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QM/MM and polarizable continuum methods



Motivation
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Overview

* Key physical effects
e QM/MM

e Polarisable continuum methods



Key physical effects in solvation

e Electrostatics
e Paull repulsion

e Dispersion

e Dielectric screening o @9



Electrostatics

L= <lP | ﬁelee | lP) — [dl’ Velec(r)p(r)
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o Alternatively, smooth charges can be used
e Multipoles higher than monopoles can be used (Anthony Stone's book!)

e Polarization can be considered



Paull repulsion

Al®sPp) # |P4Pp)
* A repulsive interaction

e Probably about as important as
electrostatics over all
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e A very simple model:
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Wheatley, Price, Mol. Phys., 69, 507 (1990)



A little calculation

e Suppose we have two identical one-electron atoms with Hamiltonians
hy, h, and solutions A |y) = E|y;) fori=1,2

 Dimer has Hamittonian H = h; + h, + V,and (v |yp) = S € R

e Energy of product state |y ys):

(s | Hlyyn) = wis | by + hy + Vigy,) =2E + (V)

e This state doesn't obey the Pauli principle, but we can fix that:

|¥) = %(1 — P12 lyin)

(WIH|Y) _ (yrwn | H( = ppo) lyypn) _
(P|Y¥) (yiya | 1 = pio lyyn)

?




A little calculation

° 50 we get
(wiwr | H(1 = p1o) lyyws) _ 2E+ (V) — 2ES* — (Vp12) Yo <V>
(yiwa | 1 = pia lyyn) 1 —§? 1 — 52

where (V) = (V) = (Vp;,)
e Taylor expansion of 1/(1 — S?) gives

(yiyn | H(1 — pio) lyyn)
(wiya | 1 = pia lyqyn)

=2E+ (V)1 + 5%+ ---)

e So where V is repulsive, energy gets more positive as 0(S?)



Dispersion

e Correlated fluctuations between molecule and
solvent

e For ground-state energetics simplest to add
—C¢/R® between every atom in molecule and
solvent

e But this doesn't affect the state, doesnt include
many-body dispersion effects, and has no effect
on excitation energies
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Dielectric screening
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* |[nteractions between charges are screened by a polarisable medium

* In an 1sotropic medium, characterized by dielectric constant &



QM/MM

e Should be simple: electrostatic embedding with MM point charges
e But a few things need to be considered:

Other terms and full energy expression

Gradients wrt to QM and MM atom positions

Efficiency (there might easily be 10410~ charges)

Link atoms

Polarisable MM environment



The QM/MM energy

e OM and MM atoms positions will be (collectively) RM and RMM
* The MM energy is typically something like

U(RMM) — Ubonded(RMM) + Unonbonded(RMM)

o Q,1
RK/I

1
U RMM) = — )
nonbonded( ) 2

KF£A

1
L]
Z Vt(lc)t(/l) (Rlol)
K;é/l

e Here t(x) refers to the type of atom (eg alkyl carbon, alcoholic hydrogen, etc)

e QM Hamiltonian modified to include electrostatic coupling to MM:

0,
IR, —r1;|

Honvmnm = Hom — Z



The QM/MM energy

* In practice just add a fixed potential to the core Hamiltonian

H(())M/MM = H, + VMM

where (for example in the AO basis) we have

V%M=—ZQ,1<’7M‘ IR, —r|™
p

)

e But this is just the form of the nuclear attraction integral, so always
avallable



The QM/MM energy

 Finally the energy Is put together as:

EQM/MM _ <\P | HM/MM | ‘“P) + U(RMM) —+ Z Z (A)t(,l)(RA/l)
AeQM leMM

this term includes the electrostatic part of
the QM/MM interaction



QM/MM gradients

 First we consider the gradient with respect to a QM atom

d EQM/ MM d

= <\11|HQM/MM|‘P>+ i, Z VI (R
4 A A JeMM

X4 —X)
dX t(A)t(/l)( Ry)) = R, —R, | t(A)t(/l)(RAﬂ)

50 this Is very straightforward: a normal QM gradient plus simple
derivatives of the pairwise interaction function



QM/MM gradients

e Next, gradient with respect to an MM atom:

d E_M/MM d dU(RMM) q
— QM/MM a4 LI
X dX@(WIH |'P) + % tax Y VE R4

o All terms contribute, but the second Is the standard MM gradient, and
the last Is just as we had on the previous slide

e [he energy depends on the position of MM atoms (only) through the

electrostatic interaction (¥ | HMWMM @y  (r DVMM 5o (assuming
variational QM method)

d
Tl HMMM gy = ¢+ D {oVMM/0X, }
A

X/l_x
|R,1—1'|3

)

where {aVMM/aXA}W =0, <’7,,,‘



cfficiency

e With cheap DFT or semi-empirical methods, the interaction is easily
the bottleneck

e [here are three basic techniques to speed It up:

Use interaction between MM atoms and atomic charges in QM
region (but which charges! sensitivity on basis?)

Use some kind of multipole method oo o’ I:> *

Do what every quantum chemist spends half their life doing, I.e.
change the order of operations to contract early (with density for
gradient and with MM charges for energy)

( )| = O




| Ink atoms

OM MM
e Add link atom L to OM treatment

e Adds 3 additional degrees of
freedom (L position) that are
L unphysical

e Charge on MM atom very close, so
over polarises L

e | is usually hydrogen

T you need the detalls, Senn and Thiel, Angew. Chem. Int. Ed.
48 | 193 (2009) Is a great place to start.



dractice

¥ -0,C
a OH ©
Method CM  PHBH
HF 28.3 36.7 e Plus thousands of other studies
B3LYP 102 8.4
LMP2 9.5 10.7 e Enzymes, solids, solvation in liquids,
LCCSD(T0) 13.1 13.3 etc

Experiment 12.7¢ 12.0°
14.6°

°F. Claeyssens, J. N. Harvey, F. R. Manby, R. A. Mata, A. J. Mulholland, K. E. Ranaghan, M.
Schiitz, S. Thiel, W. Thiel, and H.-J. Werner, “High-accuracy computation of reaction barriers
in enzymes”, Angew. Chemie - Intl. Ed. 45, 68566859 (2006).



