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Lecture 2

Embedding methods



Overview

e Some background theory
e Survey of embedding methods

e WF-in-DFT embedding, and projection-based embedding




Cutting an arbrtrary quantum system

e Suppose we have a system with two parts, A and B
* We often think in terms of the wavefunction for such a system

e Here we will take a look at what really happens when you try to
describe the quantum state of a subsystem

e Doing so helps understand what Is going on In embedding methods



States of subsystems are welrc

H,

A B

What Is the quantum state for atom A/



Pure quantum states and density operators

* We are very familiar with a state represented as a wavefunction | W)
* An alternative representation is as a density operator p = | W)(¥ |
p is not the electronic density (cf DFT)
p 1s not the one-particle reduced density matrix

p is a way of writing the state that is just as valid as | ¥), but, as we'll
see, much more general

e A quick reminder from linear algebra: a'a is a scalar, but aa" is a matrix

e A gquantum state with a wavefunction Is a pure state



Not all ¢

dantum states are

bure states

e An operator that represents a quantum state (i.e. one that is a density
matrix/operator):

s Hermrtian and positive semi-definite

Has unit trace: trp = 1

« An example of such an operatoris p = %|\P1><‘P1 | +% | W) (P, |

e Thisis a valid quantum state (verify!) but is not associated with a

wavefunction

e Such a state Is called a mixed state

» A physically important example is the thermal state pyorm = e P)Z



Some practice

e Is | W)(W| a density matrix? (Yes, of course, but let's check...)
s it Hermitian? (| ¥) (¥ = (PP = |¥KY]
s it positive?  (a| WP |a) = | (¥|a)|* >0 v
Does it have unit trace!
tr| W)W | = ) (D P)(P | D)
W W)W W) 4 (W =1V

* So ves, everything is fine and | W)(W| is a valid quantum state



Measuring whether a state Is pure

* All guantum states satisfy trp = 1

e Pure states additionally satisfy tr p* = 1

e Mixed states are characterized by tr p? < 1
o Additionally tr p? is positive:

If A, are the eigenvalues of p, tr p* = Zixliz



Partial trace

* Jo figure out state of a subsystem, we need to conduct partial trace

e You can understand exactly what this means by looking at the way
operators behave on a product Hilbert space £ 4 @ # g, but for now
we'll just stick to examples

e Take two subsystems A, B and consider the product state |W) = |y )

* The density operatoris p = |y ) (W, |

e The state in A can be found by performing partial trace over B:

Py =MtUpp = <l//b|,0|1//b> + <l//bl |,0|l//bl> T o = (l/fb|'//al//b><l/fal/fb|llfb>

= |y )y,



cntanglement and mixed states

e A more complicated case: two two-level subsystems, A and B
e Each subsystem has two basis states, |0) and | 1)
e The whole problem is spanned by [00),01),]|10),|11)

e | et the whole system be in the (pure) state

1
Py = ——(100) + |11
|'P) \/E(l Y+ | 11))

e There is correlation In this example: when A'is in 0,s0 1s B

e What Is the state on A!?



cntanglement and mixed states

e Procedure: get the density operator for the whole system and perform
a partial trace

e Density operator:
p=(100)+[11)) (00| + (11])/2
= (100)(00| + [00){11|+ | 11)¢00| + |11){11])/2

e Partial trace: p, = trgp = (05| p|0g) + (15| p | 15)

o The result: p, = <| 0)(0] + | 1)(1] )/2 — a mixed state

* |n this state there Is entanglement between subsystems A and B



1 he upshot

e The quantum state of a subsystem where there Is any correlation at all
between subsystems cannot be represented exactly using a
wavefunction

e [he quantum state of a subsystem with any interaction at all with an
environment cannot be exactly represented using a wavefunction



Mean-field states are not entanglement-free states

o Recalling the example of |¥) = |y ), we found that the state on A
s a pure state (and there Is no entanglement between A and B)

 This is always the character of a product state

e However there could be other ways to partition the system, as
llustrated by a simple chemical example:

almost no entanglement



Mean-field states are not entanglement-free states

o Recalling the example of |¥) = |y ), we found that the state on A
s a pure state (and there Is no entanglement between A and B)

 This is always the character of a product state

e However there could be other ways to partition the system, as
llustrated by a simple chemical example:

lots of entanglement



Mean-field states are not entanglement-free states

o Recalling the example of |¥) = |y ), we found that the state on A
s a pure state (and there Is no entanglement between A and B)

 This is always the character of a product state

* 50 In general: entanglement Is not a property of a system, but of a
particular way of partitioning system

e Mean-field states are products, but can still capture loads of
entanglement



Cutting molecules in half — real calculations
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Figure 6. Variance in particle number (left panel) and the von Neumann
entropy (right panel) in subsystems of neon dimer (blue), ethane
(purple), ethene (gold), and ethyne (green), defined by symmetrically

bisecting each system.
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Schmidt decomposition

e Consider a state in a product Hilbert space: |W) € ', @ # '

e Let the dimension of #Z 4 be d,, and of #Z 5 be d|,
 Suppose d, < d,

e [he state can be represented by a Schmidt decomposition
da

[¥) = ) Jla) ® |B) with @; € #, and B, € K
i=1

 [he significance Is that the length of the expansion is determined by
the dimensionality of the smaller subsystem



