ESQC Mathematics Lecture 2

By Simen Kvaal simen.kvaal@kjemi.uio.no

Matrices

We pick up from last time

Quick recap: Linear operator as matrix

$$A(\mathbf{x})_i = \sum_{j=1}^n A_{ij} x_j$$

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{bmatrix}$$

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{bmatrix} \qquad A(\mathbf{x}) = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{bmatrix} \begin{bmatrix} \vdots \\ n \end{bmatrix}$$

Space of matrices

• A matrix is a table

• Vectors are also matrices!

$$\mathbf{x} \in \mathbb{F}^n = \mathbb{F}^{n \times 1} = M(n, 1; \mathbb{F})$$

Matrix—matrix product

• $C(\mathbf{x}) = A(B(\mathbf{x}))$ is a linear operator.

Definition: Matrix product

Let $A \in M(n, m, \mathbb{F})$ and $B \in M(m, o, \mathbb{F})$. Then the *matrix product* $C = AB \in M(n, o; \mathbb{F})$ is defined by the formula

$$C_{ik} = \sum_{i=1}^{n} A_{ij} B_{jk}. \tag{1}$$

The matrix product satisfies:

1.
$$A(BC) = (AB)C$$

associativity

2.
$$(A + B)C = AC + BC$$
 and $A(B + C) = AB + AC$

distributivity

However, them matrix product is *not commutative*, i.e., $AB \neq BA$ in general!

Computing the matrix product

$$AB = C$$

$$C_{ij} = \sum_{k} A_{ik} B_{kj}$$

$$\begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} & \cdots & B_{1o} \\ B_{21} & B_{22} & \cdots & B_{2o} \\ \vdots & \vdots & \ddots & \vdots \\ B_{n1} & B_{n2} & \cdots & B_{no} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1o} \\ C_{21} & C_{22} & \cdots & C_{2o} \\ \vdots & \vdots & \ddots & \vdots \\ C_{m1} & C_{m2} & \cdots & C_{mo} \end{bmatrix}$$

Also, since x is a matrix, we write

$$A(\mathbf{x}) = A\mathbf{x}$$

Important matrix operations

• Transpose:

$$(A^T)_{ij} = A_{ji} \qquad \begin{bmatrix} 0 & 1 \\ i & 2 \\ 0 & -1 \end{bmatrix}^T = \begin{bmatrix} 0 & i & 0 \\ 1 & 2 & -1 \end{bmatrix}$$

• Hermitian adjoint:

• Inner product as matrix product:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^H \mathbf{y}$$

duct as matrix product:
$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^H \mathbf{y}$$

$$\begin{bmatrix} \vdots \\ \mathbf{y} \\ \vdots \end{bmatrix}$$

General finite-dimensional vector spaces

With several examples

Space of polynomials

looks like a basis!

dimension

$$P_n = \left\{ f : [0, 1] \to \mathbb{C} \mid f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n, \ \mathbf{a} \in \mathbb{C}^{n+1} \right\}$$

- Polynomials of degree $\leq n$
- A function space
- Show: Jupyter notebook
- Differentiation operator (n = 4)

we see that we get a matrix!

$$\hat{D}x^{i} = ix^{i-1} \qquad D_{ji} = i\delta_{j,i-1}, \quad D = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Space of matrices

• The space M(n) of square matrices (over some field) is a vector space

$$(A+B)_{ij}=A_{ij}+B_{ij},\quad (\alpha A)_{ij}=\alpha A_{ij}$$

- It is equal to Euclidean space in n^2 dimensions
- But we have an additional structure:

$$A, B \in M(n) \implies C = AB \in M(n)$$

• Vector space with vector-vector multiplication = algebra

A finite-dimensional C*-algebra

• In the second-quant lectures,

$$c_{\ell}$$
 c_{k}^{\dagger} $\{c_{\ell}, c_{k}^{\dagger}\} = \delta_{\ell k}$

• We can consider an operator which is *a polynoml*

A very important example from the mathematical point of view

$$\alpha_0 \mathbb{1} + \sum_k \alpha_k c_k + \sum_{k\ell} \beta_k c_k^{\dagger} + \sum_{k\ell} \alpha_{k\ell} c_k c_\ell + \sum_{k\ell} \beta_{k\ell} c_k^{\dagger} c_\ell + \sum_{k\ell} \gamma_{k\ell} c_k^{\dagger} c_\ell^{\dagger}$$

If N spin-orbitals: max N particles, so max degree is 2N

- So a finite dimensional vector space X of operators
- A vector space with a multiplication operation

Inner product, norm

- What these examples lack compared to Euclidean space:
 - A sense of distance
 - Euclidean space, as model of reality, comes with the intuition of which points are close to each other

Definition : Vector space

A vector space over the field \mathbb{F} is a set V together with a binary vector addition $+: V \times V \to V$ and scalar multiplication $\cdot: \mathbb{F} \times V \to V$ such that, for all $x, y, z \in V$ and all $\alpha, \beta \in \mathbb{F}$, the following axioms are true:

