
ESQC 2017 1

Todays lecture

• Natural orbitals, SVD, and all that.

• Matrix diagonalization: The classical Jacobi is not so bad.

• Larger matrices: Krylov methods, Lanczos, Davidson

• Large scale linear and mildly non-linear equation systems: The Pre-conditioned
Conjugate Gradient method.

Lecture 2B

ESQC 2017 2

A useful set of eigenvectors: Natural orbitals.

Suppose that the exact wave function Ψ were known, and contains n electrons.
We want to use at most N (where N ≥ n) one-electron spin-orbitals {|ψp〉}, with
p ∈ {1, 2, 3 . . . , N}. One criterion on a good orbital set is that they allow a Full-CI
wave function with large overlap with Ψ. There exists such an ordered set of such
orbitals, that selecting the first N solves the N -orbital maximum-overlap problem,

for any N .

This set of orbitals are the eigenfunctions of the 1-particle spin density of the wave
function, ordered by decreasing eigenvalue. They are called natural (spin-)orbitals,
and the eigenvalues are called natural occupation numbers. These are between 0
and 1, and add up to n – or slightly less, if only the first few natural orbitals are

used.

This application to Quantum Machanical systems was done by P. O. Löwdin, who
showed a number of interesting properties.

In general, the use of eigenvectors to find an optimal approximation to e.g.
matrices is old, and much used in numerical algebra, with great practical and

economic value.

Lecture 2B

ESQC 2017 3

’Condensed’ data: The Singular Value Decomposition.

Similarly to the natural orbitals: Suppose that a large (or even infinite) general
n×m matrix A is to be approximated as well as possible (in a least-square sense)

by factorizing into smaller matrices:

A ≈ UΣVT or Aij =
N
∑

k=1

σkUikVjk +Rij

where N is assumed to be much smaller than n and m, and where the weights σk
and the arrays U and V are determined such as to minimize ||R||2. Then this is a

well-known minimization problem, yielding the weights as so-called ’Singular
Values’ and the columns of U and V as corresponding ’Singular Vectors’ in a

Singular Value Decomposition, SVD.

Just as for natural orbitals, the optimal choice for any N is to choose the first N
singular vectors (ordered by decreasing singular value).

Lecture 2B

ESQC 2017 4

Example of an SVD.

The 50× 50 Hilbert matrix Hkl := 1/(k + l − 1) has 2500 elements,
ranging in value from 1/99 up to 1. Only a handful of eigenvalues

are appreciably different from 0:

 1e-80

 1e-70

 1e-60

 1e-50

 1e-40

 1e-30

 1e-20

 1e-10

 1

 1e+10

 0 5 10 15 20 25 30 35 40 45 50

E
ig

en
va

lu
e

nr
. N

N

Eigenvalues of 50x50 Hilbert matrix

Since it is a square and symmetric matrix,
its SVD is actually an ordinary spectral de-
composition. Truncated to 9 vectors, the
matrix is represented with a precision a
precision of about 10−8; 16 vectors give
precision 10−16.

Typical savings using matrix decomposition (SVD, Cholesky. . .) of two-electron
integral data sets: 90% – 99.9%.

Lecture 2B

ESQC 2017 5

How an SVD is done.

Decomposing a small n×m matrix A is usually done by full diagonalization.
Assume n ≥ m, so rank(A) is at most m. Then compute the square positive

(semi-)definite matrix A†A and proceed by diagonalizing it:

A†A = VΛV†,where VV† = V†V = 1,

Λ is diagonal, and has m real non-negative diagonal elements.

Then let Σ = Λ1/2, and compute

U = AVΣ−1

.

(If m ≥ n, use instead AA†, and take the Hermitian conjugate of the whole
procedure; then interchange A and A).

Note that Σ is a diagonal matrix. We assume all elements are positive; if not,
some vectors can be thrown away.

If neither n nor m is small, the SVD can be computed numerically using specialized
linear algebra library calls.

