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Lecture 1  

QM/MM and polarizable continuum methods
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Overview

• Key physical effects

• QM/MM

• Polarisable continuum methods



Key physical effects in solvation

• Electrostatics

• Pauli repulsion

• Dispersion

• Dielectric screening
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Electrostatics

Qλ Ĥelec = − ∑
iλ

Qλ

|Rλ − ri |

E = ⟨Ψ | Ĥelec |Ψ⟩ = ∫ dr Velec(r)ρ(r)

Velec(r) = − ∑
λ

Qλ

|Rλ − r |

• Alternatively,  smooth charges can be used

• Multipoles higher than monopoles can be used (Anthony Stone’s book!)

• Polarization can be considered



Pauli repulsion

• A very simple model:  
 
 Erepl = κ∫ dr ρmol(r) ρsolv(r)
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Figure 2: Eex = kSab

Table 1: CO2 cohesive energy at CRYSCOR geometry. Zero point energy corrected experimental cohesive energy=
�11.85 mEh [10]. Lattice parameter=5.55 Å. COsolid bond length=1.157 Å. COgas bond length=1.159 Å.

Basis/Method DF-HF DF-HF-CABS DF-MP2 DF-MP2-F12 �CCSD(T) P-HF[10] P-LMP2[10]

AVDZ �0.83 �0.79 �7.91 �10.08
AVTZ �0.84 �0.90 �9.43 �10.40 *�0.30 �1.30 �8.87
AVQZ �0.94 �0.97 �9.93 �10.35 �0.99 �9.71
AV[T,Q]Z �10.30 �0.88 �10.47

to 15 iterations to converge. With these two components we can now calculate all monomer and dimer interactions.

Using the CO2 geometry from Maschio et al.[9] we can calculate the HF, DF-MP2, DF-MP2-F12 and CCSD(T)-

F12 cohesive energies per formula unit, which each is defined as:

Ecohesive =
EUnitCell

NMolecules
� EGas (17)

The dimer interactions chosen can be done so in two di⇥erent ways. Firstly for the most accurate energies, a

geometry based radial cut o⇥ is imposed for each monomer in the unit cell within which all dimers are explicitly

calculated. This can be increased until convergence is found. Incidentally the code also can also restart from this

cut o⇥ if higher level of convergence is required. Table 1 summarises the results for this geometry and compares

them to those obtained by P-LMP2. At the DF-MP2 level a direct comparison can be made with P-LMP2 except

for treatment of BSSE. In the complete basis set limit both should be directly comparable which can be seen with

the close agreement for AV[T,Q]Z extrapolated correlation energies. This is also true when using DF-MP2-F12

which by quadruple or even triple zeta size are close to the CBS limit. Finally by combining DF-MP2-F12/AVQZ

and CCSD(T)/AVTZ a cohesive energy of �11.6mEh is obtained and is within the error (±1.5 mEh) of the ZPE

correction literature value of �11.85mEh[10].

8

• A repulsive interaction

• Probably about as important as 
electrostatics over all

Wheatley, Price, Mol. Phys., 69, 507 (1990)

Â|�A�Bi 6= |�A�Bi



A little calculation
• Suppose we have two identical one-electron atoms with Hamiltonians 

  and solutions  

• Dimer has Hamiltonian  , and  

• Energy of product state  : 
 
     

• This state doesn’t obey the Pauli principle, but we can fix that: 
 
                             
 
              

h 1, h 2 h i |ψi⟩ = E |ψi⟩ for i = 1, 2

H = h 1 + h 2 + V ⟨ψ1 |ψ2⟩ = S ∈ ℝ

|ψ1ψ2⟩

⟨ψ1ψ2 |H |ψ1ψ2⟩ = ⟨ψ1ψ2 | h 1 + h 2 + V |ψ1ψ2⟩ = 2E + ⟨V⟩

|Ψ⟩ = 1
2 (1 − p12) |ψ1ψ2⟩

⟨Ψ |H |Ψ⟩
⟨Ψ |Ψ⟩ = ⟨ψ1ψ2 |H(1 − p12) |ψ1ψ2⟩

⟨ψ1ψ2 |1 − p12 |ψ1ψ2⟩
= ?



