
ESQC 2015 1

Example: Complete ON basis set in L2([0,∞[):

All finite scalar product spaces can thus be represented faithfully by Rn, but cn em
infinite-dimensional spaces be represented in a similar manner? It turns out that all
(separable) Hilbert spaces are equivalent to the space of infinite square-summable

sequences, which can be regarded as infinite-dimensional arrays. The space of such
sequences is called l2.

The question remains whether some particular sequence of orthonormal functions
constitutes a basis or not.

For the L2(R) space of function spaces, a standard test is to check if the
completeness relation is fulfilled or not.

A certain orthonormal basis set {φn(r)}
∞
n=0 is complete if

δ(r − a) =
∞
∑

n=0

φn(a)φn(r)

Here tested numerically for a = 2. The sum is truncated at n = 399 and n = 999:
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Numerical test for completeness in L2([0,∞[):

A certain set of orthonormal functions (Associated Laguerre functions of order 2)
were tested by checking if they gave a reasonable approximation to a Dirac

distribution.
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It does not, it seems. Yet it is known to
be complete (in a subspace of L2(R+), in
this particular case), and in many cases,
this would be an eminent basis set to use!

Conclusion: It is usually a waste of time to test for formal
completeness numerically. A basis must be checked for completeness
by other means, and anyway, its suitability for truncated expasions

must be judged on other grounds.
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Completeness of other Hilbert function spaces

It was stated that a complete ON basis in L2(R) has the property

∑

|φn >< φn| = 1̂ ⇔ δ(r − a) =

∞
∑

n=0

φn(a)φn(r)

since one may assume for a function space that the unit operator corresponds to the Dirac
distribution.

But other function spaces may give other results. Example: The space of band-limited functions
are defined by having a Fourier expansion

f(x) =
1

2π

∫ K

−K

f̃(k) exp(ikx) dk

and has an ON basis with the ”resolution of unity”

∞
∑

n=0

φn(a)φn(r) =
sin(K(a− x)

π(a− x)
=⇒ f(a) =

∫ ∞

−∞

sin(K(a− x)

π(a− x)
f(x) dx

The sum on the left is not a delta distribution, but it defines a projector onto the space of
band-limited functions, and therefore it acts as a unit operator within that space.
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Pauli’s spin matrices, and the quaternions

The three matrices

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

are called Pauli spin matrices, and are treated as a single vector in 3D space,
except having 2× 2 matrices as components. σσσ = (σx, σy, σz). σσσ is used in

relativistic or two-component non-relativistic calculations (with a factor ~/2) as
the spin of electrons or other fermions. They have eigenvalues 1 and -1, and

[σx, σy] = iσz, and so on, in cyclic permutation of x, y, and z.

They are also used to represent the four basic quaternions,

111 =

(

1 0
0 1

)

, iii = iσz, jjj = iσy, kkk = iσx

with the properties

111iii = iii111 = iii, iii2 = −111, iiijjj = kkk = −jjjiii

and additional properties obtained by cyclically permuting iii, jjj,kkk. The quaternions
are used e.g. to represent rotations.
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Pauli’s matrices

The matrices are used in combination with vectors as

aaa · σσσ
def
= axσx + ayσy + azσz =

(

az ax − iay
ax + iay −az

)

A useful expression is frequently used:

(aaa · σσσ)(bbb · σσσ) = (aaa · bbb)111 + i(aaa× bbb) · σσσ

When rearranging formulas, it is a bother to have to keep aaa adjacent to σσσ in order to use the
scalar product; it is then common to use cartesian tensor notation and summation rules, e.g. as

σµ · · ·σν · · · aµbν · · ·

which is the same contraction as before, regardless of their position in a larger expression. The
relative order of the σ matrices must be kept, since they do not commute. (Components are then

indexed 123 instead of xyz).

