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Fields

In the physical sciences, positions in space or in space-time are important. These
can be denoted e.g. r, or (r, t). In mathematical physics, a field is a differentiable

function of such positions.

Let S be the set of positions. Typical fields are:
• Scalar fields S 7→ R, e.g. potential fields, such as the electrostatic potential.

• Scalar fields describing some density, such as the charge density, mass density, or
energy density.

• Vector fields S 7→ R3 describing velocities, flux density, electric or magnetic field
strength, etc.

• Spinor fields, represented by embedding into S 7→ (C2) or S 7→ (C4), which may
describe the amplitudes of relativistic wave functions used in some equations,
• Tensor fields S 7→ (R4)N , used a lot in relativistic theories and in general

relativity.

The values of a field is in principle any differentiable vector space. If we stick to
scalar and vector fields in a 3-dimensional Euclidean space, then there is a

much-used calculus, mostly due to Gibbs, which may be called vector calculus or
vector analysis.
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Vector multiplication

Let A, B and C be vectors in R3. The vector product C = A×B is computed as

Cx = AyBz − AzBy Cy = AzBx − AxBz Cz = AxBy − AyBx

Some vector product rules are

A×B = −B×A

A · (B×C) = det




Ax Bx Cx

Ay By Cy

Az Bz Cz




A · (B×C) = B · (C×A) = C · (A×B) = (A×B) ·C = · · ·
A× (B×C) = (A ·C)B− (A ·B)C

(but note that A× (B×C) 6= (A×B)×C !)

These (and many other) rules can be found in any textbook or handbook which
covers vector algebra, or check wikipedia under ’vector product’.

To work it out yourself, use the cyclic permutation rule x→ y → z → x . . . . Also
convenient: the scalar triple product is a determinant.
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Nabla, or del, operator

Let u(r) and v(r) be two scalar fields, while a(r) and b(r) are vector fields.

The vector differential ∇, called nabla or del, can be written as

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)

The following first derivatives can be formed:

∇u =

(
∂u

∂x
,
∂u

∂y
,
∂u

∂z

)
∇ · a =

∂ax
∂x

+
∂ay
∂y

+
∂az
∂z

∇× a =

(
∂ay
∂z

− ∂az
∂y

,
∂az
∂x

− ∂ax
∂z

,
∂ax
∂y

− ∂ay
∂x

)

Rules:

∇uv = u∇v+v∇u ∇·ua = u∇a+a ·∇u ∇·a×b = b ·∇×a−a ·∇×b

∇ · (∇× a) = 0 ∇× (∇u) = 0 ∇ · (∇u) = ∇2u
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Integrals in vector calculus

The volume integral is simply a triple integral, where the integration element
depends on the coordinate system used, e.g. dΩ = dx dy dz (Cartesian) or

dΩ = r2 sin θ dr dθ dφ (Spher. polar).

The surface integral is a vector. Assume the surface is defined, at least locally, by
coordinates (u, v), i.e. S is the set of points r with cartesian coordinates (x, y, z)

that each depend on (u, v),




x = x(u, v)
y = y(u, v)
z = z(u, v)

dS =

(
∂r

∂u
× ∂r

∂v

)
du dv

so for e.g. a spherical polar system, suppose we integrate over a spherical shell
with radius R,

dS =




R cos θ cosφ
R cos θ sinφ
−R sin θ


×




R sin θ sinφ
−R sin θ cosφ

0


 dθ dφ =




sin θ cosφ
sin θ sinφ

cos θ


R2 sin θ dθ dφ
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Integration by parts

The formula for the derivative of a product can be rearranged as

df(x)

dx
g(x) =

d

dx
(f(x)g(x))− f(x)

dg(x)

dx

Integrating both sides gives the formula for partial integration,

∫ b

x=a

df(x)

dx
g(x) dx = f(b)g(b)− f(a)g(a)−

∫ b

x=a

f(x)
dg(x)

dx
dx

= [f(x)g(x)]ba −
∫ b

x=a

f(x)
dg(x)

dx
dx

In multiple integrals, the same can be done with each integral, and results in the
various formulae for relating surface/curve or volume/surface integrals (at least for

rectangular or cuboid regions),
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Relations between integral and differential formulae

