empirical fit, eg (B3LYP), B97-2, MPW1K
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Typical hybrid performance, compared to HCTH GGA

Mean absolute errors:

HCTH B3LYP B97-2

Atomisation Energies (kcal/mol) 5.5 4.2 3.1

Bond Lengths (Å) 0.013 0.008 0.008

Reaction Barriers (kcal/mol) 3.8 5.1 2.4

NMR Shieldings (ppm) 32 61 50

Local Excitations (eV) 0.2 0.2 0.2

Rydberg Excitations (eV) > 1 > 0.8 > 0.8

Charge Transfer Excitations (eV) > 1 > 0.8 > 0.8
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Notes

Atomisation energies and other energy quantities such as IPs, EAs, PAs, together

with bond lengths, are an improvement over GGA. Generally very good.

Barriers improved, but still underestimated. Still not self-interaction free. Specialist

functionals have been designed to improve barriers(eg MPW1K).

NMR shieldings less accurate than GGA! Very unusual to find this! More difficult to

calculate too as magnetic hessian matrix not diagonal as usually implemented. Can

be traced to comment regarding the nature of the orbital equations. See later!

Local excitations are quite reasonable. Rydbergs and CT improve slightly, but can

still be in significant error (just 20% exact exchange).

Recent tendency to combine hybrid and meta (e.g. M06, M06-2X) or hybrid and

MP2 (double hybrid, e.g. B2PLYP)
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Coulomb attenuated functionals (2000s)

Hybrid functionals (ξ = 0.20−0.25) do a good job of describing short range electron-

electron interactions, as demonstrated by the fact that short-range properties such

as atomisation energies, bond lengths, are well described.

However, these functionals provide a poor description of long-range interactions, as

demonstrated by the fact that long-range properties such as Rydberg and charge-

transfer excitation energies are poor.

To fix the long-range problem, we need more exact exchange

However, simply increasing the amount of exact exchange in a conventional hybrid

functional is not helpful, as short range properties will degrade!

One solution to this problem is Coulomb Attenuation, where the amount of exact

exchange increases as the interaction becomes more long-ranged
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Initial idea—Tsuneda et al.

1

r12
≡ erf(µr12)

r12
+

1− erf(µr12)

r12
= LR + SR (97)

First component gives LR exchange, evaluated using modified exact orbital expression

Second component gives SR exchange, evaluated using modified GGA

The amount of exchange increases from 0 to 100% as r12 increases, i.e. behaves like

GGA at short range. Hence not as good as a hybrid for atomisation energies, etc.

Solution—Yanai et al.

1

r12
≡ [α + βerf(µr12)]

r12
+

1− [α + βerf(µr12)]

r12
(98)

This alternative partitioning gives a functional with α exact exchange at short range

and α + β at long-range. By having α ≈ 0.2, will maintain hybrid quality short

range properties. But having β > 0 will also lead to improved long-range properties.
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ELR
X = αE0

X −
β

2

∑
σ

∑
ij

∫∫
ψiσ(r1)ψjσ(r1)

erf(µr12)

r12
ψiσ(r2)ψjσ(r2)dr1dr2

ESR
X = −1

2

∑
σ

∫
ρ4/3
σ KGGA

σ {(1− α) − β (
8

3
aσ [
√
πerf

(
1

2aσ

)
+ 2aσ(bσ − cσ) ] ) } dr

ECAM-B3LYP
XC = ELR

X + ESR
X [Becke88] + EB3LYP

C (99)

EB3LYP
C = 0.81 ELYP

C + 0.19 EVWN
C (100)

µ = 0.33 au, α = 0.19, β = 0.46 defines the CAM-B3LYP functional.

See CPL 393 51 (2004)

Many other examples, e.g. LC-ωPBE, N12-SX, ωB97.

Can ‘tune’ parameters on a system-by-system basis to reproduce conditions associated

with the exact piecewise linearity of E vs. N .
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Typical CAM-B3LYP performance, compared to B3LYP

B3LYP CAM-B3LYP

Atomisation Energies (kcal/mol) 4.2 3.9

Bond Lengths (Å) 0.008 0.009

Reaction Barriers (kcal/mol) 5.1 3.6

NMR Shieldings (ppm) 61 60

Local Excitations (eV) 0.2 0.2

Rydberg Excitations (eV) > 0.8 > 0.3

Charge Transfer Excitations (eV) > 0.8 > 0.3

CAM-B3LYP (and related funtionals) have a much smaller many-electron self-interaction

error (ie closer to linearity in E vs N plot).