A little calculation
• So we get 
 
   
 
where  

• Taylor expansion of   gives  
 
 
 

• So where   is repulsive, energy gets more positive as  

⟨ψ1ψ2 |H(1 − p12) |ψ1ψ2⟩
⟨ψ1ψ2 |1 − p12 |ψ1ψ2⟩

= 2E + ⟨V⟩ − 2ES2 − ⟨Vp12⟩
1 − S2 = 2E + ⟨V̄⟩

1 − S2

⟨V̄⟩ = ⟨V⟩ − ⟨Vp12⟩

1/(1 − S2)

V ((S2)

⟨ψ1ψ2 |H(1 − p12) |ψ1ψ2⟩
⟨ψ1ψ2 |1 − p12 |ψ1ψ2⟩

= 2E + ⟨V̄⟩(1 + S2 + ⋯)



Dispersion

• Correlated fluctuations between molecule and 
solvent

• For ground-state energetics simplest to add 
  between every atom in molecule and 
solvent

• But this doesn’t affect the state, doesn’t include 
many-body dispersion effects, and has no effect 
on excitation energies

− C6/R6



Dielectric screening

• Interactions between charges are screened by a polarisable medium

• In an isotropic medium, characterized by dielectric constant  ε

− +

+  –

− +
+  – +  – +  –

+  – +  – +  –

+  – +  – +  –

+  – +  – +  –

+  – +  – +  –

+  – +  – +  –

− +

z
V(z) = fz V(z) = fz /ε



QM/MM
• Should be simple: electrostatic embedding with MM point charges

• But a few things need to be considered:

• Other terms and full energy expression

• Gradients wrt to QM and MM atom positions

• Efficiency (there might easily be 104–105 charges)

• Link atoms

• Polarisable MM environment



The QM/MM energy
• QM and MM atoms positions will be (collectively)   and  

• The MM energy is typically something like 
 
                 
 
 
            

• Here   refers to the type of atom (eg alkyl carbon, alcoholic hydrogen, etc)

• QM Hamiltonian modified to include electrostatic coupling to MM: 
 
                     

RQM RMM

U(RMM) = Ubonded(RMM) + Unonbonded(RMM)

Unonbonded(RMM) = 1
2 ∑

κ≠λ

Qκ Qλ

Rκλ
+ 1

2 ∑
κ≠λ

VLJ
t(κ)t(λ)(Rκλ)

t(κ)

HQM/MM = HQM − ∑
iλ

Qλ

|Rλ − ri |



The QM/MM energy
• In practice just add a fixed potential to the core Hamiltonian 
 
                                
 
where (for example in the AO basis) we have  
 
                   

• But this is just the form of the nuclear attraction integral, so always 
available

HQM/MM
0 = H0 + VMM

VMM
μν = − ∑

λ
Qλ ⟨ημ |Rλ − r |− 1 ην⟩



The QM/MM energy

• Finally the energy is put together as: 
           

            

           
                     

EQM/MM = ⟨Ψ |HQM/MM |Ψ⟩ + U(RMM) + ∑
A∈ QM

∑
λ∈ MM

VLJ
t(A)t(λ)(RAλ)

this term includes the electrostatic part of 
the QM/MM interaction



QM/MM gradients
• First we consider the gradient with respect to a QM atom 
 
 
 
 
 
 

• So this is very straightforward: a normal QM gradient plus simple 
derivatives of the pairwise interaction function

dEQM/MM

dXA
= d

dXA
⟨Ψ |HQM/MM |Ψ⟩ + d

dXA ∑
λ∈ MM

VLJ
t(A)t(λ)(RAλ)

d
dXA

VLJ
t(A)t(λ)(RAλ) = XA − Xλ

|RA − Rλ |
VLJ ′�

t(A)t(λ)(RAλ)



