Exercise 1: FCI Properties

We consider in this exercise the first and second derivatives of the FCI
ground-state energy. In particular, we demonstrate how the first- and second-
order Rayleigh—Schrodinger energy expressions are recovered in the FCI
eigenvector repsresentation. We assume that the electronic Hamiltonian
H(z,y) depends on two external parameters x and y, which for the unper-
turbed system are both zero. We write the normalized FCI wave function
in the form
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where the states |n) are normalized CI eigenstates of the unperturbed prob-
lem with eigenvalues F,:
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1. Show that the FCI Lagrangian is given by
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where p is a Lagrange multiplier.

2. Show that the stationary conditions of the Lagrangian with respect to
the CI coefficients and the multiplier are, for all n > 0, given by
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Argue that, for the optimized electronic ground state, we have ¢y = 1,
1= Ep, and ¢, = 0 for all n > 0.

3. Using the stationary conditions, demonstrate that that the first and
second derivatives of the FCI energy of the unperturbed system are
given by
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where all derivatives have been evaluated at (z,y) = (0,0). In a slight

abuse of notation, the [82L/ 8cm80n}_1 are elements of the inverted
electronic Hessian, whose elements are given by 92L/dc,,0c,.



4. By evaluating the partial derivatives of L with respect to the CI coef-
ficients, show that the
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and show that the derivatives of the FCI energy become
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5. Compare these expressions with first- and second-order Rayleigh—Schrodinger
energies.