Complex hermitian 2× 2 matrices can be conveniently parametrized as

(c0, c1, c2, c3) 7→ c0σ0 + · · ·+ c3σ3 =

(

c0 + c3 c1 − ic2
c1 + ic2 c0 − c3

)

by adding the symbol σ0
def
= 111 for the unit matrix.
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Quaternions

Quaternions are intimately connected to rotations and to spin matrices. They are formally
defined as a division algebra with a unit 1 and three equivalent imaginary units iii, jjj,kkk with

properties iii2 = jjj2 = kkk2 = ijkijkijk = −1.

Used for rotations in 3-space, they are usually represented as

qqq = (s,v) = s+ vxiii+ vyjjj + vzkkk

and the basic computation rules

• Quaternion conjugation qqq∗ = (s,−v),

• Product (s1,v1)(s2,v2) = (s1s2 − v1 · v2, s1v2 + s2v1 + v1 × v2).

• Squared norm ||(s,v)||2 = (s2 + |v|2,000) = s2 + |v|2.

• Inverse qqq−1 = qqq∗/||qqqqqq∗||.

Note: quaternions (0,v) are formally identified with ordinary vectors v, and (s,0) with scalars s.

A vector v in 3-space is rotated an angle θ around an axis with direction u by

v′ = qqqvqqq∗, where qqq = (cos θ/2,u sin θ/2)
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The Dirac 〈bra|c|ket〉 notation

Since expressions such as 〈bi|Âbj〉 are so common, it has turned out to be practical
to use a notation introduced by Dirac:

• A vector is denoted e.g. |bj〉. Written like that, they are called ”ket vectors”.

• 〈bi| is a linear functional, which operates on any vector |x〉 to produce the scalar
number 〈bi|x〉.

(In this context, a functional is a mapping from functions to e.g. scalar values.)

• The functionals 〈bi| do themselves form a linear space, and the vectors are called
”bra functionals” or ”bra vectors”. This vector space is called ”the dual space”.

• The matrix element 〈bi|Âbj〉 will now be written as 〈bi|Â|bj〉, a ”Dirac bracket”.
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The Dirac notation, Resolution of identity

An important point with Dirac notation is that, since it has a notation for the bra
vectors as individual vectors rather than as typographic part of a scalar product,

operators of the form |x〉〈y| can be inserted into formulas.

Ex: assume a complete and ON basis, 〈bi|bj〉 = δij. Then the basis set
representation of x is

|x〉 =
∑

i

|bi〉〈bi|x〉

true for any x.

Using Diracs notation we get
∑

i

|bi〉〈bi| = 1̂

This formula (called the ”resolution of identity”) can now be inserted into
operator or operator-vector products in many different ways, producing a number
of useful formulas. But of course, the sum is not really a unit operator generally,

but a projector of functions in the space spanned by the basis vectors.
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Eigenvalues of Hermitian matrices

For an n× n hermitian matrix A, there exists a set of n orthonormal eigenvectors
vk, k = 1, . . . n, with real eigenvalues:

Avk = λkvk

λ1 ≤ λ2 ≤ · · · ≤ λn

If the eigenvalues are different, these eigenvectors are unique except that they can
be scaled by a phase factor of magnitude 1, (i.e., ±1 in the real case, exp(iθ) in

the complex case).

If any eigenvalues are equal, the corresponding eigenvectors are unique except that
they can be transformed into an equivalent set of eigenvectors by multiplication

with a unitary matrix (or real orthogonal, in the real case).

Similar rules apply to Hermitian operators in a Hilbert space, if the eigenvalues are
distict. For the now, let’s treat the finite case (matrices) and the infinite case

(operators) together.
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Normal operators and matrices

For any linear op Â in a Hilbert space, its Hermitian conjugate or adjoint, Â† is
defined such that
〈

Â†x|y
〉

≡
〈

x|Ây
〉

Ex: in L2(R), with Â = x+ ∂/∂x, we have that Â† = x− ∂/∂x, since
∫ ∞

−∞

((x− ∂/∂x)f ∗(x)) g(x) dx =

∫ ∞

−∞

f ∗(x) ((x+ ∂/∂x)g(x)) dx

from integration by parts, if both integrals exist.

