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More accurately: A collection of stuff, of which some or the other
may come in handy in most applied math.
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What’s in a name? Spaces and stuff.

A set of objects and a set of operations on these objects is called a space and the
objects are called elements of the space.

Some spaces are defined in terms of the way their objects are composed of simpler
objects, and how the operations are carried out in terms of operations on the

simpler objects. This can be called a concrete space.
• Example: The set of real numbers, together with its arithmetic rules, is the

space R.

But most spaces are defined just by requiring that certain operations can be done
on the elements, and that the results conform to some set of rules, axioms.

Such spaces are called abstract spaces.
• Example: A linear space.
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Spaces and stuff (2).

The Hilbert space is an abstract space. This means that if one speaks of ’the
Hilbert space’, one is concerned only with properties that follow from the seven

axioms that define such a space.

If one is dealing with some particular concrete space, one can say that it is ’a
Hilbert space’. This means that it has operations conforming with the axioms, but

there may well be lots of other properties which follow from the concrete
realization.

• Example: The set of square-summable sequences of real numbers, R∞, can in
most respects be treated as a set of infinite-dimensioned vectors. Together with

one additional axiom, this is a Hilbert space (called l2(R)).
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Classification of spaces: Size.

The simplest size concept is the cardinality of the set of elements:

card({0, 1, 2}) = card({A,B,E}) = 3

card(N) = card(Z) = ℵ0

card(R) = card([0, 2π]) = ℵ1

card(∅) = 0

The cardinality is the number of possible different values.

Another very important concept is that of dimensionality:

dim({0, 1, 2}) = 0

dim(R) = 1

dim(R3) = 3

dim(C) = 2

dim(Cn) = 2n
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Classification of spaces: Size.

Another very important concept is that of dimensionality :

dim({0, 1, 2}) = 0

dim(R) = 1

dim(R3) = 3

dim(C) = 2

dim(Cn) = 2n

The dimensionality is the number of continuously varying real parameters that are
needed to specify an element of the space. In general:

dim(S) = n

if in the neighborhood of any element of S, there is an invertible and continuous
mapping S ↔ Rn

Some non-trivial concepts: neighborhood? continuity? but for now, an intuitive
understanding is enough.

Lecture 1A



ESQC 2015 6

Another classification of spaces: Operations.

Is a distance between any two elements defined? Then this is a normed space
which is also called a metric space. See defs. 2.1 and 2.2. Examples:

Distance in R3 Distance on the globe

Hamming distance Typographic distance

Are linear scaling and adding defined? Then this is a linear space which is also
called a vector space. See defs. 2.3. Examples:

Translations in R3

The unnormalized electronic wave functions of pyrimidine

Is the space both linear and normed ? Then the distance function is specialized. If
the space is also infinite-dimensional, it is a Banach space. See defs. 2.4. Example:

The maximum norm used in function fitting.

Is the space both linear and has a scalar product ? If the space is also
infinite-dimensional, it is a Hilbert space. See defs. 2.5. Example:

The unnormalized electronic wave functions of pyrimidine
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Little fleas have smaller fleas. . . ad infinitum

Given any linear space, the set of linear mappings between elements is in itself a
linear space. If the original vector space has a norm or a scalar product, such

properties can also be defined in the space of linear maps. The original space is
called a carrier space while the space of mappings is called operator space.Its

elements are called linear operators.

The operator space has one additional property, which maybe the carrier space did
not have. In it, there is a multiplication defined, by composition of operators. A

vector space where there is a multiplication rule, where the product is new
elements, is also called a linear algebra . The space of mappings is called operator

space .

Thus it is clear that any vector space also implies the existence of ’higher’ vector
spaces, namely the operator space, its operator space (which is called

superoperator space ), and so on. All these higher vector spaces are linear algebras:
There is a multiplication rule defined.

Lecture 1A



ESQC 2015 8

Infinite spaces, closure and separability

For infinite spaces, some important properties are closure and separability.

Suppose we can show that for some infinite sequence of elements x1, x2, . . .

lim
n,m→∞

||xm − xn|| = 0

Question: Does this mean we can conclude that there is an element x such that

lim
n→∞

xn = x

Then this is a complete space.

The property of completeness is also called closure. It is one of the properties
required of a Banach or a Hilbert space (although we did not mention it before).

The other property is separability. For a vector space, this means that there are
basis sets that are infinite but countable , which can be used to express any

element in the space.
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Some commonly used function spaces.

For infinite spaces, we will ignore the property of separability. (There exist
non-separable vector spaces, but all the following spaces are in fact separable).

Notation Meaning
C0(X) {f | f is continuous in X }

C l(X) {f | D̂lf is continuous in X (1 ≤ l ≤ ∞)}
C∞(X) See above. Also called the class of smooth functions.
Dl(X) As C l(X), with compact support
C l

B(X) As C l(X), but the value and derivatives are bounded.
lp(X) Banach space with norm (

∑

X |f(x)|pdx)1/p.
Lp(X) Banach space with norm (

∫

X
|f(x)|pdx)1/p.