∫ ∫

∂Ω

a · dΣ =

∫ ∫ ∫

Ω

∇ · adΩ (Gauss’ theorem) and

∫ ∫

∂Ω

a× dΣ = −
∫ ∫ ∫

Ω

∇× adΩ

∫

∂S

a · dr =

∫ ∫

S

∇× a · dS (Stokes’ theorem) and

∫

∂S

a× dr = −
∫ ∫

S

(dS×∇)× a

Green’s theorem
∫ ∫

∂Ω

(u∇v − v∇u) dΣ =

∫ ∫ ∫

Ω

(
u∇2v − v∇2u

)
dΩ

Other theorems of this kind:
∫ ∫

∂Ω

u dΣ =

∫ ∫ ∫

Ω

∇u dΩ

∫

∂S

u dr =

∫

S

(dS ×∇u)
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Example of Gauss’ and Stokes’ theorems: Maxwell’s
equations

∫ ∫

∂Ω

E · dΣ =
1

ε0

∫ ∫ ∫

Ω

ρdΩ ⇔ ∇ ·E =
ρ

ε0∫ ∫

∂Ω

B · dΣ = 0 ⇔ ∇ ·B = 0
∫

C

E · dr = −
∫

S

∂B

∂t
· dS ⇔ ∇×E = −∂B

∂t∫

C

B · dr = µ0

∫

S

(
j + ε0

∂E

∂t

)
· dS ⇔ ∇×B = µ0j + µ0ε0

∂E

∂t

The first equation relates a surface integral of the electric field to the enclosed
charge. Using Gauss’ theorem, this means that for any choice of Ω,

∫ ∫ ∫

Ω

(
∇ ·E − 1

ε0
ρ

)
dΩ = 0

which implies the statement on the right.
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Harmonic functions in 3D

Harmonic functions are used in all areas of applied mathematics; this are functions
ψ(r) for which ∇2ψ(r = 0 in some region of space. Together, they form a linear

space.
• In simply connected, compact regions, this space is spanned by a set of

polynomials in the Cartesian coordinates.
• The standard choice of these polynomials is as the Solid Harmonics,

Ym
l

def
= rlY m

l (θ, φ)

where Y m
l is a standard spherical harmonic, l ∈ {0, 1, 2, . . . } and

m ∈ {l, l − 1, l − 2, . . . ,−l}, and (r, θ, φ) are spherical polar coordinates.
• These are in fact polynomials, with total degree l.

• There are other systems of harmonic functions, usually tied to special boundary
conditions or symmetry demands.

• In charge-free regions of space, the electrostatic potential is a harmonic function.
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Using gradients for optimization

In optimization problems, one tries to find maximum or minimum of a scalar
function Q by varying a number of parameters – potentially an infinite number, but

let’s assume a finite number N .

If parameters can be varied freely, we look for stationary ’points’ in parameter
space: Treat parameters as a vector p = (p1, . . . , pN), and try to find p such that

∇Q(p) = 0.

But parameters cannot usually be varied freely. There are side relations, and the
simplest are like R(p) = 0. The restriction Q(p)|R(p)=0 is stationary when ∇Q(p)
has no component along the (hyper-)surface R(p) = 0. This means that ∇Q(p) is

orthogonal to that surface.

But at every point, ∇R(p) is orthogonal to the surface. The criterion is thus that
these two gradients are parallel:

∇Q(p) = λ∇R(p)

for some unknown Lagrange multiplier λ.
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Lagrange multipliers

There are the usual caveats: Q should be differentiable, R(p) = 0 should define a
differentiable manifold, and so on. Leaving the validity of this approach to be

determined in individual applications, the general rules are:

• Look for optima among the stationary points.

• Stationary points of Q, when there is also a number of restrictions R1(p) = 0,
R2(p) = 0, etc. are found from the equation

∇Q(p) = λ1∇R1(p) + λ2∇R2(p) . . .

• Any restriction of the type S(p) ≤ 0 is treated by checking the case of equality
first; then, if a stationary point is found on the surface, check to see if ∇Q
points out from the region allowed by S(p) < 0. If it does, and this is a
minimization, this is a valid stationary point; else go for interior points.
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Series, in general

A series is a sum, with any number of terms – usually infinitely many. An infinite
series is also called a formal series

∑∞

n=0 tn, when it is not intended to be evaluated.

But usually it is, and then one requires that the limit = limN→∞

∑N
n=0 tn must

exist. This is what defines the sum - it should be summed in that order, and if
then the limit exists, it is a convergent series.