Ex: For matrices, (A†)ij = A∗
ji, e.g., transpose + complex conjugation.

If ÂÂ†= Â†Â, then the operator is called normal.

(N.B. If some nonstandard definition is used for the scalar product, then the
adjoint has to change accordingly!)
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Important types of normal ops and matrices

• Hermitian operators, X̂† = X̂ (Matrix: X† = X.)

• Antihermitian ops, X̂† = −X̂ (Matrix: X† = −X.)

• Unitary ops, X̂†X̂ = 1̂ (Matrix: X†X = 1.)

• Idempotent ops, X̂2 = X̂ (Matrix: X2 = X.)

RULE: In an ON basis, a Hermitian operator is represented by a Hermitian
matrix, & cetera.
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Typical usage of different kinds of matrices or operators

Hermitian operators: e.g. multiplication with a local potential function. All
operators that represent possible ’physical observables’ are Hermitian. All their

eigenvalues are real.

Antihermitian: Either an imaginary number times a hermitian operator, or perhaps
a differentiation operator (∂/∂x,∇, . . . ). All their eigenvalues are imaginary.

Unitary operators can be used to change from one basis set to another. They
preserve orthonormality, scalar products (overlaps), and distances (norms).

NOTE: A unitary matrix or operator is the exponential of an antihermitian one,
U = exp(A), or Û = exp(Â).

Idempotent operators are used as projection operators, or projectors.
Example: â†â (for a fermion).
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Eigensystems: Diagonalization vs. Spectral resolution

Apart from being orthogonal, the eigenvectors can also always be
scaled so they are orthonormal. Arrange them as columns in a matrix

U. Orthonormality gives

U†U =





v1
†

...
vn

†



 (v1, . . . ,vn) = 1

Also UU† = 1. Put eigenvalues in diagonal matrix D. We get

AU = UD (Eigensystem equation) or U†AU = D
(Diagonalisation) or A = UDU† (Spectral resolution).

(Note: For real matrices, replace † with the transpose).
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Matrix and operator functions

Normal matrices or operators have a spectral resolution of the form
A = UDU†, where the matrix U is unitary.

This implies that

A2 = UDU†UDU†= UD2U†

since U†U = 1.

A moments reflection tells us that similar rules apply to any
non-negative power An.

If the matrix is invertible, the same applies to negative powers.
Forming linear combinations, we can get any polynomial; by taking
limits, any smooth function can be approximated arbitrarily well by a

sequence of polynomials.
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Matrix and operator functions

Conclusion: For a matrix, we can define unambigously any smooth
function in analogy to the functions of numbers.

Caveat: For operators, this way of defining functions works strictly as
implied above, if the eigenvalues are contained in a bounded set, i.e.,

the operator is bounded.

The point: The functions get to be defined as

f(A) = UΛU† where Λ = diag(f(λ1), . . . , f(λn))

and for operators with spectral resolution Â =
∑

λn|ψn〉〈ψn| in
Hilbert spaces,

f(Â) =
∑

f(λn)|ψn〉〈ψn|
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Often used matrix/operator functions

Let A =
∑

k λkvkv
†
k, a normal matrix.

The resolvent, (A− z1)−1, is defined for any z that is not in the spectrum of A.
The spectral resolution of the resolvent is

(A− z1)−1 =
∑

k

(λk − z)−1vkv
†
k

The exponential function, is often defined as the solution of a differential equation,

exp(tA) =
∑

k

exp(tλk)vkv
†
k ⇔

d

dt
exp(tA) = A exp(tA)

The square root is unambigously defined if A is a positive semidefinite matrix, i.e.,
all eigenvalues are non-negative. If there are negative or complex eigenvalues, one

has to decide which branch of the square root they should belong to.

