ESQC Mathematics Lecture 3

By Simen Kvaal simen.kvaal@kjemi.uio.no

More on matrices

Matrices are very central to finite dimensional spaces

Examples of matrices working in 2D Euclidean space

- Show Jupyter notebook
- Examples of: rotation, reflection, scaling

The structure of a matrix

• A matrix has a set of *columns*

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{bmatrix} = [\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n]$$

• What happens if we compute Ax?

$$A\mathbf{x} = \sum_{i=1}^{n} \mathbf{a}_i x_i$$

A linear combination of the columns

Definition: Column space

For a matrix $A = [\mathbf{a}_1, \dots, \mathbf{a}_n] \in \mathbb{F}^{n \times m}$, the *column space* is the set of all linear combinations of the columns \mathbf{a}_i . This is also denoted *the range* or *image* of A, since it is the set of all vectors $A\mathbf{x}$.

The column space is a linear vector space, written

$$\operatorname{span}\{\mathbf{a}_1,\,\mathbf{a}_2,\,\cdots,\,\mathbf{a}_n\}.\tag{1}$$

The *rank* of the matrix is the dimension of the column space. (It is a fact that the dimension of the row space is the same as the dimension of the column space.)

The row space is defined similarly.

Example

- What is the column space of the identity matrix?
- The columns are the standard basis vectors a basis for \mathbb{F}^3
- · · · so the column space should be \mathbb{F}^3 as well!

$$\mathbb{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \in \mathbb{F}^{3 \times 3} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \mathbf{e}_1 x_1 + \mathbf{e}_2 x_2 + \mathbf{e}_3 x_3 = \mathbf{x}$$
Arbitrary

Systems of linear equations

- Let $A \in \mathbb{F}^{n \times n}$
- System of linear equations:

$$A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n = y_1$$

$$A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n = y_2$$

 $A_{n1}x_1 + A_{n2}x_2 + \cdots + A_{nn}x_n = y_n$

- When does this system have a unique solution?
- Answer: When the matrix has rank n / col. space is a basis

Gaussian elimination

- A method for solving linear systems
- Read about it in the lecture notes!
- Or watch some high-quality videos, e.g. https://www.youtube.com/watch?v=2GKES u5atVQ (MyWhyU)

A main problem in

linear algebra

 $A\mathbf{x} = \mathbf{y}$

Inverse matrix

• Existence of unique solution gives inverse matrix

$$A\mathbf{x} = \mathbf{y} \quad \Longleftrightarrow \quad \mathbf{x} = A^{-1}\mathbf{y}$$

$$AA^{-1} = A^{-1}A = \mathbb{1}$$

• Example: Inverse of plane rotation matrix

$$\begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}^{-1} = \begin{bmatrix} \cos(-\theta) & \sin(-\theta) \\ -\sin(-\theta) & \cos(-\theta) \end{bmatrix}$$

• Non-existence: Singular matrix.

From the "cat Jupyter notebook"

Inverse given by opposite rotation!

Example cont.

$$\begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} =$$

$$\begin{bmatrix} \cos^2\theta + \sin^2\theta & -\cos\theta\sin\theta + \sin\theta\cos\theta \\ -\sin\theta\cos\theta + \cos\theta\sin\theta & \sin^2\theta + \cos^2\theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Special classes of operators

Definition: Hermitian operator/matrix

A matrix $A \in M(n, n; \mathbb{F})$ is *Hermitian* if, for all $\mathbf{x}, \mathbf{y} \in \mathbb{F}^n$,

$$\langle \mathbf{x}, A\mathbf{y} \rangle = \langle A\mathbf{x}, \mathbf{y} \rangle$$
, equivalently $A^H = A$. (1)

Quantum mechanical Hamiltonian is Hermitian!

What's so special about Hermitian A?

• Only Hermitian operators have real diagonal matrix elements

 $\mathbf{u}^H A \mathbf{u}$ is always real

- In quantum mechanics, *observables* are modelled with operators.
- Expectation value:

$$\mathbb{E}[A] := \frac{\mathbf{u}^H A \mathbf{u}}{\mathbf{u}^H \mathbf{u}} \quad \text{must be real}$$

• Thus observables must be Hermitian!

U preserves angles!