QM/MM gradients
• Next, gradient with respect to an MM atom: 

• All terms contribute, but the second is the standard MM gradient, and 
the last is just as we had on the previous slide

• The energy depends on the position of MM atoms (only) through the  
electrostatic interaction   so (assuming 
variational QM method) 
   

⟨Ψ |HQM/MM |Ψ⟩ ← tr DVMM

dEQM/MM

dXλ
= d

dXλ
⟨Ψ |HQM/MM |Ψ⟩ + dU(RMM)

dXλ
+ d

dXλ ∑
A∈ QM

VLJ
t(A)t(λ)(RAλ)

{∂VMM/∂Xλ}μν
= Qλ ⟨ημ

Xλ − x
|Rλ − r |3 ην⟩

d
dXλ

⟨Ψ |HQM/MM |Ψ⟩ = tr D {∂VMM/∂Xλ}

where



Efficiency
• With cheap DFT or semi-empirical methods, the interaction is easily 

the bottleneck

• There are three basic techniques to speed it up:

• Use interaction between MM atoms and atomic charges in QM 
region (but which charges? sensitivity on basis?) 

• Use some kind of multipole method 

• Do what every quantum chemist spends half their life doing, i.e. 
change the order of operations to contract early (with density for 
gradient and with MM charges for energy) 

( □ □ ) | → □ ( □ | )



Link atoms

• Add link atom L to QM treatment

• Adds 3 additional degrees of 
freedom (L position) that are 
unphysical

• Charge on MM atom very close, so 
over polarises L

• L is usually hydrogen

QM MM

L

If you need the details, Senn and Thiel, Angew. Chem. Int. Ed.  
48 1198 (2009) is a great place to start.



QM/MM in practiceSome applications

PHBH enzyme: W Thiel (Mülheim),

R Mata, H-J Werner (Stuttgart)

QM region: 49 atoms

Chorismate mutase:

Fred Claeyssens, AJM, JNH

QM region: 24 atoms

Converged quantum chemistry for large systems

Chorismate mutase

• Protein bulk treated by molecular mechanics (QM/MM)

• Typically DFT or semi-empirical theory used for active site

Converged quantum chemistry for large systems

Barrier heights

Method CM PHBH

HF 28.3 36.7

B3LYP 10.2 8.4

LMP2 9.5 10.7

LCCSD(T0) 13.1 13.3

Experiment 12.7a 12.0b

14.6c

a
Kast et al., Tet. Lett. 37 2691 (1996)

b
van Berkel et al., Eur. J. Biochem. 179 307 (1989)

c
Ortiz-

Maldonado et al., Biochemistry 43 1569 (2004) and refs. therein; includes a computed entropic correction

Converged quantum chemistry for large systems
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• Plus thousands of other studies

• Enzymes, solids, solvation in liquids, 
etc



Polarisable embedding 
• In standard QM/MM the MM charges polarise the QM region, but not 

vice versa

• A polarisable environment should improve accuracy

• Simplest model: isotropic polarisable point dipoles (or Drude oscs)

• A quick reminder about electrostatics:

R
μa

μb

E = μT
a T2(R) μb Tn(R) = ∇∇⋯

n times

1
R

R
qa

μb

E = qa T1(R) μb Tn(R) ∝ 1
Rn+ 1



Polarisable embedding
• Electric field produced at position   by a charge at  :  

• This induces a dipole at position   according to the polarisability  

• The total induction energy is  
 
              

• That concludes the analysis of a single molecule and a single 
polarisable point; next a molecule and a solvent

b a Fb = − qaT1(R)

b α

E = − 1
2 αFT

b Fb = − 1
2 q2

aαTT
1(R)T1(R) ∝− 1

R4



Polarisable embedding
• So we don’t need to do the whole thing, but generalising the electric 

field at a site   from a single point charge to a density gives 
 

•  So the induced dipole at   can be computed using AO integrals over 
  

• … and these are the electric field integrals you need for all gradient 
theories

b

b
(r − Rb)/ |r − Rb |3

Fb = − qaT1(R) ⟶ Fb = ∫ dr ρ(r) T1(r − Rb)