The logarithm need a similar consideration of branches. In addition, A must be
non-singular.
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Derivatives, Functionals, and Functional Derivatives

For ordinary functions f(x), the derivative

∂f

∂x
or f ′

x or just f ′

is familiar to all, and very useful, e.g.:

• to express an optimization condition

• to solve equations efficiently (Newton-Raphson)

• for approximation by Taylor expansion

Questions: Can this concept be extended? Is differentiation possible if x is e.g. a
vector, a matrix, a function, an operator. . . ?

Is such an extension useful?

Answers: Yes, and Yes!
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The general derivative concept

If, for a given x and a variable t,

f(x+ t)− f(x) = D(t) + e(t)

where

D(t) is linear in t

lim
|t|→0

e(t)

|t|
= 0

then the derivative of f at x can be defined as the linear mapping D.

This definition requires sums, limits etc. can be formed. x and t must belong to
some normed linear space. f(x), f(x+ t) must also belong to some normed linear

space.

All combinations, where f values are scalars, vectors, functions, . . . , and where x
values are scalars, vectors, functions, . . . , are POSSIBLE and VERY USEFUL.
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Derivative of a scalar wrt a vector variable

In any particular application, we need to represent the linear mapping D(t) in some practical
form, usually as a product.

Instead of D(t), we prefer to write

f(x+ t)− f(x) =

(

∂f

∂x

)

t + rest term

How this product is to be defined depends on the application.

Example: f(x) is a scalar function of a vector x and a scalar product is defined.

Then
(

∂f

∂x

)

is defined as the vector g with property

f(x+ t)− f(x) = g · t + rest term

and such a vector is also called the gradient of f and is written as ∇f (’nabla f’).
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Derivative of a vector wrt a vector variable

If neither the function value nor the variable is a simple scalar, the derivative becomes a
composite object of ’higher rank’ than either of them.

Example: f(x) is a vector-valued function of a vector x.

Then
(

∂f
∂x

)

can be defined as the matrix G with property

f(x+ t)− f(x) = Gt + rest term

where the product is a matrix times vector product. In some contexts, such a
matrix is called a Jacobian.

(The derivative of a gradient is the second derivative of a scalar field. It is a
symmetric matrix, called the Hessian).
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Derivative of a scalar wrt a matrix variable

Derivatives with respect to matrices is analogous to derivatives with respect to vectors, except
that one must decide how the product is to be defined.

Example : f(A) is a scalar function of a real n×m matrix A.

Then
(

∂f

∂A

)

can be defined as the n×m matrix G with property

f(A+T)− f(A) =
∑

ij

GijTij + rest term

There is no standard notation for derivatives w r t matrices. Another common definition of the
scalar product is as

∑

ij G
∗
jiTij which can also be written as tr(G†

T). Then the derivative with
respect to an n×m matrix is an m× n matrix.
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Derivative of a scalar wrt a function-valued variable

The case where x is a function and f(x) is a scalar is analogous to the first example, where x
was a vector. Such a function f , that takes a function as its argument, is called a functional.

Example: The perturbed ground state energy of a molecule in a perturbing electrostatic potential
field V (r) can be regarded as a function E(V )

However, in this case it is customary to write E[V ] in order to show clearly that this is a
functional.

The derivative of E[V ] is written as δE
δV

or sometimes δE[V ]
δV

. It is a function of r,
such that

E[V +W ]− E[V ] =

∫ ∫ ∫

δE

δV
(r) ·W (r)d3r + rest term

(Actually, this function happens to be identical to the charge density function.)
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A simple optimization problem

It is a very common problem to find that function which minimizes or maximizes some given
scalar functional. When the function is a curve or a surface, the solution is called an extremal.
Other problems may involve finding the set of orbital functions that minimize a given energy

functional, etc.