Lecture 2B

ESQC 2017 6

Eigenvalues, characteristic equations

For very small matrices, eigenvalues are found from the characteristic equation: Iff
(A− z1) is singular, then the determinant must be zero. That determinant is
simply an n−th degree polynomial in z, having n roots (counting multiplicity),
which can be found by analytic formula if n is less than 5, and in any case easily

determined with arbitrary precision.

Example:

det

((

263 180
180 −94

)

− z
(

1 0
0 1

))

= det

(

263− z 180
180 −94− z

)

= (263− z)(−94− z)− 180 · 180 = 24722− 169z + z2 − 32400

= z2 − 169z − 7678

The roots of this characteristic equation are

169

2
±

√

(

169

2

)2

+ 7678 = {338,−169}

Lecture 2B

ESQC 2017 7

Jacobi’s method

For hermitian n× n matrices with n up to a few hundred, the Jacobi method is a
good choice. It is utterly safe, handles massive degeneracy perfectly and gives

accurately ortonormal eigenvectors. Start by the diagonalization of a two by two
matrix by rotation: The matrix

R(θ)
def
=

(

c s
−s c

)

,

where c = cos θ and s = sin θ, is called a rotation matrix.

This matrix is unitary (in this case: real orthonormal), so its inverse is its
transpose. A similarity transformation that diagonalizes the matrix is thus

RTAR =

(

c −s
s c

)(

A11 A12

A12 A22

)(

c s
−s c

)

=

(

λ1 0
0 λ2

)

The values c = cos θ and s = sin θ are easily obtained without need of the angle θ:

Lecture 2B

ESQC 2017 8

Two by two diagonalization by rotation

A numerically stable solution for the rotation matrix is obtained as

u = (A22 − A11)/(2A12)

t = sign(u)/(|u|+
√
1 + u2)

c = 1/
√
1 + u2

s = ct

Example: A11 = 263,A22 = −94,A12 = 180 gives u = 119
120

, t = 5
12
, c = 12

13
and

s = 5
13

(please confirm!).

and
(

c −s
s c

)(

263 180
180 −94

)(

c s
−s c

)

=

(

338 0
0 −169

)

(please confirm!).

Lecture 2B

ESQC 2017 9

Iterative diagonalization by 2× 2 rotations

In the Jacobi method, one systematically goes through the n(n− 1)/2 pairs of
indices n ≥ i > j ≥ 1, and makes the elements Aij and Aji equal to zero by a
2× 2 rotation. This affects also all elements Aik, etc., but it can be shown that

the quantity

τ 2(A)
def
=

∑

i>j

A2
ij

will be lowered with exactly A2
ij when these elements are zeroed.

This can be used to show that the procedure must eventually converge towards a
diagonal matrix.

Actually the asymptotic convergence is quadratic.

Lecture 2B

ESQC 2017 10

Jacobi iteration statistics, Hilbert matrix

500× 500 Hilbert matrix, 18 eigenvalues are larger than 10−10.

NSWEEP NR NROT VNSUM SBDMAX
0 2.93273830790 0.500000000000
1 2250 2250 0.758507193959 0.261011633900
2 2339 4589 0.182568611379 0.365825130020
3 2478 7067 0.536986782233E-02 0.291822216536E-01
4 3341 10408 0.798664249152E-03 0.207448153681E-01
5 3188 13596 0.396225883696E-04 0.327062209017E-02
6 3280 16876 0.954122256056E-06 0.317102128824E-03
7 3524 20400 0.127960316210E-06 0.291097431498E-03
8 4126 24526 0.402018035910E-08 0.442552481362E-04
9 3968 28494 0.853806236323E-10 0.566486729997E-05
10 4449 32943 0.116339621069E-10 0.311665103047E-05
11 3724 36667 0.524136421267E-13 0.143072616057E-06
12 4920 41587 0.531301978611E-15 0.115003537767E-07
13 5176 46763 0.265352132524E-17 0.424514779212E-09
14 6396 53159 0.261636387705E-19 0.354669310870E-10
15 4825 57984 0.633179746661E-21 0.486714224086E-11

Lecture 2B

ESQC 2017 11

Jacobi iteration statistics

Lecture 2B

ESQC 2017 12

Jacobi, conclusions

The advantages with the Jacobi methods are:

Easy to program.