Definition: Unitary operator/matrix

A matrix $U \in M(n, n; \mathbb{F})$ is *unitary* if, for all $\mathbf{x}, \mathbf{y} \in \mathbb{F}^n$,

$$\langle U\mathbf{x}, U\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$$
, equivalently $U^H U = UU^H = \mathbb{1}$. (1)

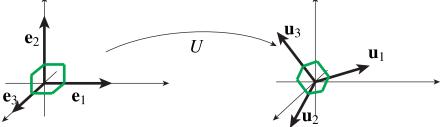
What characterizes a unitary matrix?

 \bullet *U* is unitary if and only if the columns are orthonormal

$$U = \begin{bmatrix} U_{11} & \cdots & U_{1i} & \cdots & U_{1n} \\ U_{21} & \cdots & U_{2i} & \cdots & U_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ U_{n1} & \cdots & U_{1i} & \cdots & U_{nn} \end{bmatrix} = [\mathbf{u}_1, \cdots, \mathbf{u}_i, \cdots, \mathbf{u}_n]$$
$$(U^H U)_{ij} = \mathbf{u}_i^H \mathbf{u}_j = \delta_{ij}$$

What does a unitary matrix do?

• U changes basis from standard basis to arbitrary orthonormal basis



Example

• Rotation matrix

$$\begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}^{-1} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Matrix decompositions

Useful tools for characterizing and solving problems

Eigenvalue equation

• Central equation of quantum chemistry:

Here posed as an "abstract" equation in Hilbert space

$$\hat{H}|\psi\rangle = E|\psi\rangle$$

• When a *basis* is introduced:

$$H\mathbf{u} = E\mathbf{u}$$

• Can we find solutions? How many solutions?

Matrix eigenvalue problem (EVP)

Theorem: Spectral theorem for Hermitian operators

Suppose $A \in \mathbb{F}^{n \times n}$ is Hermitian, i.e., $A^H = A$. Then, there exists an orthonormal basis $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$, and real numbers $\{\lambda_1, \dots, \lambda_n\}$, such that

$$H\mathbf{u}_i = \lambda_i \mathbf{u}_i$$

Equivalently,

$$A = \sum_{i=1}^{n} \mathbf{u}_{i} \lambda_{i} \mathbf{u}_{i}^{H} = U \Lambda U^{H}$$

where \mathbf{u}_i is the *i*th column of U, and where Λ is a diagonal matrix with elements $\Lambda_{ij} = \lambda_i \delta_{ij}$.

Theorem: Singular value decomposition

Let $A \in M(n, m, \mathbb{F})$ be a matrix, and let $k = \min(n, m)$. There exists k singular values $\sigma_i \ge 0$ and k left singular vectors \mathbf{u}_i , and k right singular vectors \mathbf{v}_i , such that

$$A = \sum_{i=1}^{k} \mathbf{u}_i \sigma_i \mathbf{v}_i^H = U \Sigma V^H,$$

POWERFUL!

where $U = [\mathbf{u}_1, \dots, \mathbf{u}_k], V = [\mathbf{v}_1, \dots, \mathbf{v}_k], \Sigma = \text{diag}(\sigma_1, \dots, \sigma_k)$. Equivalently,

$$A\mathbf{v}_i = \sigma_i \mathbf{u}_i$$
.

The rank of *A* is the number of nonzero singular values. The decomposition is unique if all the singular values are distinct.

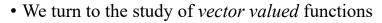
Example

- For example, useful for approximations of matrices
- Show Jupyter notebook with SVD of bitmap image

Vector calculus

Functions of several variables

Functions of several variables

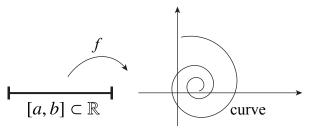


$$f: \mathbb{R}^n \to \mathbb{R}^m$$

$$f: \mathbb{R}^n \to \mathbb{R}^m$$
 $f: \Omega(\subset \mathbb{R}^n) \to \mathbb{R}^m$