Polarisable embedding
• Next need to minimize the energy with respect both to parameters n 

the wavefunction and with respect to the magnitude of induced 
dipoles

• Papers about this look complicated because of interaction tensors, etc

• But fundamentally it’s like this:

H(x) = H0 + gAx+
k

2
x
2

E = min
x, 

h |H(x)| i

g

x

H0

A



The direct reaction field - exercise

• Perturbative approximation – assume eigenstate   of   not 
affected by polarisable site; minimize the energy 
 
 
 
 
 
 
 
 
 
(hint: take the Hamiltonian, make expectation value with state  , 
minimize this number w.r.t.  )

|0⟩ H0

|0⟩
x

H(x) = H0 + gAx+
k

2
x
2

E = min
x, 

h |H(x)| i



The direct reaction field - exercise

• Perturbative approximation – assume eigenstate   of   not 
affected by polarisable site; minimize the energy 
 
                               

• If we believe the solvent response is instant, we could instead use the 
Hamiltonian  
 
                                  

• Not the same thing as doing it properly as  

|0⟩ H0

Emin = E0 − g 2⟨0 |A |0⟩2

2k

HDRF = H0 − g 2A2

2k

⟨A2⟩ ≠⟨A⟩2

H(x) = H0 + gAx+
k

2
x
2

E = min
x, 

h |H(x)| i



Continuum solvation models
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ε
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• Takes account of solvent 
structure

• Requires sampling
• Often with static charges, so 

no screening

• No need for sampling
• Ignores solvent structure
• Captures screening (but often 

ignores other effects)



Apparent surface charges

• Put the molecule in a cavity

• The molecule polarises the solvent, inducing a charge density in it

• The electrostatic potential of this charge distribution is modelled as 
the electrostatic potential of a charged layer at the surface

• In the end you need:

• A QM/MM-like interaction with point charges on the cavity surface

• A method to determine these surface charges



COSMO (conductor-like screening)
• Assume solvent is a perfect conductor ( )…  
 
 
 

• Then the potential must vanish both in the solvent and at the surface

ε = ∞

solvent

water 78.5

acetonitrile 36.6

hexane 01.9

ε

ε = ∞
Ω

Γ

ρtot = ρmol + ρind

Φtot = Φmol + Φind

A Klamt, G Schüürmann, J. Chem. Soc. Perkin Trans. 2  799 (1993)

f(ε) = ε − 1
ε + x

, 0 ≤ x ≤ 2



COSMO continued
• Induced density minimizes the total electrostatic energy

• Let 
        

• Then the total electrostatic energy is  
 
      

• Minimizing: 
              

                         

(ρ |ρ′ �) = ∫ dr ∫ dr′� ρ(r)ρ′�(r′�)
|r − r′�| = ∫ dr Φ(r)ρ′�(r) ≡ (Φρ′�)

E = 1
2 (Φtotρtot) = 1

2 (Φmolρmol) + (Φmolρind) + 1
2 (Φindρind)

δE
δρind

= Φmol + Φind = 0 or Φind = − Φmol

E = 1
2 (Φmolρmol) + 1

2 (Φindρmol)



COSMO continued
• The total electrostatic potential vanishes at the surface* 
 
         
 
        

• We only need the electrostatic potential in   to be correct

• This can be achieved by representing   as the Coulomb 
potential of an apparent surface charge   
 
 
 
*Strictly the electric field vanishes at the conductor surface, but electric field is 
gradient of potential, so the potential is a constant; and the boundary condition 
that the potential vanishes at large distance gives    on surface

Φtot(s) = Φmol(s) + Φind(s) = 0 ∀s ∈ Γ

Φind(s) = − Φmol(s) ∀s ∈ Γ

Ω

Φind(s)
σ(s)