Consider the simple problem of minimizing

Q[χ] =

∫ 1

0

(

dχ(s)

ds

)2

ds

with side conditions χ(0) = 0, χ(1) = 1. To find the functional derivative, we make a small
perturbation in χ and evaluates the result. Integration by parts is used to get an expression

containing just δχ:

δQ[χ] =

∫ 1

0

2

(

d

ds
χ(s)

)(

d

ds
δχ(s)

)

ds

= 2

[(

d

ds
χ(s)

)

(δχ(s))

]1

s=0

− 2

∫ 1

0

(

d2

ds2
χ(s)

)

(δχ(s)) ds

Lecture 1B



ESQC 2015 24

A simple optimization problem. . . (continued).

From the boundary conditions, we must require δχ(0) = 0 at both end points, so the first term is
0:

δQ[χ] = −2

∫ 1

0

(

d2

ds2
χ(s)

)

(δχ(s)) ds

We can conclude that

δQ[χ]

δχ
= −2

(

d2

ds2
χ(s)

)

Minimization condition is δQ[χ]
δχ

= 0, which together with the boundary conditions gives the

solution χ(s) = s.
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Fields

In the physical sciences, positions in space or in space-time are important. These
can be denoted e.g. r, or (r, t). In mathematical physics, a field is a differentiable

function of such positions.

Let S be the set of positions. Typical fields are:
• Scalar fields S 7→ R, e.g. potential fields, such as the electrostatic potential.

• Scalar fields describing some density, such as the charge density, mass density, or
energy density.

• Vector fields S 7→ R
3 describing velocities, flux density, electric or magnetic field

strength, etc.
• Spinor fields, which may describe the amplitudes of relativistic wave functions

used in some equations,
• Tensor fields S 7→ (R4)N , used a lot in relativistic theories and in general

relativity.

The values of a field is in principle any differentiable vector space. If we stick to
scalar and vector fields in a 3-dimensional Euclidean space, then there is a

much-used calculus, mostly due to Gibbs, which may be called vector calculus or
vector analysis.
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Vector multiplication

Let A, B and C be vectors in R
3. The vector product C = A×B is computed as

Cx = AyBz − AzBy Cy = AzBx − AxBz Cz = AxBy − AyBx

Some vector product rules are

A×B = −B×A

A · (B×C) = det





Ax Bx Cx

Ay By Cy

Az Bz Cz





A · (B×C) = B · (C×A) = C · (A×B) = (A×B) ·C = · · ·

A× (B×C) = (A ·C)B− (A ·B)C

(but note that A× (B×C) 6= (A×B)×C !)

These (and many other) rules can be found in any textbook or handbook which
covers vector algebra, or check wikipedia under ’vector product’.

To work it out yourself, use the cyclic permutation rule x→ y → z → x . . . . Also
convenient: the scalar triple product is a determinant.
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Nabla, or del, operator

Let u(r) and v(r) be two scalar fields, while a(r) and b(r) are vector fields.

The vector differential ∇, called nabla or del, can be written as

∇ =

(

∂

∂x
,
∂

∂y
,
∂

∂z

)

The following first derivatives can be formed:

∇u =

(

∂u

∂x
,
∂u

∂y
,
∂u

∂z

)

∇ · a =
∂ax
∂x

+
∂ay
∂y

+
∂az
∂z

∇× a =

(

∂ay
∂z

−
∂az
∂y

,
∂az
∂x

−
∂ax
∂z

,
∂ax
∂y

−
∂ay
∂x

)

Rules:

∇uv = u∇v+v∇u ∇·ua = u∇a+a ·∇u ∇·a×b = b ·∇×a−a ·∇×b

∇ · (∇× a) = 0 ∇× (∇u) = 0 ∇ · (∇u) = ∇2u
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Integrals in vector calculus

The volume integral is simply a triple integral, where the integration element
depends on the coordinate system used, e.g. dΩ = dx dy dz (Cartesian) or

dΩ = r2 sin θ dr dθ dφ (Spher. polar).