Polarisable embedding

* |n standard QM/MM the MM charges polarise the QM region, but not
vice versa

e A polarisable environment should improve accuracy
e Simplest model: Isotropic polarisable point dipoles (or Drude oscs)

e A quick reminder about electrostatics:

Hi
T R :
E=p, T,(R)p, L(R)= VV.- =
K n times
Hi
R
E=q,T,(Rpu, LR &«

9a



Polarisable embedding

e Electric field produced at position b by a charge at a: ¥, = — g, T{(R)

e This induces a dipole at position b according to the polarisability a

e [he total induction energy Is

1 T 1 2 T I
E = —3aF[F, = - —qaT{RT,(R) o — -

e [hat concludes the analysis of a single molecule and a single
polarisable point; next a molecule and a solvent



Polarisable embedding

e 50 we don't need to do the whole thing, but generalising the electric
field at a site b from a single point charge to a density gives

F,=—-¢T,R) — mﬁiﬁummer—Rg

e So the induced dipole at b can be computed using AO integrals over
r—Ry)/|r-R,|’

e ... and these are the electric field integrals you need for all gradient
theories



Polarisable embedding

e Next need to minimize the energy with respect both to parameters n
the wavefunction and with respect to the magnrtude of induced
dipoles

e Papers about this look complicated because of interaction tensors, etc

e But fundamentally it's like this:

O—QtOnN @ H(z) = Hy + gAz + ~2°
A X



The direct reaction field - exercise

k
H(x) = Hy+ gAx + §$2 IOES %$<¢’H(x)|¢>

e Perturbative approximation — assume eigenstate |0) of Hj, not
affected by polarisable site; minimize the energy

(hint: take the Hamiltonian, make expectation value with state | 0),
minimize this number w.rt. x)



The direct reaction field - exercise

k
H(x) = Hy+ gAx + §$2 IOES %$<¢’H(x)|¢>

e Perturbative approximation — assume eigenstate |0) of Hj, not
affected by polarisable site; minimize the energy

~ §%0]4]0)
2k

min

e [f we believe the solvent response Is instant, we could instead use the
Hamiltonian

e Not the same thing as doing it properly as (A?) # (A)?



Continuum solvation models

D e
‘» Cq

e [akes account of solvent

structure * No need for sampling

. . * |[gnores solvent structure
e Requires sampling
e Captures screening (but often

e Often with static charges, so isnores other effects)

No screening



Apparent surface charges

e Put the molecule in a cavity
e [he molecule polarises the solvent, iInducing a charge density In it

e [he electrostatic potential of this charge distribution is modelled as
the electrostatic potential of a charged layer at the surface

* In the end you need:
A QM/MM-like interaction with point charges on the cavity surface

A method to determine these surface charges



COSMO (conductor-like screening)

e Assume solvent is a perfect conductor (& = o0)...

water /8.5 e—1
fley="", 0<x<2
acetonitrile 36.6 E+ X
hexane 1.9

e Then the potential must vanish both in the solvent and at the surface

€= X Prot = Pmol + Pind
1 (Dtot — (Dmol + (Dind

A Klamt, G Schadrmann, . Chem. Soc. Perkin Trans. 2 799 (1993)



COSMO continuec

 Induced density minimizes the total electrostatic energy

o [ et
(plp) = [dr [dr' pIpr) _ Jdr O(r)p/(r) = (D)

[r — 1’|

e [hen the total electrostatic energy Is

| 1 1
L= E((Dtotptot) — E(q)molpmol) T ((Dmolpind) T E((Dindp ind)

e Minimizing:
ok
OPind

1
b= E(q)molpmol) + @(Dindpmol)

— (I)mol + (I)ind =0 or (I)ind - = (Dmol



COSMO continuec

 [he total electrostatic potential vanishes at the surface™

* We only need the electrostatic potential in €2 to be correct

e This can be achieved by representing @; ,(s) as the Coulomb
potential of an apparent surface charge o(S)

*Strictly the electric field vanishes at the conductor surface, but electric field is
gradient of potential, so the potential is a constant; and the boundary condition

that the potential vanishes at large distance gives @, (s) = 0 on surface



Surface charge models

Soeis s
s ‘ (
PRI, ¢ 0
P cHeRY,

>

e Discretize the surface

e Determine surface charges o; B Mennucci, WIREs 2 386 (2012)

e Add QM/MM-type potential to QM Hamiltonian

== T
o |s; — 1]

il

e Calculate total energy at the end using

E = (¥|Hyo | W)+ (P | Hyy, | P

olv



Continuum solvation in operation

solvatochromism
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H Nakal and A Ishikawa,

J. Chem. Phys. 141 174106 (2014)



Summary

e Many effects couple a molecule to its chemical environment

e We have focused on the simplest, and seen the two principal ways of
treating electrostatic and screening effects through QM/MM and
continuum solvation models

* In the next lecture we'll look more deeply into what happens when
you partition a gquantum system, and I'll tell you a brt about modern
quantum embedding methods