Example: Often used is Newtons binomial series, which is a power series,

(1 + z)α =
∞∑

n=0

Γ(α+ 1)

n! Γ(α+ 1− n)
zn, , e.g. withα = −1/2,

∞∑

n=0

(2n− 1)!!

(2n)!!
(−z)n =

1√
1 + z

This series is a finite sum if α is a non-negative integer. Else, it is an infinite series, which
converges if |z| < 1. In both cases, the sum is (1 + z)α. Numerically, the sum is conveniently

computed recursively, as

n:=0; t:=1; S:=1;

while (|t|>eps) do

n:=n+1; t:=t*z*(alpha+1-n)/n; S:=S+t;

end do
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Convergence of series

Some good rules for series:
• If the terms have alternating sign and are decreasing in size towards zero, the

series converges.
• If the terms decrease at least as fast as the terms of a known convergent series,

then the series converges. Comparing with the geometric series, we find:
S =

∑
n tn is convergent, if |tn| < crn for all large enough n, where 0 < r < 1.

A number of other useful convergence rules can be found in most math textbooks.

For a series with real terms, we can collect the positive terms, in order, into one
’subseries’, and the negative terms in another. If both subseries converge, then so
does the original series. If both diverge, then you can exhaust all terms by picking
terms sometimes from one, sometimes from the other subseries. This way it is

possible to arrive at any choosen value at the limit.

The first case is called ’absolute’ or ’unconditional’ convergence. In the other case,
the series is conditionally convergent.

And of course, if only one of the subseries converges, then the series is divergent.
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Series of functions

Criterion: An infinite series
∑

n tn converges absolutely, if the series
∑

n |tn| is
convergent (hence that name).

Let A =
∑

n an and B =
∑

n bn be two absolutely convergent series.
• They can be summed in any order, with the same sum.

• The series can be termwise added, and
∑

n(an + bn) = A+B converges
absolutely.

The terms of the series can be functions of one or more variables. In that case, the
absolute convergence is an important quality. Another is uniform convergence:

• Suppose the terms are functions fn(z), and that the series converges to F (z) for

all z in some set Q. If the supremum, supz∈Q |F (z)−∑N
n=0 fn(z)| tends to 0

when N → ∞, the convergence is uniform.
• Particularly nice is the combined property, absolute uniform convergence, since

then if fn(z) are continuous, then so is F (z), for z ∈ Q.
• Weierstrass M-test: Suppose that |fn(z)| < Mn for z ∈ Q, were

∑∞

n=0Mn is
convergent. Then the function series converges absolutely and uniformly.
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Taylor series of functions

A series of functions, F (z) =
∑∞

n=0 fn(z), is in general convergent only for some
particular set of z values. This is the convergence region of the series. Usually, the

functions are analytic, and the region is some region in the complex plane.

Most common: Power series. The convergence region is the inside of a circle,
|z| < ρ. The parameter ρ is the convergence radius, and it can be anything from 0

to ∞, depending on the series. Examples:
• For any given function F (z), if all its derivatives F (n)(a) are known, the series

F (z) =
∞∑

n=0

F (n)(a)

n!
(z − a)n

is called a Taylor series.
• exp(z), cos(z), sin(z), sinh(z), etc; exponential-related functions have a Taylor

series with ρ = ∞.
• tan(z) has ρ = π/2; arctan(z), and (1 + z)α all have ρ = 1

• exp(−1/|x|), for real x, has a well-defined Taylor series around z = 0, but this
series is the constant 0. The function is not analytic at z = 0, and the convergence

radius is ρ = 0.

Lecture 2A



ESQC 2017 15

The binomial series for
√
1 + z
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Figure 1: Newtons binomial series with exponent 1/2 truncated to 100 terms. The series
converges in z ∈]− 1, 1].

The series is clearly seen to diverge, not only for z ≤ −1, which is due to the
singularity, but also for z > 1, illustrating the concept of a convergence circle.
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Series of other functions

A power series converges absolutely inside the convergence circle, and conditionally
on its boundary except at the actual singularities. Inside the convergence circle, a

power series can be differentiated or integrated by terms, which is a way of
obtaining new series, and which also offers a powerful method for solving

differential equations.