Φtot(s) = 0

ε = ∞
Ω

Γ



Surface charge models

• Discretize the surface

• Determine surface charges  

• Add QM/MM-type potential to QM Hamiltonian 
 
                            

• Calculate total energy at the end using  
 
                    

σi

Ĥsolv = − ∑
iλ

σi

|si − rλ |

E = ⟨Ψ | Ĥmol |Ψ⟩+ 1
2 ⟨Ψ | Ĥsolv |Ψ⟩

Advanced Review wires.wiley.com/wcms

FIGURE 1 | Examples of different cavities and corresponding surface meshes.

is the integration weight for the surface of the unit
sphere and RA is the radius of the sphere chosen for
atom A. The quantity FiA is a proper switching func-
tion that varies smoothly from 0 to 1 so to assure
that ai varies smoothly from the full value of each
weight wiR2

A down to 0 when the ith element falls
inside a nearby sphere. The full details of the geo-
metrical construction and the form of the switching
function can be found in the original paper.9 This dis-
cretization scheme constitutes a parameterization of
the solute–solvent interface with continuous first and
second derivatives with respect to the variables in-
volved in its definition, i.e., the atomic positions and
also the sphere radii.

It is useful to conclude this section with a brief
comment on the definition of the cavity (and the
related surface), which is commonly used in PCM.
Traditionally, continuum solvation models have been
applied using a specific choice of molecular surface,
the solvent excluded surface (SES), i.e., a surface
which takes into account the finite size of the sol-
vent molecules. A typical way to define the SES is to
approximate the solvent molecule to a sphere with a
volume equal to its van der Waals (vdW) volume and
to consider the surface, which results from its rolling
on the solute vdW surface.29 This original definition
is not numerically effective especially when deriva-
tives with respect to the geometrical parameters are
required. For such a reason, GEPOL algorithm tra-
ditionally used within PCM approximates the SES

by recursively adding smaller spheres between each
pair of spheres until the resulting vdW surface closely
approximates the SES from the inside. In GEPOL,
the final SES surface is always the result of the in-
tersection of spheres (either centered on atoms or on
algorithm-defined points); in this sense, it can be seen
as an alternative version of the SES made only by con-
vex elements. A smooth and robust algorithm to add
these extra spheres has not yet been developed within
the new CSC scheme and thus only vdW-like surfaces
can be used in that case. In order to approximately
recover the solvent excluded regions, a proper scal-
ing of the vdW radii can be used (see Figure 1 for a
comparison of the different cavities).

THE QM STRATEGY
In the previous section, we have seen how the elec-
trostatic equations are solved within the PCM frame-
work and how the formal solution is translated in a
numerical language introducing a discretization of the
cavity surface. Until now, however, we have not said
anything about the way the solute charge distribution
is treated and how it can be affected by the presence
of the PCM.

Historically, PCM has been developed so as to
couple a continuum description of the solvent with a
QM description of the solute. This coupling is based
on the definition of an effective Hamiltonian in which
the vacuum Hamiltonian H0 is supplemented with

390 Volume 2, May/ June 2012c⃝ 2012 John Wi ley & Sons , L td .

B Mennucci, WIREs 2 386 (2012)



Continuum solvation in operation
Advanced Review wires.wiley.com/wcms

properties such as optical rotation, electronic circu-
lar dichroism, vibrational circular dichroism, and vi-
brational Raman optical activity intensities have been
reformulated using the extended PCM approach.57–63

As an example of application of PCM
to spectroscopies, we summarize here a re-
cent study64 we have performed on the sol-
vatochromism (on both absorption and fluores-
cence) of three typical fluorescent probes used
to study local polarity of complex environments,
namely, 4-aminophthalimide (AP), 6-propionyl-2-
dimethylamino naphthalene (PRODAN), and its
recently synthesized analogue 7-diethylamino-9,9-
dimethyl-9H- fluorene-2-carbaldehyde (FR0). These
three molecules are effective solvent-sensitive probes
as they are examples of so-called charge-transfer (CT)
probes, i.e., those systems in which the excitation pro-
cess can be rationalized in terms of an intramolecular
CT from one part of the molecule (the donor part) to
another part (the acceptor part). The CT probes are
extremely sensitive to the environment for what con-
cerns both their local and bulk properties; in fact, dur-
ing the excitation process, the changes in the charge
distribution lead to large changes in the dipole mo-
ment which, in turn, strongly modify the interactions
with the environment. If the CT probe also presents
hydrogen-bonding (HB) sites, the excitation process
will induce further modifications, this time in the lo-
cal environment, which will make the spectroscopic
signal very sensitive to HB properties of solvents in
addition to polarity.