The surface integral is a vector. Assume the surface is defined, at least locally, by
coordinates (u, v), i.e. S is the set of points r with cartesian coordinates (x, y, z)

that each depend on (u, v),






x = x(u, v)
y = y(u, v)
z = z(u, v)

dS =

(

∂r

∂u
×
∂r

∂v

)

du dv

so for e.g. a spherical polar system, suppose we integrate over a spherical shell
with radius R,

dS =





R cos θ cosφ
R cos θ sinφ
−R sin θ



×





R sin θ sinφ
−R sin θ cosφ

0



 dθ dφ =





sin θ cosφ
sin θ sinφ

cos θ



R2 sin θ dθ dφ
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Integration by parts

The formula for the derivative of a product can be rearranged as

df(x)

dx
g(x) =

d

dx
(f(x)g(x))− f(x)

dg(x)

dx

Integrating both sides gives the formula for partial integration,

∫ b

x=a

df(x)

dx
g(x) dx = f(b)g(b)− f(a)g(a)−

∫ b

x=a

f(x)
dg(x)

dx
dx

= [f(x)g(x)]ba −

∫ b

x=a

f(x)
dg(x)

dx
dx

In multiple integrals, the same can be done with each integral, and results in the
various formulae for relating surface/curve or volume/surface integrals (at least for

rectangular or cuboid regions),
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Relations between integral and differential formulae

∫ ∫

∂Ω

a · dΣ =

∫ ∫ ∫

Ω

∇ · adΩ (Gauss’ theorem) and

∫ ∫

∂Ω

a× dΣ = −

∫ ∫ ∫

Ω

∇× adΩ

∫

∂S

a · dr =

∫ ∫

S

∇× a · dS (Stokes’ theorem) and

∫

∂S

a× dr = −

∫ ∫

S

(dS×∇)× a

Green’s theorem
∫ ∫

∂Ω

(u∇v − v∇u) dΣ =

∫ ∫ ∫

Ω

(

u∇2v − v∇2u
)

dΩ

Other theorems of this kind:
∫ ∫

∂Ω

u dΣ =

∫ ∫ ∫

Ω

∇u dΩ

∫

∂S

u dr =

∫

S

(dS ×∇u)
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Example of Gauss’ and Stokes’ theorems: Maxwell’s
equations

∫ ∫

∂Ω

E · dΣ =
1

ε0

∫ ∫ ∫

Ω

ρdΩ ⇔ ∇ ·E =
ρ

ε0
∫ ∫

∂Ω

B · dΣ = 0 ⇔ ∇ ·B = 0
∫

C

E · dr = −

∫

S

∂B

∂t
· dS ⇔ ∇×E = −

∂B

∂t
∫

C

B · dr = µ0

∫

S

(

j + ε0
∂E

∂t

)

· dS ⇔ ∇×B = µ0j + µ0ε0
∂E

∂t

The first equation relates a surface integral of the electric field to the enclosed
charge. Using Gauss’ theorem, this means that for any choice of Ω,

∫ ∫ ∫

Ω

(

∇ ·E −
1

ε0
ρ

)

dΩ = 0

which implies the statement on the right.
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Harmonic functions in 3D

Harmonic functions are used in all areas of applied mathematics; this are functions
ψ(r) for which ∇2ψ(r = 0 in some region of space. Together, they form a linear

space.
• In simply connected, compact regions, this space is spanned by a set of

polynomials in the Cartesian coordinates.
• The standard choice of these polynomials is as the Solid Harmonics,

Ym
l

def
= rlY m

l (θ, φ)

where Y m
l is a standard spherical harmonic, l ∈ {0, 1, 2, . . . } and

m ∈ {l, l − 1, l − 2, . . . ,−l}, and (r, θ, φ) are spherical polar coordinates.
• These are in fact polynomials, with total degree l.

• There are other systems of harmonic functions, usually tied to special boundary
conditions or symmetry demands.

• In charge-free regions of space, the electrostatic potential is a harmonic function.
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