Analogous rules hold for other function series, e.g.
• Laurent series, which converge in an annulus of convergence,

F (z) =
∞∑

n=−∞

anz
n, ρ1 < |z| < ρ2

• Fourier series, which in general converges inside a band around the real axis, to a
periodic function,

F (z) =
∞∑

n=−∞

cn exp(inx),

which is seen to be identical to a Laurent series with z = exp(ix) (so the above is
true when the Laurent series has convergence annulus ρ1 < 1 < ρ2).
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Series of polynomials

The series F (z) =
∑∞

n=0 anpn(z), where pn(z) are polynomials of degree n, are
called polynomial expansions. Typical examples are Chebyshev (pn(z) = Tn(z)) or

Legendre (pn(z) = Pn(z)) polynomials.

Other examples are the Hermite and Laguerre polynomials, in the forms∑∞

n=0 anHn(z) exp(−z2/2) and
∑∞

n=0 anLn(z) exp(−z/2).

Fitting to an analytic function converges within a convergence region, which for
Chebyshev and Legendre is the largest ellipse with foci at z = −1 and 1 within
which the function is analytic. Similarly for Hermite and Laguerre, where the
regions contain the real axis (Hermite) and the positive real axis (Laguerre).

A rather special, but very nice, polynomial series arises from interpolation
polynomials. In analogy to a power series, this series is designed to give values and
derivatives at more than one point, and the convergence region is then the largest
region bounded by a so-called lemniscate curve surrounding the selected points and

within which the function is analytic.
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Chebyshev series

T0 = 1; T1 = x; Tn+1 = 2xTn − Tn−1

Tn(cos θ) = cosnθ; Tn (Tm(x)) = Tnm(x)

Zeroes: Tn(x
(n)
k ) = 0 where x

(n)
k = cos

(
2k − 1

2n
π

)
, k = 1, 2, . . . , n

Orthogonality:

∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =

{
π, if n = m = 0,
π
2
δnm else

And also:

n∑

k=1

Ti(x
(n)
k )Tj(x

(n)
k ) =

{
n, if i = j = 0,
n
2
δij else

Chebyshev series: f(x) =
∞∑

n=0

′anTn(x), where an =
2

π

∫ 1

−1

f(x)Tn(x)√
1− x2

dx
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Chebyshev series, usage

• The Chebyshev series converges absolutely and uniformly inside the largest ellipse,
with foci x = −1 and x = 1, within which f(x) is analytic.

• It is identical to the Fourier series of f(cos θ), which converges e.g. for a continuous
functions, and usually also if there are discontinuities (convergence in mean).

• It can be computed numerically and evaluated easily, also for expansions with a
million terms.

• In the so-called pseudo-spectral methods, it is used together with the Fast Fourier
Transform e.g. to simulate large-scale time evolution and spectral properties.

• If the means are at hand to compute u = Hv many times with any vector v, then
also the set of vectors Tn(H)v can be computed and used with, e.g., Chebyshev
expansions of exp(iHt) to produce time evolution of various differential equations,
e.g. the Schrödinger equation:

vn+1 = 2Hvn − vn−1 ⇔ vn = Tn(H)v0
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Example: artificial spectrum for H atom
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Figure 2: The spectrum of H (s states only) computed from matrix elements of〈
ψ(0)|Tn(Ĥ)ψ(0)

〉
, used in a Chebyshev series.

The wave function ψ(0) = ψ0 at time t = 0 is a ”thermalized” wave functions,
with non-zero amplitudes for energies up to ≈ 5000 a.u. (!). Vectors

ψn = Tn(Ĥ)ψ0 with n up to 106 (!) were combined to yield the spectrum shown.
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Perturbation series

One of the many uses of series expansions is in perturbation theory. For example,
using the so-called Møller-Plesset perturbation theory, the electronic energy of a

molecular system is obtained as a power series,

ε(λ) =
∞∑

n=0

ε(n)λn (1)

The values λ = 0 and λ = 1 give the Hartree-Fock energy, and the exact energy,
respectively. The terms beyond the zeroth order give the correlation energy. In
practical calculations, this is rarely taken beyond second order, which is denoted

MP2.

Using a basis set approximation, for small molecules, the MPn series can be
computed to very high orders. This has been done, e.g. for water, the Ne atom,

etc.

Such calculations show that the series, while still useful, is actually divergent in a
number of simple cases.
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The MPn series of Neon
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CPL 261,369--378, 1996

Figure 3: The errors of the Möller-Plesset series using an aug-cc-pVDZ basis. The dashed line
in the middle is obtained by applying Shank’s sequence transformation formula to the data.