• Paths

$$f: \Omega(\subset \mathbb{R}^1) \to \mathbb{R}^m$$



Scalar-valued

$$f: \Omega(\subset \mathbb{R}^n) \to \mathbb{R}^1$$

In quantum chemistry

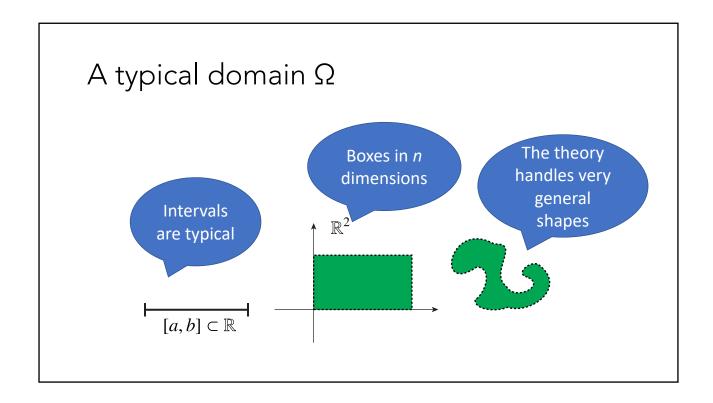
One of the main reasons to study vector calculus

• *Most* methods can be formulated as:

$$E: \Omega(\subset \mathbb{F}^n) \to \mathbb{R}, \quad \mathbf{x} \mapsto \text{energy function}$$

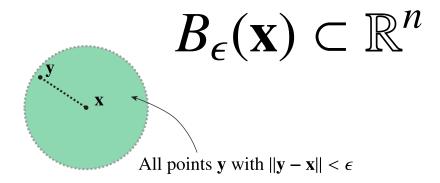
Find $\mathbf{x} \in \Omega$ such that

$$E(\mathbf{x}) = \min!$$
, i.e., $\nabla E(\mathbf{x}) = 0$.



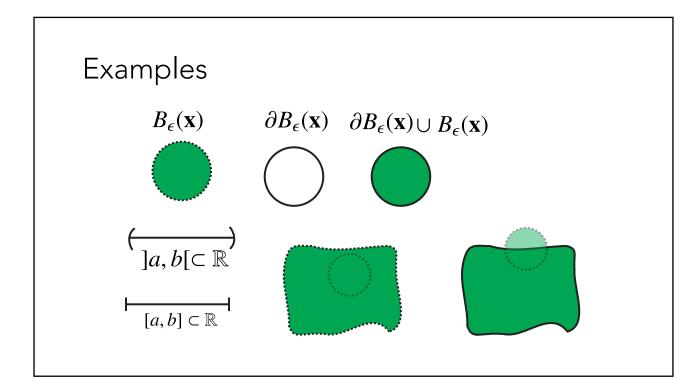
Topology of Euclidean space

• Definition of an epsilon-ball



Definition: Topologically important sets

- 1. A subset $S \subset \mathbb{R}^n$ is called *open* if, for every $\mathbf{x} \in S$, there is an $\varepsilon > 0$ such that $B_{\varepsilon}(\mathbf{x}) \subset S$.
- 2. A subset *S* is called *closed* if $S^{\mathbb{C}} = \mathbb{R}^n \setminus S$ is open.
- 3. The *closure* cl(S) is the smallest closed set that contains S.
- 4. The *interior* int(S) is the set of all those $\mathbf{x} \in S$ around which there exists an ε -ball in S
- 5. The *boundary* ∂S is the intersection $cl(S^{\mathbb{C}}) \cap cl(S) = S \setminus int(S)$



Definition: Limit

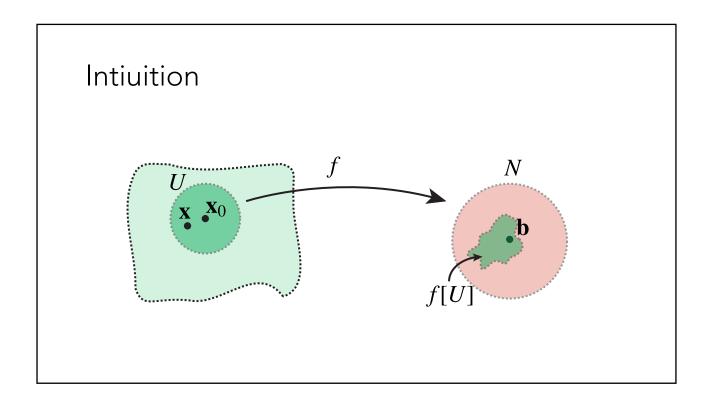
Let $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$, where Ω is open. Let $\mathbf{x}_0 \in \Omega \cup \partial \Omega$, and let N be a neighborhood of $\mathbf{b} \in \mathbb{R}^m$.

