
 

Exercise 1: FCI Properties

We consider in this exercise the first and second derivatives of the FCI
ground-state energy. In particular, we demonstrate how the first- and second-
order Rayleigh–Schrödinger energy expressions are recovered in the FCI
eigenvector repsresentation. We assume that the electronic Hamiltonian
H(x, y) depends on two external parameters x and y, which for the unper-
turbed system are both zero. We write the normalized FCI wave function
in the form

|ci =
X1

n=0
cn|ni, c

T
c = 1, hm|ni = �mn,

where the states |ni are normalized CI eigenstates of the unperturbed prob-
lem with eigenvalues En:

hm|H(0, 0)|ni = �mnEn, E0  E1  E2 · · · .

1. Show that the FCI Lagrangian is given by

L(x, y, c, µ) =
X

mn

cmhm|H(x, y)|nicn � µ
⇣X

n
c2n � 1

⌘
,

where µ is a Lagrange multiplier.

2. Show that the stationary conditions of the Lagrangian with respect to
the CI coe�cients and the multiplier are, for all n � 0, given by

@L

@cn
= 2hn|H(x, y)|ci � 2µcn = 0,

@L

@µ
=

X

n

c2n � 1 = 0.

Argue that, for the optimized electronic ground state, we have c0 = 1,
µ = E0, and cn = 0 for all n > 0.

3. Using the stationary conditions, demonstrate that that the first and
second derivatives of the FCI energy of the unperturbed system are
given by

dE

dx
=

dL

dx
=

@L

@x
,

d2E

dxdy
=

d2L

dxdy
=

@2L

@x@y
�

X

mn

@2L

@x@cm


@2L

@cm@cn

��1
@2L

@cn@y
,

where all derivatives have been evaluated at (x, y) = (0, 0). In a slight

abuse of notation, the
⇥
@2L/@cm@cn

⇤�1
are elements of the inverted

electronic Hessian, whose elements are given by @2L/@cm@cn.
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4. By evaluating the partial derivatives of L with respect to the CI coef-
ficients, show that the

@2L

@x@cn
= 2

⌦
n
��@H
@x

�� 0
↵
,

@2L

@cm@cn
= 2 hm |H � E0|ni = 2(En � E0)�mn,

and show that the derivatives of the FCI energy become

dE

dx
=

⌦
0
��@H
@x

�� 0
↵
,

d2E

dxdy
=

D
0
��� @

2
H

@x@y

��� 0
E
� 2

X

n

⌦
0
��@H
@x

��n
↵ D

n
���@H
@y

��� 0
E

En � E0
.

5. Compare these expressions with first- and second-order Rayleigh–Schrödinger
energies.

Exercise 2: London orbitals

The following exercises concern the use of so-called London orbitals, which
are basis functions with an extra, parametrized spatial dependence. London
orbitals are often used in calculations involving an external magnetic field.
Consider an atomic orbital  lm positioned at O which in the field-free case
satisfies the Schrödinger equation

Ĥ(0) lm = E(0) lm

In atomic units,

Ĥ(0) = �1

2
r2 + V

for some e↵ective, spherically symmetric potential V . The orbital is an
eigenfunction of the z component of the angular momentum about O:

L̂z lm = m lm

L̂ = (r̂� Ô)⇥ p̂

We now apply a uniform external magnetic induction B along the z axis.
To construct the Hamiltonian, we need a vector potential. First choose it
such that it disappears at the center O:

AO(r) =
1

2
B⇥ (r�O).

This potential gives the correct induction, as may be confirmed by calculat-
ing

B = r⇥AO(r).
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