Sequence transformations belong to the very large number of convergence
acceleration tools that can dramatically improve convergence or give sensible

results out of diverging series.
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The Fourier transform

Function spaces characterized by integrability: Let f(x) be defined on x ∈ R.
Then if |f | is Lebesgue integrable, it is called an ”L1 function”, f ∈ L1(R). In that

case, we are guaranteed that the Fourier transform f̃ exists. It can be back
transformed, if also a similar integral for f̃ converges:

f̃(k)
def
=

√
1

2π

∫ ∞

−∞

f(x) exp(−ikx) dx f(x) =

√
1

2π

∫ ∞

−∞

f̃(k) exp(ikx) dx a.e.

(The Lebesgue integral is evaluated using rules that give values also to integrals
with ’nasty’ discontinuities, etc.)

”a.e.”=”almost everywhere” is a code phrase that means that the result is true
except perhaps at isolated points. These are the points where the function f has a

discontinuity. At any point x, the reconstructed function has the value
limǫ→∞(f(x+ ǫ) + f(x− ǫ)/2). In the Banach space L1(R), the reconstructed

function, and the function f(x), represent identically the same vector.
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The Fourier transform

If we define ”Lp functions” as those for which |f(x)|p are integrable, then
evaluation rules have been designed such that they usually have a Fourier

transform. In fact, if f ∈ Lp(R), then f̃ ∈ Lq(R), where 1/p+ 1/q = 1, under
fairly general circumstances.

There is the special case p = q = 2: then f ∈ L2(R) and f̃ ∈ L2(R), they are
both in the same space, which is a Hilbert space, and the Fourier transform is a

unitary mapping. Quantum-mechanically, this implies that the state vector
representing a particle can be transformed back and forth between position and

momentum representation.

The Fourier gives back the original function if applied four times; in L2(R), this
means that it is a unitary operator with eigenvalues 1, i,−1,−i. Eigenfunctions are

known (Harmonic Oscillator wave functions), which can be used to show that
Heisenbergs Uncertainty Relation is an identity when the wave function is a

Gaussian: The product of variances of the position and momentum, Var(x) and
Var(k), is equal to 1/2 if the wave function is Gaussian, else > 1/2 (assuming

electron mass, atomic units, and in 1D only).
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The Fourier transform

With p = ∞, the formula 1/p+ 1/q = 1 suggests that the Fourier transform
should map L∞(R) onto L1(R). L∞(R) denotes functions with the maximum
norm, a.k.a the uniform norm, i.e. functions such that |f(x)| is bounded. The

constant function f(x) = 1 is such a function. But the transform is not integrable.

The Dirac distribution is not an L1(R) function, although it is integrable by
definition. Used in the inverse Fourier transform

1√
2π

∫ ∞

∞

δ(k)eikx dk =
1√
2π

so we can define the transform pair f(x) = 1 f̃(k) =
√
2πδ(k). This (and other)

’tricks’ make it possible to define a large set of transform pairs without
contradictions. This has allowed the Fourier transform to become a workhorse in

most areas of applied mathematics.
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Fourier transform: some facts

g(k) = f̃(k) ⇔ g̃(x) = f(−x)
Linearity: ˜αf + βg = αf̃ + βg̃

Scaling: f(x) = g(αx) ⇔ f̃(k) = g̃(k/α)/|α|
Translation: f(x) = g(x+ t) ⇔ f̃(k) = eiktg̃(k)

Plancherel’s theorem:

∫
f(x)∗g(x) dx =

∫
f̃(x)∗g̃(x) dx

Derivatives: f̃ ′(k) = ikf̃(k) f̃ ′(k) = −ig̃(k) where g(x) = xf(x)

Poisson sum:

∞∑

n=−∞

f(αn) =

√
2π

α

∞∑

n=−∞

f̃(2πn/α)

Convolution: f̃ ∗ g(k) =
√
2πf̃(k)g̃(k)

In higher dimensions than 1:

f(r) = g(Ur) ⇔ f̃(k) = g̃(Uk)

if U is an orthogonal matrix, e.g. a 3D rotation matrix.
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Sample Fourier pairs

Heaviside: Θ̃(k) =
1√
2π

(
1

ik
+ πδ(k)

)

f(x) = exp(−α|x|) ⇔ f̃(k) =

√
2

π

2α

α2 + k2
(Re(α) > 0)

f(x) = exp(−αx2) ⇔ f̃(k) =
1√
2α

exp(−k2/4α) (Re(α) > 0)

f(x) = sin(αx2) ⇔ f̃(k) =
1√
2α

cos(k2/4α + π/4)

f(x) = cos(αx2) ⇔ f̃(k) =
1√
2α

cos(k2/4α− π/4)

f(x) =
1

cosh(x)
⇔ f̃(k) =

√
π

2

1

cosh(πk/2)