H1(X) Hilbert space with norm
√

∫

X
(|f(x)|2 + |∇f(x)|2)dx.

The last examples, with p = 2, are particularly common. These are the Lebesgue
L2(X)spaces, and Sobolev H1(X) spaces which are Hilbert spaces, also called

called the spaces of square-integrable functions or sequences, and for Sobolev, also
with square-integrable derivatives.
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An example of a Hilbert space: L2(R).

L2(X) is a Hilbert space, because it has a scalar product. With X = R,

〈f, g〉 =

∫ ∞

−∞

f(x)∗g(x)dx

A typical element is f(x) = e−x2

. Define two typical operators Â and B̂:

Â = (2x− ∂/∂x) i.e.
[

Âf
]

(x) = 2xf(x)− f ′(x)

B̂ = (2x+ ∂/∂x) i.e.
[

B̂f
]

(x) = 2xf(x) + f ′(x)

Then

ÂB̂ = 4x2 − ∂2/∂x2 − 2

B̂Â = 4x2 − ∂2/∂x2 + 2

We see that the two operators do not commute: ÂB̂ 6= B̂Â.
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Basis representation

Assume a vector space S, with dimension n. We note the following facts.

A. Any set of m vectors {xi}
m
i=1 defines a subspace S ′ of S, denoted

S ′ = span({x1, . . . , xm})

and defined as the set of all possible vectors of the form

x = α1x1 + · · ·+ αmxm, αi ∈ R

B. The vectors in this subspace can be represented by the mapping

(α1, . . . αm) 7→ x

Scaling: (αα1, . . . ααm) 7→ αx
Adding: If (β1, . . . βm) 7→ y, then

(α1 + β1, . . . αm + βm) 7→ x+ y

This mapping is generally ”many-to-one”.
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Basis set and independence.

C. If

(α1, . . . αm) 7→ 0 ⇒ (∀i : αi = 0)

then the vector set is linearly independent and then dim(S ′) = m , the mapping is
1:1, and the set {xi}

m
i=1 is a basis set of S ′. Else, the set is linearly dependent and

then dim(S ′) < m .

D. If the vector set {xi}
m
i=1 is linearly dependent, it is always possible to discard

one or more of the vectors, just keeping m′ < m vectors relabelled as
{x′

1, . . . , x
′
m′}, where m′ = dim(S ′) and {x′

1, . . . , x
′
m′} is a basis set for S ′.

This is simplest to do if the vector space has a scalar product. A famous procedure
is the Gram-Schmidt orthonormalization, which actually produces an orthonormal

basis with the same span as the original vectors.
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The Gram-Schmidt procedure

E. If there is a scalar product, the following procedure will create an orthonormal
basis:

n:=0

for k=1 to m

v := x_k - sum( b_i <b_i|x_k> ,i=1..n)

if ( |v|>0 ) then

n:=n+1

b_{n} := v/|v|

end if

end loop

The input data are the m vectors {xk}
m

k=1
, and the output consists of the n vectors {bi}

n

i=1
. The

b-vectors are orthonormal, and span the same space as the x-vectors.
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Sequences, arrays, matrices

An ordered set of numbers is called a sequence or an array. If scaling and
elementwise addition are meaningful operations, they are regarded as vectors.

Indeed, they are vectors, in the vector space called R
n (or Cn ), where n (or 2n) is

the dimension. If a basis set is defined in any particular other vector space, the
representation of these vectors by the array of expansion coefficients shows that
every space with a basis set representation is in some sense equivalent with any

other space with the same dimension.

The most common way of writing vectors and linear operations in a
finite-dimensional space is thus by means of ’column vectors’ and matrices.
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Matrix formalism and basis sets.

Matrix formalism in an n-dimensional vector space S works as follows:

A vector in S is written as a column
vector (i.e. an n × 1 matrix) with ex-
pansion coefficients, while a vector in
the dual space S∗ is written as a row
vector (i.e. an 1×n matrix). The basis
set is written as a row of symbols for
the basis elements, where f is an ele-
ment of the vector space being studied,
{χk}

n
k=1

is a basis, and {xk}
n
k=1

are the
expansion coefficients.

f = (χ1, χ2, . . . , χn)









x1

x2

...
xn









Lecture 1A



ESQC 2015 16

Matrix formalism (2)

Assume a scalar product space and an
orthonormal basis. In that case, the
hermitian conjugate is meaningful, and
is represented by the transposed com-
plex conjugate of the matrix:









x1

x2

...
xn









†

def
= (x∗

1, x
∗
2, . . . , x

∗
n)

The definition of equality for linear operations in a vector space is that they give
identical results when applied to any vector: if for any given operator Â, there is a

matrix A such that

f = (χ1, χ2, . . . , χn)









x1

x2

...
xn









⇒ Âf = (χ1, χ2, . . . , χn)A









x1

x2

...
xn









is true for any vector f , then A is a matrix representation of Â.
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Matrix formalism (3)

By chosing the matrix elements as

Akl = 〈χk|Âχl〉

the previous equation is correct for the special case that all the expansion
coefficients are zero except one, which is = 1. By linearity, it is then true for any
vector. So every linear operator has a matrix representation in a given basis, and

when the basis is orthonormal, it is given above.