No problems with massive degeneracy.

Accurately orthonormal eigenvectors.

Almost-diagonal matrices converge fast.

The disadvantages are:

Always giving full diagonalization.(Cannot save time when only a few eigenvectors
are needed).

Slower than modern Householder, QR, MRRR. . .

MUCH slower for large problems (> a few hundred variables)

Lecture 2B

ESQC 2017 13

Subspace iteration (Krylov) methods

Need to find solutions to very large systems of linear equations,

Ax = y

with thousands or millions of variables. A cannot be stored.

The problem can be solved by projection using some small set of basis vectors,
{bk}nk=1, with n << N , which we collect in the N × n matrix B.

The solution is then approximated as

x ≈
n

∑

k=1

zkbk

with a ’backwards error’, the residual vector

r = y −ABz

The small solution vector z which minimizes r in norm, is given by

z =
(

B†AB
)−1

B†y

if the vectors are orthonormal.

Lecture 2B

ESQC 2017 14

Subspace iteration (Krylov) methods

As can be seen, this will provide an approximate solution only if we have a suitable
basis, and if the products Abk can be computed.

The idea in subspace iteration methods is that as long as the residual is non-zero,
it can be used to produce a new basis vector.

The subspace spanned by the basis is then growing, until the residual is so small
that the problem is solved.

For positive definite, hermitian (or symmetric) matrices A, a good idea is to
orthonormalize the residual vector against the old basis. There are several other
methods as well, and often a preconditioner P is applied to the residual. Anyhow,
the basis vectors produced are linear combinations in a Krylov sequence, {An} or
{PAn}, and the basis vectors are thus obtained as polynomials acting on the

starting vector,

pn(A)b1 or pn(PA)b1

where the polynomials are obtained recursively.

Lecture 2B

ESQC 2017 15

The Lanczos method

For positive definite, Hermitian matrices, the basis vectors are automatically being
orthonormalized by just orthonormalizing against the previous two basis vectors, in

exact analogy to recursion formulae for classical orthogonal polynomials.

Moreover, the small matrix representation of the problem will be tridiagonal.

The procedure is called Lanczos method, and can be described by the algorithm

bi = xi/|x|i
σi = Abi

di = σ
T
i bi

xi+1 = σi − dibi − ti−1bi−1

ti = |x|i+1

(Terminate if ti = 0, else repeat)

Diagonalizing the tridiagonal matrix is very fast and efficient, resulting in
eigenvalues and eigenvectors. A is large, and the process is terminated after a

suitable number of steps, so the eigenvalues and eigenvectors are usually
approximate.

Lecture 2B

ESQC 2017 16

Handcomputed example of Lanczos algorithm.

The 9× 9 matrix to diagonalize in Exc. 75.8 pg 726 has elements
Aij = 0.1 + 0.9δij. The result σσσ of multiplying it with an arbitrary vector x is then

σi = 0.1
9

∑

j=1

xj + 0.9
9

∑

j=1

δij xj = 0.1
9

∑

j=1

xj + 0.9xi

which is our ’sigma routine’ for this example.

The algorithm in Eq. 4.39 requires a starting vector; Choose arbitrarily the vector
x1 = (1, 0, 0, 0, 0, 0, 0, 0, 0)T.

Since then
∑9

j=1 xj = 1, we obtain e.g. (σσσ1)1 = 0.1 + 0.9 = 1, while (σσσ1)i = 0.1
for i=2. . . 9.

The algorithm can be followed on the next page.

Lecture 2B

ESQC 2017 17

Handcomputed example of Lanczos algorithm (2).