(The Heaviside function: Θ(x) = 1, if x > 0; else it is = 0.)
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Fourier transforms in Rn

Cartesian 3D: f(r) = f(x, y, z)⇔ f̃((k) = (2π)−3/2

∫ ∫ ∫
f(r)e−ikr d3r

Polar 2D: f(r, θ) = f(r)eimθ ⇔ f̃(k, θ) = im
∫ ∞

0

f(r)Jm(kr) r dr e
imθ

3D: f(r, θ, φ) = f(r)Ylm(θ, φ)⇔ f̃(k, θ, φ) =

√
2

π
(−i)l

∫ ∞

0

f(r)jl(kr) r
2 dr Ylm(θ, φ)

The Fourier transform can be applied component-wise to vector-valued functions in
a fixed ON basis. Examples: electrodynamics; relativity; plane-wave expansions
in solid-state theory; particle physics. The mapping of operators is logical and

intuitive:

∇φ(r) corresponds to ikφ̃(k)

∇ · v(r) corresponds to ik · ṽ(k)
∇×A(r) corresponds to ik × Ã(k)
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One nice use of eigenvectors: Natural orbitals.

Suppose that the exact wave function Ψ were known, and contains n electrons.
We want to use at most N (where N ≥ n) one-electron spin-orbitals {|ψp〉}, with
p ∈ {1, 2, 3 . . . , N}. One criterion on a good orbital set is that they allow a Full-CI
wave function with large overlap with Ψ. There exists such an ordered set of such
orbitals, that selecting the first N solves the N -orbital maximum-overlap problem,

for any N .

This set of orbitals are the eigenfunctions of the 1-particle spin density of the wave
function, ordered by decreasing eigenvalue. They are called natural (spin-)orbitals,
and the eigenvalues are called natural occupation numbers. These are between 0

and 1, and add up to slightly less than n.

This application to Quantum Machanical systems was done by P. O. Löwdin, who
showed a number of interesting properties.

In general, the use of eigenvectors to find an optimal approximation to e.g.
matrices is old, and much used in numerical algebra, with great practical and

economic value.
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’Condensed’ data: The Singular Value Decomposition.

Similarly to the natural orbitals: Suppose that a large n×m (or even infinite)
general n×m matrix A is to be approximated as well as possible (in a least-square

sense) by factorizing into smaller matrices:

A ≈ UΣVT or Aij =
N∑

k=1

σkUikVjk +Rij

where N is assumed to be much smaller than n and m, and where the weights wk

and the arrays U and V are determined such as to minimize ||R||2. Then this is a
well-known minimization problem, yielding the weights as so-called ’Singular
Values’ and the columns of U and V as corresponding ’Singular Vectors’ in a

Singular Value Decomposition, SVD.

Just as for natural orbitals, the optimal choice for any N is to choose the first N
singular vectors (ordered by decreasing singular value).
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Example of an SVD.

The 50× 50 Hilbert matrix Hkl := 1/(k + l − 1) has 2500 elements,
ranging in value from 1/99 up to 1. Only a handful of eigenvalues

are appreciably different from 0:
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Eigenvalues of 50x50 Hilbert matrix

Since it is a square and symmetric matrix,
its SVD is actually an ordinary spectral de-
composition. Truncated to 9 vectors, the
matrix is represented with a precision a
precision of about 10−8; 16 vectors give
precision 10−16.

Typical savings using matrix decomposition (SVD, Cholesky. . . ) of two-electron
integral data sets: 90% – 99.9%.
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How an SVD is done.

Decomposing a small n×m matrix A is usually done by full diagonalization.
Assume n ≥ m, so rank(A) is at most m. Then compute the square positive

(semi-)definite matrix A†A and proceed by diagonalizing it:

A†A = VΛV†,where VV† = V†V = 1,

Λ is diagonal, and has m real non-negative diagonal elements.

Then let Σ = Λ1/2, and compute

U = AVΣ−1

.

Note that Σ is a diagonal matrix. We assume all elements are positive; if not,
some vectors can be thrown away.

If neither n nor m is small, the SVD can be computed numerically using specialized
linear algebra library calls.

Lecture 2A