1. There exists a $0 \in V$ such that 0 + x = x for all $x \in V$ *i* addition

identity element for

2. x + (y + z) = (x + y) + z

 $3. \ x + y = y + x$

4. There exists x' such that x

associativity for addition commutativity for addition inverse element for addition

compatibility of scalar and field multiplications

5. $(\alpha\beta) \cdot x = \alpha \cdot (\beta \cdot x)$

6. $1 \cdot x = x$

identity for scalar multiplication

7. $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$

distributivity of scalar multiplication

8. $\alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y$

distributivity of scalar multiplication

Definition: Linear independence, dimension

Let *V* be a vector space, and $L \subset V$ a subset. The set *L* is *linearly indepdenent* if for any finite set $\{v_i \mid 1 \le i \le k\} \subset L$, we have

$$\sum_{i=1}^{k} a_i v_i = 0 \implies a_i = 0 \text{ for all } i$$

The dimension of V is the cardinality of the largest linearly independent subset of V.

- In Euclidean space: the standard basis
- Polynomials: the various x^i

Basis for finite-dimensional spaces

Definition: Basis

Let V be a vector space of finite dimension n. A basis is a linearly independent set of vectors $\{b_1, \dots, b_n\}$, with exactly n elements.

Theorem

If $B = \{b_1, \dots, b_n\}$ is a basis for a the vector space V, $\dim(V) < +\infty$, then any $v \in V$ can be uniquely decomposed as

$$v = \sum_{i=1}^{n} v_i b_i. \tag{1}$$

Example

• The standard basis in Euclidean space:

$$\mathbf{x} = \sum_{i=1}^{n} x_i \mathbf{e}_i$$

• The monomials in polynomial space:

$$p(x) = \sum_{i=0}^{n} a_i x^i$$

• A basis is never unique

Examples: bases in the plane

• Standard basis, non-orthogonal basis, and not-a-basis

Examples of infinite dimensions

- Approximations of functions
- The space of all polynomials, unlimited degree
- The space of all sequences

$$seq = \{c : \mathbb{N} \to \mathbb{X}\}, \quad c = (c_0, c_1, c_2, \cdots)$$

• The space of quadratically integrable functions

For infinite basis expansions

$$\mathcal{L}^{2}(\mathbb{R}^{N}) = \left\{ f : \mathbb{R}^{N} \to \mathbb{C} \mid \int_{\mathbb{R}^{N}} |f(x)|^{2} d^{N}x < +\infty \right\}$$

Quantum mechanics!

All finite dimensional vector spaces are isomorphic – the same

• (... when it comes to the linear structure)

$$v = \sum_{i=1}^{n} x_i b_i \longrightarrow \mathbf{x} \in \mathbb{F}^n \qquad \alpha v = \sum_{i=1}^{n} \alpha x_i b_i \longrightarrow \alpha \mathbf{x} \in \mathbb{F}^n$$

$$v_1 + v_2 = \sum_{i=1}^n (x_{i1} + x_{i2})b_i \longrightarrow \mathbf{x}_1 + \mathbf{x}_2 \in \mathbb{F}^n$$

• And linear operators are matrices!

Action of operator in the given basis

$$\hat{A}v = \sum_{ij} A_{ij} x_j b_i$$

Finite-dimensional Hilbert spaces

Definition: Inner product

Let *V* be a vector space. An *inner product* $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$ is a map which satisfies the following axioms:

1. $\langle x, x \rangle \ge 0$, $\langle x, x \rangle = 0$ if and only if x = 0

non-negative

2. $\langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta \langle x, z \rangle$

linearity

3. $\langle \alpha y + \beta z, x \rangle = \bar{\alpha} \langle y, x \rangle + \bar{\beta} \langle z, x \rangle$

conjugate linearity

4. $\langle x, y \rangle = \overline{\langle y, x \rangle}$

hermiticity

• Finite dim vector space + inner product = Hilbert space

All finite-dimensional Hilbert spaces are the same

• ... when an orthonormal basis is selected

"overlap matrix"

• Let V be a finite dim Hilbert space with given basis

$$\langle v, v' \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \bar{x}_i \langle b_i, b_j \rangle x_j \equiv \mathbf{x}^H S \mathbf{x},$$

• Inner prod *induces* an inner product on \mathbb{F}^n

Orthonormal basis

• It is not the Euclidean inner product unless

$$\langle b_i, b_i \rangle = \delta_{i,i}, \quad \iff \quad S = \mathbb{1}$$

Remark

In order to study (the vector space structure of) finite dimensional Hilbert spaces, including the linear operators over these spaces, it suffices to \mathbb{F}^n and matrices $M(n, m, \mathbb{F})$.

More on matrices

Matrices are very central to finite dimensional spaces

Examples of matrices in 2D Euclidean space

• Show Jupyter notebook

End of lecture 2

• That's it for today!