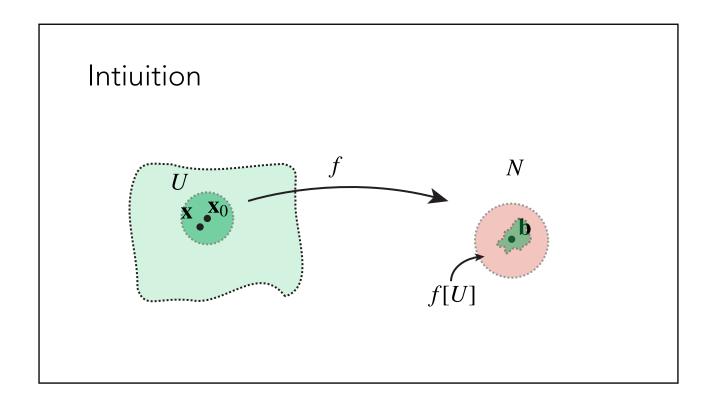
We say that f is eventually in N as \mathbf{x} approaches \mathbf{x}_0 , if there exists a neighborhood U of \mathbf{x}_0 , such that $\mathbf{x} \in U$ but $\mathbf{x} \neq \mathbf{x}_0$ and $\mathbf{x} \in \Omega$ imply $f(x) \in N$.

We say that $f(\mathbf{x})$ approaches **b** as **x** approaches \mathbf{x}_0 ,

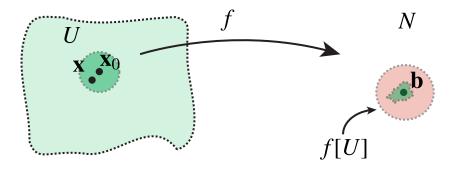
$$\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = \mathbf{b} \quad \text{or} \quad f(\mathbf{x}) \to \mathbf{b} \text{ as } \mathbf{x} \to \mathbf{x}_0, \tag{1}$$

when, given any neighborhood N of \mathbf{b} , f is eventually in N as \mathbf{x} approaches \mathbf{x}_0 .





Intiuition



Definition: Continuity

Let $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$. Let $\mathbf{x}_0 \in \Omega$. We say that f is *continuous at* \mathbf{x}_0 if

$$\lim_{\mathbf{x}\to\mathbf{x}_0}f(\mathbf{x})=f(\mathbf{x}_0).$$

Multidimensional version of "unbroken graph"

Example

- Is the following function continuous at (0,0)?
- (Show notebook)

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad (x, y) \mapsto \frac{x^2}{x^2 + y^2}$$

- No, because the limit does not exist.
- Different limit candidates if we approach from different directions
- The definition of limit is designed to avoid this

More subtle, in 1D

• Is the following function continuous?

$$f:(0,1)\to\mathbb{R},\quad x\mapsto\sin(1/x)$$

- Yes, at every *x* in the interior of the domain
- But f is discontinuous at the boundary point x = 0

Theorem: Properties of continuous functions

Let $f, g : \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ be functions with a common domain Ω , continuous at \mathbf{x}_0 : Then:

- 1. f + g and αf for any $\alpha \in \mathbb{R}$ are continuous at \mathbf{x}_0 .
- 2. In the scalar-valued case m = 1, the product fg is continuous at \mathbf{x}_0
- 3. If $f \neq 0$ in all of Ω , then 1/f is continuous at \mathbf{x}_0
- 4. The component functions $f_i: \Omega \to \mathbb{R}$ are all continuous at \mathbf{x}_0 . The converse is also true.

Theorem: Compositions of functions

Let $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ be continuous at $\mathbf{x}_0 \in \Omega$, and $g: \Omega' \subset \mathbb{R}^m \to \mathbb{R}^o$. Suppose $f[\Omega] \subset \Omega'$, and let g be continuous at $\mathbf{y}_0 = f(\mathbf{x}_0)$. Then $h: \Omega \subset \mathbb{R}^n \to \mathbb{R}^o$,

$$h(\mathbf{x}) = g(f(\mathbf{x}_0))$$

is continuous at \mathbf{x}_0 .

These two theorems can be used to decide continuity of very complicated functions, once simpler functions are proven to be continuous

Examples

- polynomials in any variable
- exponential function
- sine, cosine ...
- any composition

$$f: \mathbb{R}^3 \to \mathbb{R}, \quad f(\mathbf{x}) = \exp[-||\mathbf{x}||^4 + \cos(x_1)]x_1x_2x_3^4(1+x_1^2)^{-2}$$

End of lecture 3

• Next time, differentiable functions