For the three probes, we have studied the shifts
in absorption and fluorescence energies passing from
apolar to polar solvent, and from polar to protic
solvent. The results obtained using the PCM within
the corrected version of TDDFT we have described
before38 are reported in Figure 2.

As it can be seen from the graph, the PCM de-
scription gives very accurate estimates of the polarity-
induced shift for both absorption and fluorescence
energies of all probes. On the contrary, large discrep-
ancies are observed on the additional polar to pro-
tic shifts; this is reasonably expected for continuum
models, which do not accurately account for strong
local effects as those induced by H bonds. It is, how-
ever, important to note that these effects are quite
different for absorption and fluorescence processes;
indeed, for fluorescence they are large for all probes
(0.2–0.4 eV), whereas for absorption they are really
relevant only for AP (0.12–0.13 eV). To clarify if the
solvent molecules are able to do stable clusters that
modify the optical properties of the solute, a classi-
cal MD simulation of each molecular system in the
corresponding protic solvent has been performed. By

FIGURE 2 | TDCAMB3LYP/6-311+G(d,p)/PCM results of shifts in
the absorption and emission energies (eV) of AP, PRODAN, and FR0
moving from an apolar (cyclohexane for AP, dioxane for PRODAN and
FR0) to a polar (acetonitrile for AP, dimethylsulfoxide for PRODAN and
FR0) solvent. Experimental results are from Ref 65 for AP and Ref 66
for PRODAN and FR0.

properly changing the force field parameters which
describe the probes, both ground and excited states
were investigated. Combining the PCM results and
the MD analysis, the final picture that comes out for
all the probes dissolved in protic solvents is the for-
mation of strongly interacting excited solute–solvent
aggregates. These supramolecular systems can be sim-
ulated using different strategies. Either one extracts a
statistically meaningful sample of solute–solvent con-
figurations from MD trajectories and uses them to
simulate the process of interest, or one assumes that
the interactions between the solute and the first-shell
solvent molecules are so strong and so persistent in
time that they really constitute a stable supermolecule,
which can be characterized exactly as a real molecular
system including its geometry which can be obtained
through a full QM optimization. The results obtained
with the various strategies are reported in Figure 3.

The first important result which comes out is
that the description based on only H bonds (QM su-
permol) poorly reproduces the measured shifts for
AP and, for both PRODAN and FR0, it is not only
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FIG. 3. Temperature dependence of Gibbs energy for gaseous and liquid systems, i.e., (a) water and (b) ethanol. The CCSD(T)/cc-pV6Z//MP2/cc-pVTZ level
was used for water, and the CCSD(T)/cc-pV5Z//MP2/cc-pVTZ level was used for ethanol. The solid red line corresponds to the Gibbs energy curve for gaseous
systems found by IGM, the dashed blue line to that for liquid systems found by IGM/CPCM, and the dashed-dotted green line to that for liquid systems found
by HSM/CPCM.

Gibbs energy becomes essential. We examined the tempera-
ture dependences of the Gibbs energies of gaseous and liquid
water and ethanol; the results are shown in Figs. 3(a) and 3(b),
respectively.

All the Gibbs energy curves in Fig. 3 decrease quasi-
linearly, as expected from Eq. (1). When the IGM treatment
is used, the Gibbs energy curves for the gaseous and liq-
uid phases are quasi-parallel for both water and ethanol. The
IGM and IGM/CPCM give similar values for the translational
and rotational entropies of the gas and liquid, respectively,
which are the main components in the temperature depen-
dence. Since the Gibbs energy of a liquid is always lower
than that of a gas, the two curves have no crossing point in
the range 0–800 K. This means that both water and ethanol
do not boil, even at 800 K.