Summary of density matrix section

e Subsystems cannot typically be represented by wavefunctions

e Only a valid approximation when there Is almost no interaction

e 50 how do wavefunction-based embedding methods work at all?

e They work by selecting low-entanglement partitions of the system



Survey of embec

C

INg methoc

« ONIOM

e Density-matrix-based embedding methods

o Other embedding schemes



ONIOM

e [he simplest ever method

ONIOM _ rlow _ rlow high
E = E% — EXY + E!

e Kind-of not really embedding — but simple and used all over the place,
both under the name ONIOM, and other names

e Refinements include some degree of embedding, for example using
QM/MM to polarise the high and low-level calculations on A

e Gradients: not too much of a problem...



Density-matrix-based embedding methods

e Density matrix embedding theory (DMET) [Garnet Chan] relies on
the Schmidt decomposition of the state to provide entanglement with
the environment

e The Schmidt decomposition of the exact state Is not avallable, so the
idea in DMET is to use a reference mean-field state to provide the
decomposition

e For an n-orbrtal subsystem, this provides exactly n bath orbitals that
model the ways In which the system can be entangled with the
environment



Other embedding schemes

* A mean-field based method (embedded mean-field theory — EMFT)
also provides mean-field-type entanglement

e Many-body theory also provides an interesting embedding framework:
CCSD can be viewed as a remarkably effective way to embed a 2-
particle subsystem in a chemical environment

e But usually discussed in a time-dependent framework using Green’s
functions under the name dynamical mean-field theory



cmbedding methoc

e [he basic Idea
e Past approaches

e Projection-based embedding

S basec

on DF [



Subsystem DF [

e The Kohn-Sham energy is

Exslpl = Tilp] + Jpvext +Jlpl + Eylp]

e FOr a system that can be broken into molecular pieces p = ZA Pa

e Energy can be decomposed
Senatore and Subbaswamy (1986); Cortona (1990)

Exslp]l = Z Ipal +
A

T,[p1 = ) T,[pa]
A

could be ap;proximated

+ Jpvext + Jlpl + E,.[p]



DF [-based embec

C

INg methoc

e Suppose a system has a ground-state one-particle density p

e HK theorem provides that there Is a functional for the energy:

Ey = Elp]

e Cut this density into two parts (such that each part is also a ground-

state density):

p=prs+tpp  Ey=Elps+ppl = Elpsl + Elpgl + AE|[py, psl

e People have (on several occasions) noticed that you could use
“proper” DFT for Elp,] and Elpg] and approximate AE[py, pgl

Wesolowski & Warshel, Carter; Visscher, Neugebauer; Jacob, ...



Wavefunction in DFI embedding

e The very simple form of DFI-based embedding

Ey = Elps] + Elpgl + AE|p,, p3l

suggests there should be no problem in using a wavefunction method

 Jo set this up, find the potential experienced by electrons in A as a
result of interaction with B:

. 5AE[IDA9 ,03]
0pA

v

* Then do a WF calculation in A with v, 4, as an additional external pot.



The

broblem with all this

o All of this Is exact in principle (so exact WF in exact DFT Is exact)

e But the difficulty beyond that of normal DFT is that AE[p,, pg]
contains AT [pa, ppl = Tilps + ppl — Tilpal — Tilpg]

e The T functional has to be approximated — this is hard, but why?

Elp] = %[dr jdr’

I|lp]l= _%‘[dr [V%’pl(r’ l")] /

2
|p1(r9r,)|
T — 1’

r—r



The problem with all this

* Anyway: existing approximations (T homas-Fermi, GGAs, more
advanced functionals) are not accurate enough to allow cutting
systems through covalent bonds

e Of course | would say that, but...

However, the applicability of the currently available ap-
proximations to vt 1s mostly limited to van der Waals com-
plexes and subsystems connected by hydrogen bonds. If the
interaction between the subsystems has a larger covalent
character, the available approximations for vy break down.*®

THE JOURNAL OF CHEMICAL PHYSICS 132, 164101 (2010)

Accurate frozen-density embedding potentials as a first step
towards a subsystem description of covalent bonds

Samuel Fux,' Christoph R. Jacob,"®"® Johannes Neugebauer,>® Lucas Visscher,® and
Markus Reiher’



Exact’ DFT embedding

e But T,[p] can be calculated exactly (in principle):

Find the KS potential for which p is the ground-state density
Find the KS orbitals in this potential

Evaluate the kinetic energy

p — s — ¢ — TJp]

