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Lecture 2  

Embedding methods



Overview
• Some background theory

• Survey of embedding methods

• WF-in-DFT embedding, and projection-based embedding

A B



Cutting an arbitrary quantum system

• Suppose we have a system with two parts,  A and B

• We often think in terms of the wavefunction for such a system

• Here we will take a look at what really happens when you try to 
describe the quantum state of a subsystem

• Doing so helps understand what is going on in embedding methods 



States of subsystems are weird
H2

What is the quantum state for atom A?

A B



Pure quantum states and density operators
• We are very familiar with a state represented as a wavefunction  

• An alternative representation is as a density operator  

•   is not the electronic density (cf DFT)

•   is not the one-particle reduced density matrix

•   is a way of writing the state that is just as valid as  , but, as we’ll 
see, much more general

• A quick reminder from linear algebra:   is a scalar, but   is a matrix

• A quantum state with a wavefunction is a pure state

|Ψ⟩

ρ = |Ψ⟩⟨Ψ |

ρ

ρ

ρ |Ψ⟩

a†a aa†



Not all quantum states are pure states
• An operator that represents a quantum state (i.e. one that is a density 

matrix/operator):

• Is Hermitian and positive semi-definite

• Has unit trace:  

• An example of such an operator is  

• This is a valid quantum state (verify!) but is not associated with a 
wavefunction

• Such a state is called a mixed state

• A physically important example is the thermal state  

tr ρ = 1

ρ = 1
2 |Ψ1⟩⟨Ψ1 | + 1

2 |Ψ2⟩⟨Ψ2 |

ρtherm = e− βH /Z



Some practice

• Is   a density matrix? (Yes, of course, but let’s check…)

• Is it Hermitian?     

• Is it positive?       

• Does it have unit trace?  
 

 

• So yes, everything is fine and   is a valid quantum state

|Ψ⟩⟨Ψ |

( |Ψ⟩⟨Ψ | )† = (⟨Ψ |† )( |Ψ⟩†) = |Ψ⟩⟨Ψ |

⟨a |Ψ⟩⟨Ψ |a⟩ = |⟨Ψ |a⟩ |2 ≥ 0

tr |Ψ⟩⟨Ψ | = ∑
i

⟨Φi |Ψ⟩⟨Ψ |Φi⟩

= ⟨Ψ |Ψ⟩⟨Ψ |Ψ⟩ + ⟨Ψ⊥|Ψ⟩⟨Ψ |Ψ⊥⟩ + ⋯ = 1

|Ψ⟩⟨Ψ |



Measuring whether a state is pure

• All quantum states satisfy  

• Pure states additionally satisfy  

• Mixed states are characterized by  

• Additionally   is positive:

• If   are the eigenvalues of  ,  

tr ρ = 1

tr ρ2 = 1

tr ρ2 < 1

tr ρ2

λi ρ tr ρ2 = ∑i λ2
i



Partial trace
• To figure out state of a subsystem, we need to conduct partial trace

• You can understand exactly what this means by looking at the way 
operators behave on a product Hilbert space  , but for now 
we’ll just stick to examples

• Take two subsystems A, B and consider the product state  

• The density operator is  

• The state in A can be found by performing partial trace over B: 
 
  
                  
                

ℋA ⊗ ℋB

|Ψ⟩ = |ψaψb⟩

ρ = |ψaψb⟩⟨ψaψb |

ρA = trB ρ = ⟨ψb |ρ |ψb⟩ + ⟨ψ⊥
b |ρ |ψ⊥

b ⟩ + ⋯ = ⟨ψb |ψaψb⟩⟨ψaψb |ψb⟩

= |ψa⟩⟨ψa |



Entanglement and mixed states
• A more complicated case: two two-level subsystems, A and B

• Each subsystem has two basis states,   and  

• The whole problem is spanned by  

• Let the whole system be in the (pure) state  
 
                               

• There is correlation in this example: when A is in 0, so is B

• What is the state on A?

|0⟩ |1⟩

|00⟩, |01⟩, |10⟩, |11⟩

|Ψ⟩ = 1
2

( |00⟩ + |11⟩)



Entanglement and mixed states

• Procedure: get the density operator for the whole system and perform 
a partial trace

• Density operator: 
           
            

• Partial trace:   

• The result:   – a mixed state

• In this state there is entanglement between subsystems A and B 

ρ = (|00⟩ + |11⟩)(⟨00 | + ⟨11 |)/2
= (|00⟩⟨00 | + |00⟩⟨11 | + |11⟩⟨00 | + |11⟩⟨11 |)/2

ρA = trB ρ = ⟨0B |ρ |0B⟩ + ⟨1B |ρ |1B⟩

ρA = (|0⟩⟨0 | + |1⟩⟨1 |)/2



The upshot

• The quantum state of a subsystem where there is any correlation at all 
between subsystems cannot be represented exactly using a 
wavefunction  

• The quantum state of a subsystem with any interaction at all with an 
environment cannot be exactly represented using a wavefunction 



Mean-field states are not entanglement-free states 

• Recalling the example of  , we found that the state on A 
is a pure state (and there is no entanglement between A and B)

• This is always the character of a product state

• However there could be other ways to partition the system, as 
illustrated by a simple chemical example:

|Ψ⟩ = |ψaψb⟩

A B

almost no entanglement



Mean-field states are not entanglement-free states 

• Recalling the example of  , we found that the state on A 
is a pure state (and there is no entanglement between A and B)

• This is always the character of a product state

• However there could be other ways to partition the system, as 
illustrated by a simple chemical example:

|Ψ⟩ = |ψaψb⟩

A B

lots of entanglement



Mean-field states are not entanglement-free states 

• Recalling the example of  , we found that the state on A 
is a pure state (and there is no entanglement between A and B)