The algorithm proceeds as follows:

x1 = 1.0

b1 = (1, 0, 0, 0, 0, 0, 0, 0, 0)T

σσσ1 = (1, 0.1, 0.1, . . . , 0.1)T

d1 = σσσT
1 b1 = 1

x2 = σσσ1 − d1b1 = (0, 0.1, 0.1, . . . , 0.1)T

t1 = x2 = 0.282842712

b2 = (0, 0.35355 . . . , . . . , 0.35355339)T

σσσ2 = (0.28284271, 0.60104076, . . . , 0.60104076)T

d2 = 1.7

x3 = σσσ2 − d2b2 − t1b1 = (0, 0, 0, 0, 0, 0, 0, 0, 0)T

If the goal was to perform a tridiagonalization, we have failed, since the algorithm
breaks off here.

Lecture 2B

ESQC 2017 18

Handcomputed example of Lanczos algorithm (3).

The tridiagonal result, so far, is
(

d1 t1
t1 d2

)

=

(

1 0.282842712
0.282842712 1.7

)

Eigenvalues are 0.9 and 1.8. The eigenvector with eigenvalue 1.8 is
(0.333333333, 0.9428090416)T. The corresponding eigenvector of the original

matrix is

0.3333333b1 + 0.942809b2 = (0.333333333, 0.333333333, . . . , 0.333333333)T

The result is exact. The reason for early termination: The matrix has only two
distinct eigenvalues, namely 0.9 (8-fold degenerate) and 1.8. Lanczos converges

quickly if the matrix has clustered eigenvalues.

Lecture 2B

ESQC 2017 19

An outline of ‘Davidson-type’ methods

Initialize: Nstart vectors {q} are given or selected somehow. Let Nold ← 0; Nnew ← Nstart;

Iterate: 1. Orthonormalize: Orthonormalize, e.g. by the Gram-Schmidt procedure, the Nnew q-

vectors against the earlier Nold b vectors, and among themselves. In the process, discard Ndep
linearly dependent vectors. Retain Nnew −Ndep vectors, and set Nnew ← Nnew −Ndep. If

Nnew = 0, the method has failed.

2. Sigma vector generation: Nnew σ-vectors are computed as si = Abi. This is normally the

time-consuming step.

3. Extend Ã: Ãij ← (sibj) for i = Nold + 1, . . . , Nold +Nnew; j=1,. . . ,i.

Nold ← Nold +Nnew.

4. Diagonalize Ã: Obtain Nold eigenvectors and eigenvalues.

Avk = λkvk.

5. Root selection: Select Nsel of these. Criteria can be: smallest eigenvalue, maximum overlap

with earlier solutions, or other.

6. Residual vectors: Compute Nsel residual vectors {r
k} as linear combinations of the s and b

vectors:

rk =
∑

i
vki s

i − λkbi

7. Converged? Discard any residual vectors that are smaller than a given threshold. The remain-

ing Nnew vectors are unconverged. If Nnew = 0, we are finished: Break iteration loop.

8. Preconditioning: From Nnew residual r vectors, form Nnew proposed update vectors {q}.

End of iteration loop: The eigenvectors can be obtained as rk =
∑

i
vki b

i for the selected roots.

Lecture 2B

ESQC 2017 20

A small example

Assume, as a demonstration example, that we wish to find the lowest eigenvalue and
corresponding eigenvector of the 5× 5 matrix

A =

1.0 0.1 0.1 0.1 0.1
0.1 2.0 0.1 0.1 0.1
0.1 0.1 3.0 0.1 0.1
0.1 0.1 0.1 3.0 0.1
0.1 0.1 0.1 0.1 3.0

We will use the standard Davidson method, i.e. preconditioning by dividing the residual elements
with a diagonal approximation to A− λ, and using just a single vector at a time. We assume the

calculation is converged when we obtain a residual vector smaller than 0.05.

Start vector: b1 = (1, 0, 0, 0, 0)T.