Fux, Jacob, Neugebauer, Visscher, Reiher; JCP 132, 164101 (2010)
Goodpaster, Ananth, Manby, Miller; JCP 133,084 103 (2010)
Goodpaster, Barnes, Miller; JCP 134, 164108 (201 1)
Huang, Pavone, Carter; JCP 134, 154110 (201 1)
Nafziger, Wu, Wasserman, |CP 135,234101 (201 1)



The source of the problem

* Why Is just doing DFT-In-DF T exactly so hard?
e The trouble comes from trying to partition the system arbitrarily

e [f we make the "right’ partition we can eliminate all the problems



Non-aadrtivity In kinetic energy

e [he non-interacting kinetic energy in KS theory Is just

Iilpl = Z <§0i|_%V2|¢i>

IE0CC

* [n other words 1t is addrtively decomposable

e Let's partition the occupied orbitals into two sets,A U B = occ, then
2 2
p=D 1o+ ) lof
i€A i€B
1 1
Tlpl = ) (@M= VoM + ) (wf -5 V| of)

€A IEB

=T [ps] + T,[pg]



Non-aadrtivity In kinetic energy

e [he non-interacting kinetic energy in KS theory Is just

Iilpl = Z <¢i|_%vzlqﬂi>

1E0CC

o Let's partition the occupied orbitals into two sets, A U B = occ, then

p= D 1o+ ) 1ofI

IEA IEB
! !
TIpl = ) (9! 1—-5 Vet + D (9f -5 V2 eP)
A B

= T,[pal + Tylpgl + AT

Manby, Stella, Goodpaster, Miller; J[CTC 8 2564 (2012)



L ong history of methods based on
orthogonalization

Embedding methods that maintain orthogonality between
subsystem orbitals have been in use for decades. What has not
been recognized is that these can be used to formulate a
formally exact DFT embedding scheme, equivalent |

Manby, Stella, Goodpaster; Miller; JCTC 8 2564 (2012)
 [reating & orbrtals separately; frozen core orbitals
* Work by McWeeny (self-consistent electron groups)
* Huzinaga method

e Spatially localized local-correlation methods

e Frozen-core calculations



Calculating a subsystem c

o [ake ethanol, localize KS orbitals

o Take A = {W

e Form projector (onto B orbitals):
P=) l67)(¢7
1

e Do a |0-electron KS calculation with

A

fA=@-P)f(1-P)




> > W > W w

Maintaining orthogonality




Calculating a subsystem density

o [ake ethanol, localize KS orbitals

e fake A =

e Do a |0-electron KS calculation with

fA=f+uppP



Assembling the KS Fock matrix

e All done In matrix form

F=T+VW4]J+ VX

 [In embedding calculations, extra terms for coupling to subsystem B

F=T+ V"™ 4+J+ V¥4 uP P = SD®S



Effect of u

energy / En

PBE on whole system —154.82798488

PBE in PBE —154.82800669
c o F ) A A
c=F+7 P fi=[f+ooP

-G

)(10) +¢1) ) =

(€0 + Cer )([0) +¢[1) +---)



Effect of u

energy / En
PBE on whole system —154.82798488
PBE in PBE —154.82800669
ptryP 0.0000218]|
PBE in PBE + corr. —154.82798488

N W

0—o uncorrected
o—o corrected

q
(0]

1
—
l

@D N

error / microhartree
O o N
/




Doing something usetul

e Embedding with different mean-field methods
F =T+ V" +]J+ VDY - V(DY + VD) + pP

e Solve SCF to update D*

e Go on to perform a correlated calculation in subsystem A

L= EDFT o EDFT—in—DFT T EWF—in—DFT



Fluorohydrocarbon exchange reaction
R—F + Hy — R-H + HF

Error (ME,)
N = O = N
¢
[ )
®
-m ©

Error (MmE,)
A o a4
B g

1 2 3 4 5 6 7 8 9
Number of Carbons in Subsystem A



MRCI-in-DF T

—>§+O

T — iy

method error wrt MRC| (mE,)
PBE 89.6
CCSD(T) 46.4
MRCI-in-PBE -5.0

basis = aug-cc-pVTZ; full MRCl = 225.9 mE,;

active = Fe, N

method error wrt MRCI (mE,)
PBE 79.7
CCSD(T) 63.1
MRCI-in-PBE 2.6

basis = aug-cc-pVTZ; full MRCl = 123.9 mE,

Jason Goodpaster



Citrate synthase: CCSD(T)-1n-DFI-in-MM

OH
0
0 Q 0
)J\ _CoA -+ HO)WOH — OH
Hoe” s Lo HO
0
OH

DFT
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Bennie et al., JCTC 12 2689 (2016) - NI
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Citrate synthase: CCSD(T)-1n-DFI-in-MM
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0
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Bennie et al., JCTC 12 2689 (2016)

reaction coord./ A



Summary

* Wavefunctions are surtable descriptions of isolated systems
e States of a bit of a system are not (typically) pure states

e By making low-entanglement partitions, you can often get away with
using wavefunctions in subsystems

e But eventually we need more and better embedding schemes that
include correlations with the environment (and are widely applicable
to chemical problems)