But ... triplet excited states ...!
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Higher rungs of the ladder - dependence on virtual orbitals

In addition to a dependence on occupied Kohn-Sham orbitals, it is also possible to

develop exchange-correlation functionals that depend on virtual orbitals. Notable ex-

amples include the random phase approximation (RPA) and double hybrids such as

B2-PLYP.

Calculations using such functionals are computationally more demanding than those

based on the density and occupied orbitals.
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The optimised effective potential (OEP)

As noted earlier, in standard implementations (Gaussian, Dalton, etc), the KS equa-

tions for hybrid functionals take the form(
−1

2
∇2 + v(r) +

δJ [ρ]

δρ(r)
+
δEGGA

XC [ρ]

δρ(r)

)
ϕi + ξ

∫
X(r, r′)ϕi(r

′)dr′ = εiϕi (101)

This is obtained by minimising the energy with respect to the orbitals (like in HF).

This is not KS theory. KS theory requires us to minimise with respect to the density,

to give an equation of the form(
−1

2
∇2 + v(r) +

δJ [ρ]

δρ(r)
+
δEHybrid

XC [ρ]

δρ(r)

)
ϕi(r) = εiϕi(r) (102)

This is difficult, because hybrid functionals are functionals of both the density and the

orbitals. The rigorous solution to this problem is the Optimised Effective Potential

(OEP).
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Do the maths and find you have to solve the following integral equation∑
i

∫
dr′[vXC(r′)− uXCi(r

′)]G(r′, r)ϕi(r)ϕi(r
′) = 0 (103)

where

uXCi(r) =
1

ϕi(r)

δEHybrid
XC

δϕi(r)
G(r, r′) =

∑
j 6=i

ϕj(r)ϕj(r
′)

εi − εj
(104)

A challenge! Approximations have been suggested, KLI, LHF, CEDA.

Conceptually and computationally simpler approach: Write the potential in the KS

equation as the sum of a known part plus a linear combination of gaussian functions.

Then evaluate the derivative of the energy with respect to the expansion coefficients

and do a direct minimisation. See Wu and Yang, PRL 89 143002 (2002).

Thermochemistry and structures barely affected in going from conventional to OEP.

But, magnetic response parameters are enormously affected. Errors typically reduced

by factor of 3–4 in shielding constants, magnetisabilities, and rotational g tensors

(J. Chem. Theory Comput. 2 827). Hybrids then better than GGAs (as expected).
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Summary and remaining challenges

GGA functionals were the first widely used approximations in chemistry, 1980s; sig-

nificant improvement over LDA in describing bond breaking.

Superseded by hybrid functionals in the 1990s; significantly improved thermochem-

istry and structures but still problems with long range properties

Coulomb attenuated approximations can maintain the good short-range performance

of hybrids, but improve long-range; better description of E vs N curve.

Magnetic response parameters poor from hybrid/attenuated, when determined in the

conventional (non-KS) manner; dramatic improvements when evaluated using OEP.

Present status encouraging, but many challenges remain:
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• Further systematic improvement of EXC. Balance of exact and approximate X.

• Improved correlation functionals, particularly with regard to near-degeneracy ef-

fects and dispersion interactions. The former is necessary for molecular dissoci-

ation, eg to dissociate H2 requires a divergence in the slope of Wλ. The latter

is completely absent from conventional local functionals; non-locality is essential.

Non-local forms do exist but are not widely used at present. More commonly, the

long-range R−6 is simply added to conventional DFT approximations.

• Improved description of the integer discontinuity and MESIE.

• Robust schemes for calculating OEP potentials; the Wu–Yang scheme needs two

basis sets (orbitals and potential) and if they are not balanced then unphysical

potentials are obtained.

• Introduction of explicit current-dependence into functionals. Magnetic props?

• Moving beyond the adiabatic approximation in TDDFT; memory effects.

• Moving beyond the density; two-particle information; calculation of 〈Ŝ2〉.

• Orbital free DFT; representation of Ts as an explicit, rather than implicit, func-

tional of the density.
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