Lecture 2B

ESQC 2017 21

The first iteration

1 No need to orthonormalize now, of course: There is only one vector so far.

2 The sigma vector generation is generally the time consuming step. It is usually not done by
a matrix-times-vector operation, but rather a large number of gather, multiple-daxpy, and
scatter operations involving two-electron integrals. In this example, we illustrate this by
simplifying the calculation: s = Ab can be executed as

t← 0.1

5
∑

1

bi

s1 = 0.9b1 + t, s2 = 1.9b2 + t, etc.

which gives s1 = (1.0, 0.1, 0.1, 0.1, 0.1)T.

3 When the algorithm starts, the Ã matrix is empty. Thus, in the first iteration, extending it
actually means to compute the 1× 1 matrix (Ã11) = (s1b1) = (1).

4 This matrix is of course already diagonal.

Lecture 2B

ESQC 2017 22

The first iteration

5 Root selection: In the first iteration, there is no choice. The only root is λ = 1 and v = (1).

6 The residual vector is
r1 = s1 − λb1 = (0, 0.1, 0.1, 0.1, 0.1)T

7 Preconditioning is by elementwise division /(Aii − λ).

(In general, the denominator can be small. If that happens, set the result to zero – Note
that the denominator can be small sometimes. In that case, set the result 0.

q1 = (0, 0.1, 0.05, 0.05, 0.05)T

Lecture 2B

ESQC 2017 23

The second iteration

(Entered with q1 = (0, 0.1, 0.05, 0.05, 0.05)T).

1 q1 is already orthogonal to b1. Normalize:

b2 = (0, 2, 1, 1, 1)T/
√
7

2 Sigma vector generation, as described before:

s2 = (0.5, 4.3, 3.4, 3.4, 3.4)T/
√
7

3 Extend the Ã matrix:

A21 = (s2b1) = 0.5/
√
7 ≈ 0.188982

A22 = (s2b2) = 18.8/7 ≈ 2.685714

Nold ← 2

Lecture 2B

ESQC 2017 24

The second iteration

4 Diagonalizing Ã gives

Ã =

(

0.99392 0.11006
−0.11006 0.99392

)(

0.97907 0
0 2.70664

)(

0.99392 −0.11006
0.11006 0.99392

)

5 Select the lowest root.

6 The residual vector is thus

r2 = 0.99392(s1 − 0.97907b1)− 0.11006(s2 − 0.97907b2)

≈ (0.041,−0.005, 0.000, 0.000, 0.000)T

7 |r2| < 0.05 so the calculation is converged.

The eigenvalue is ca. 0.979, and the eigenvector is

c = 0.99392b1 − 0.11006b2

≈ (0.994,−0.083,−0.042,−0.042, 0.042)T

Lecture 2B

ESQC 2017 25

Improvements to Davidson’s method

Remember: the Davidson method uses the update

q ← (A0 − λ)−1 r

1. Use several roots simultaneously
This is a fairly obvious extension, called Davidson-Liu method.

2. Use better preconditioner, e.g. by full diagonalization of a
submatrix of A.
Again, fairly obvious. Has been done by many people.

3. Get rid of the normalization.
(This allows replacing oldest vectors by the newest ones. Disk space will not grow forever.)

4. Replace the update with a linear combination of
(A0 − λ)−1 r and (A0 − λ)−1 v.
(This gives much improved update vectors when A0 is a good approximation to A (J. Olsen))

Lecture 2B

ESQC 2017 26

Better preconditioning.
Davidson’s recipy, but with the diagonal approximation replaced by a better one,

would be q← (A0 − λ)−1 r
Olsen’s observation: Using better and better A0 fails to improve convergence rate significantly.

Olsen knew that another recipy, namely the ’inverse iteration method’, would give
3-rd order convergence (!): q← (A− λ)−1 v

He proposed the update

q ← c1 (A0 − λ)−1 r+ c2 (A0 − λ)−1 v

with c1, c2 given by the condition q · v = 0. This is also the form suggested by
perturbation theory.

Much improved convergence rates were obtained.

Lecture 2B

ESQC 2017 27

Skipping orthonormalization

Do not form basis vectors b.
Use directly the pairs v(k) and s(k) = Av(k)!