The slope of the Gibbs energy curve obtained for a liq-
uid using the HSM/CPCM is completely different from those
obtained using the IGM and IGM/CPCM. Since the entropy
in the liquid phase with the HSM/CPCM is considerably
smaller than that in the gas phase with the IGM, the Gibbs en-
ergy curve for a liquid obtained using the HSM/CPCM has a
smaller slope. The Gibbs energy curves for the gas and liquid
therefore cross each other at 382.8 K (109.7 ◦C) and 339.9 K
(66.8 ◦C) for water and ethanol, respectively. These data agree
reasonably with the experimental boiling points of water and
ethanol, namely, 100.0 and 78.3 ◦C, respectively.

F. Solvation equilibration of carbon dioxide gas
in liquid water

As a last example, we examined the solvation equilibra-
tion of CO2 molecules in liquid water, which is given by

CO2(g) → CO2(aq). (17)

The solvation free energy !Gsol is directly obtained from
the difference between the Gibbs energies of CO2(g) and
CO2(aq). Furthermore, using !Gsol, the equilibrium constant
of solvation Ksol, which is defined as the ratio of the mass con-

centrations of CO2 in the gas and in aqueous solution, i.e., ρg
and ρaq, is calculated as follows:

Ksol =
ρaq

ρg
= exp

(
−!Gsol

RT

)
. (18)

Since ρg can be reasonably estimated using the IGM, ρaq is
calculated from Eq. (18).

Table IV shows !Gsol, Ksol, and ρaq under standard con-
ditions (25 ◦C, 1 atm), calculated using the IGM/CPCM and
HSM/CPCM, with the corresponding experimental values.26

Quantum chemical calculations frequently adopt the elec-
tronic energy difference instead of the Gibbs energy differ-
ence. Thus, we further estimated Ksol and ρaq by approximat-
ing !Gsol as the electronic energy difference, !Eelec,sol.

The electronic energy difference listed in Table IV is
large and negative, i.e., !Eelec,sol = −29.9 kJ/mol, because
CO2 is stabilized by the electric field of the solvent. A
similar tendency is seen for the IGM/CPCM, i.e., !GIGM

sol
= −30.1 kJ/mol. However, the experimental value is small
and positive, 0.698 kJ/mol. This discrepancy is smaller in the
HSM treatment, in which !GHSM

sol has a negative value.
The discrepancies in the solvation energies lead to signif-

icantly large errors in evaluating Ksol and ρaq. The calculated
values obtained using !Eelec,sol and !GIGM

sol are five to six or-
ders of magnitude larger than the experimental values. The

TABLE IV. Energy changes for CO2(g) and CO2(aq), equilibrium con-
stant (Ksol), and CO2 solubility in water (ρaq) under standard conditions
(25 ◦C, 1 atm), obtained at the CCSD(T)/cc-pV5Z//MP2/cc-pVTZ level, us-
ing IGM/CPCM and HSM/CPCM.

Energy change (kJ/mol) Ksol ρaq (g/H2O-100 cm3)

!Eelec,sol −29.93 1.750 × 105 3.437 × 104

!GIGM
sol −30.11 1.885 × 105 3.701 × 104

!GHSM
sol −4.04 5.100 1.002

Expt.a 0.70 0.755 0.148

aReference 26.

H Nakai and A Ishikawa, 
J. Chem. Phys. 141 174106 (2014)



Summary

• Many effects couple a molecule to its chemical environment

• We have focused on the simplest, and seen the two principal ways of 
treating electrostatic and screening effects through QM/MM and 
continuum solvation models

• In the next lecture we'll look more deeply into what happens when 
you partition a quantum system, and I’ll tell you a bit about modern 
quantum embedding methods  