Assume the operators Â and B̂ are represented by the matrices A and B,
respectively. Some properties of matrix representations of operations are then:

1̂ is represented by 1

ÂB̂ is represented by AB

Â−1 is represented by A−1

Ân is represented by An
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Changing the basis – basis set transformation

Any two bases are related by an invertible linear transformation, in
the form of multiplication with a nonsingular transformation matrix,

say T:

(|χ1〉, |χ2〉, . . . , |χn〉) = (|η1〉, |η2〉, . . . , |ηn〉)











T11 T12 . . . T1n

T21 T22 . . . T2n
...

... . . . ...
Tn1 . . . . . . Tnn











Expand a function using two different basis sets:

|f〉 = (|χ1〉, |χ2〉, . . . , |χn〉)











x1
x2
...
xn











= (|η1〉, |η2〉, . . . , |ηn〉)











y1
y2
...
yn











Lecture 1A



ESQC 2015 19

Changing the basis (2)

Substitute:

|f〉 = (|η1〉, |η2〉, . . . , |ηn〉) T











x1
x2
...
xn











= (|η1〉, |η2〉, . . . , |ηn〉)











y1
y2
...
yn











The relation between the representation vectors is then simply

Tx = y, x = T−1y

and the matrix representations of an operator transforms as

A(χ) = T−1A(η)T,

called a similarity transformation.
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Representation independence

A number of properties of n× n matrices are invariant to similarity
transformations. So in a basis set representation of an operator, the
matrix depends on the basis used, some properties do not change

with the basis – they are basis set independent. Some such
properties are:

tr(A) = sp(A)
def

=
∑

i

Aii

det(A)

rank(A)

ρ2(A) (spectral radius)

tr(f(A)) (where f is an analytic function)

det(f(A))
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Trace of a matrix

The trace of a square matrix is the sum of its diagonal entries. If the matrix is a
product of two matrices, the trace does not depend on the order in which the

product is computed (not even if the factors are rectangular!):

tr(AB) =
n

∑

i=1

(
m
∑

k=1

AikBki) =
m
∑

k=1

(
n

∑

i=1

BkiAik) = tr(BA)

The trace of a product of three or more matrices is unchanged if the order is
cyclically permuted:

tr(ABC) = tr(A(BC)) = tr((BC)A) = tr(BCA)

The properties are extended from matrices to operators by using basis set
representations.
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Determinant of a matrix

The determinant of a square matrix is defined by the properties that: (a),
det(1) = 1, (b), if any row is multiplied with a constant, the determinant is scaled
with this constant, and (c), if any row is added to another row, the determinant is

unchanged.

Some important properties are e.g. that det(AT ) = det(A) so any true statement
about the determinant is true if rows are changed to columns and vice versa. Also:

• det(AB) = det(A) det(B).

• Therefore, det(A−1) = 1/ det(A).

• Therefore, the matrix inverse exists if, and only if, its determinant is non-zero.
Such a matrix is called non-singular. If the determinant is zero, it is singular.

Usually, the determinant function cannot be computed for operators in infinite
spaces.
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Representation independence (2)

If the inverse of a (linear) operator (e.g. a square matrix) exists, it is called
non-singular; else it is singular. A product is singular if any of its factors is singular.

The spectrum of a matrix or an operator is the set of values

{ z : (A− z1) is singular.}

Since (T−1AT− z1) = T−1(A− z1)T is singular when (A− z1) is singular, all
functions of the spectrum are representation invariant.

Also the reverse is true: Any property that is representation independent is a
function of the spectrum.

Any value z belonging to the spectrum is an eigenvalue, with (at least) one
non-zero vector called an eigenvector v: Since (A− z1) is singular, there is such a

vector for which (A− z1)v = 0, i.e.,

Av = zv
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Eigenvalues of Symmetric real two by two matrices

The two-by-two matrices are so easy that the eigensystem can be obtained
generally:

det

(

A11 − z A12

A12 A22 − z

)

= z2 − (A11 + A22)z + (A11A22 − A2

12) = 0

z =
A11 + A22

2
±

√

(

A11 − A22

2

)2

+ A2
12

The eigenvalues are centered around A11+A22

2
.

They are spaced out from this value by at least ±A11−A22

2
, and by at least ±A12.

Their sum is = A11 + A22 = tr(A), Their product is = A11A22 − A2
12 = det(A).

These last two properties are true for any (diagonalizable) matrix: the trace and
product are the trace and the determinant of the matrix!
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