Need compute not only Ãkl =< v(k), s(l) >
but also S̃kl =< v(k),v(l) >!

Do not solve ÃU = UD.
Instead, ÃU = S̃UD; U is no longer unitary.

When solving, S̃ must be orthonormalized.
Use Gram-Schmidt backwards – this is very important!

Now, we no longer need to just add to a growing store of vectors.
Instead, we can discard old ones and reuse disk space.

Lecture 2B

ESQC 2017 28

The Preconditioned Conjugate Gradient method,
example calculation

Assume we wish to solve a large system of linear equations
Hd = −g, such as a linear response calculation. We have available
two subroutine calls. Both take a large vector x as input, and then
compute a new vector y. The first, the sigma routine, computes the
equation matrix times the input vector, i.e. y = Hx. The other, a
preconditioner, multiplies an approximate inverse A ≈ H−1 with the
vector. Both H and A are usually assumed to be positive definite
and symmetric. We will actually use the matrix with undefinite

matrices, to demonstrate that it still works. It usually does: Positive
definiteness is useful in order to guarantee nice convergence

properties, but it is not necessary.

Lecture 2B

ESQC 2017 29

The PCG algorithm

The algorithm is taken directly from the ESQC book, ch 4.

Select an arbitrary positive scale factor ρ1 and set

r1 = −g, p1 = ρ1Ar1, s1 = Hp1, γ1 = rT1 Ar1

Then iterate:

δk = pTk sk, ηk = ρkγk, αk =
ηk
δk
,

dk+1 = dk + αkpk, rk+1 = rk − αksk,

γk+1 = rTk+1Ark+1, βk =
γk+1

ηk

pk+1 = ρk+1(Ark+1 + βkpk), sk+1 = Hpk+1

where ρk+1 is some positive scale factor.

Lecture 2B

ESQC 2017 30

The PCG demonstration example

In this example, we use a rather small matrix (24× 24). It has eigenvalues in the
range [−0.9, 22.1]. The approximate inverse is a diagonal approximation. The

product HA should ideally be = 1. The problem would then be solved
immediately. In reality, the quality of the approximation depends on the eigenvalues
of HA, and on the start vector. Inspection of the algorithm shows that the residual
vector r will then be a linear combination of terms (HA)kg. Assume that we know

a complete spectral resolution of HA, and a corresponding partitioning of H:

HA =
∑

i

λiPi, PiPj = δijPi, g = σωivi

where gi are eigenvectors and Pi are corresponding projectors.

Lecture 2B

ESQC 2017 31

The PCG demonstration example (2)

The residual vector is then a k-th degree polynomial in HA multiplied by H:

rk =
k

∑

n=0

c(k)n (HA)ng =
∑

i

p(λi)ωiHi

In this example, the eigenvalues of HA were spread in the range [−1, 2]. The start
approximation is H = (0, 0, . . . , 0)T, and the right-hand side was

H = (1, 1, . . . , 1)T.

Lecture 2B

ESQC 2017 32

The PCG results

The size of the residual norm after each iteration is tabulated below.

0–th iteration 4.9 (This is the norm of g).
1 7.81
2 3.50
3 0.87
4 1.98
5 0.10
6 0.019
7 0.0037
8 0.00060
9 0.00011
10 0.000023
17 0.0000000000049

Lecture 2B

ESQC 2017 33

The PCG results (2)

A good picture of how the method works is given in the following
plots, which show the expansion of rk in terms of eigenvectors of

HA, i.e. the weights in rk

It is immediately apparent how the method constructs higher and
higher degree polynomials to multiply the weights.

Lecture 2B

ESQC 2017 34

Lecture 2B

ESQC 2017 35

Other modern techniques

Not treated today:

• Many, many useful special matrices: Cauchy, Toeplitz, Circulant,
Vandermonde...

• Many special formats for data compression: Sparse matrices, CUR
factorization, Interpolatory decomposition, ...

• Randomized algorithms

A few favorite books

Lecture 2B