• This is always the character of a product state

• So in general: entanglement is not a property of a system, but of a 
particular way of partitioning system

• Mean-field states are products, but can still capture loads of 
entanglement

|Ψ⟩ = |ψaψb⟩



Cutting molecules in half – real calculations
■ PARTICLE NUMBER FLUCTUATIONS
As indicated above, a strength of the EMFT scheme is that it
permits particle number fluctuations between subsystems and
does not require the number of particles in either subsystem to be
specified at any stage. As can be seen in the preceding results,
EMFT is robust even when partitioning across multiple bonds
and conjugated systems.
The standard deviation in particle number is computed from

the KS determinant |Φ⟩ as

σ = ⟨Φ| ̂ |Φ⟩ − ⟨Φ| ̂ |Φ⟩n n[ ( ) ]A 2 A 2 1/2

where n̂A is the number operator for the symmetrically
orthogonalized atomic orbitals associated with subsystem A. In
terms of the AA block of density matrix in the symmetrically
orthogonalized atomic-orbital basis, this is given by σ = [trDAA−
tr(DAA)2]1/2. Even with a mean-field wave function, the quantum
state on some subset of the one-particle basis is typically
entangled with its environment, and this can be measured
through the von Neumann entropy measure S =−trDAA ln2D

AA.
Here, we use the DAA sub-block in the symmetrically
orthogonalized AO basis, but this is expected to have little effect
on the qualitative conclusions drawn here.
Both metrics are plotted in Figure 6 for neon dimer, ethane,

ethene, and ethyne (as representative partitions across a
nonbonding interaction and bond orders from one to three) as
a function of the internuclear separation between the atoms that
bridge the partition. All calculations are performed using PBE/6-
31G*/DF KS-DFT. It can be seen that both measures increase
considerably with increasing bond order, and in the case of single
bonds, with decreasing internuclear separation. Moreover, the

standard deviation in particle number is around 1 for cutting
across the single bond, and 1.5 for double or triple bonds. This
indicates that the choice in almost all embedding methods of
fixed particle number in each subsystem is far from the physical
situation, and emphasizes the advantage of EMFT in that it can
capture these particle number fluctuations.

■ REPRESENTATIVE APPLICATIONS
Having systematically demonstrated EMFT for a range of
benchmark systems, we now present applications of the method
to more complex systems that are of interest from the recent
computational chemistry literature. We present six additional

Figure 5. RMSD for the atoms in subsystem A, comparing optimized geometries from EMFT or ONIOM to the optimized geometries obtained from
the higher-level KS-DFT. Results are obtained for the reactant and products of the four benchmark reactions, including (a) the 1-chlorodecane/1-
decanol substitution reaction, (b) the Diels−Alder reaction, (c) the pentacene hydrogenation, and (d) the deprotonation of carboxylic acid. In all panels,
the dashed lines correspond to reactants and the solid lines correspond to products.

Figure 6.Variance in particle number (left panel) and the vonNeumann
entropy (right panel) in subsystems of neon dimer (blue), ethane
(purple), ethene (gold), and ethyne (green), defined by symmetrically
bisecting each system.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/ct5011032
J. Chem. Theory Comput. 2015, 11, 568−580
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S = − tr ρ log ρ



Schmidt decomposition

• Consider a state in a product Hilbert space:  

• Let the dimension of   be  , and of   be  

• Suppose  

• The state can be represented by a Schmidt decomposition  
 
        

• The significance is that the length of the expansion is determined by 
the dimensionality of the smaller subsystem

|Ψ⟩ ∈ℋA ⊗ ℋB

ℋA da ℋB db

da < db

|Ψ⟩ =
da

∑
i= 1

λi |αi⟩ ⊗ |βi⟩ with αi ∈ℋA and βi ∈ℋB



Summary of density matrix section

• Subsystems cannot typically be represented by wavefunctions

• Only a valid approximation when there is almost no interaction  
 
 

• So how do wavefunction-based embedding methods work at all?

• They work by selecting low-entanglement partitions of the system



Survey of embedding methods

• ONIOM

• Density-matrix-based embedding methods

• Other embedding schemes

A B



ONIOM
• The simplest ever method 
 
                        

• Kind-of not really embedding – but simple and used all over the place, 
both under the name ONIOM, and other names

• Refinements include some degree of embedding, for example using 
QM/MM to polarise the high and low-level calculations on A

• Gradients: not too much of a problem…

EONIOM = Elow
A+ B − Elow

A + Ehigh
A



Density-matrix-based embedding methods

• Density matrix embedding theory (DMET) [Garnet Chan] relies on 
the Schmidt decomposition of the state to provide entanglement with 
the environment

• The Schmidt decomposition of the exact state is not available, so the 
idea in DMET is to use a reference mean-field state to provide the 
decomposition

• For an n-orbital subsystem, this provides exactly n bath orbitals that 
model the ways in which the system can be entangled with the 
environment



Other embedding schemes

• A mean-field based method (embedded mean-field theory – EMFT) 
also provides mean-field-type entanglement

• Many-body theory also provides an interesting embedding framework: 
CCSD can be viewed as a remarkably effective way to embed a 2-
particle subsystem in a chemical environment

• But usually discussed in a time-dependent framework using Green’s 
functions under the name dynamical mean-field theory



Embedding methods based on DFT

• The basic idea

• Past approaches

• Projection-based embedding



Subsystem DFT
• The Kohn-Sham energy is  
 
                     

• For a system that can be broken into molecular pieces  

• Energy can be decomposed 
Senatore and Subbaswamy (1986); Cortona (1990) 
 
 

EKS[ρ] = Ts[ρ] + ∫ ρvext + J[ρ] + Exc[ρ]

ρ = ∑A ρA

EKS[ρ] = ∑
A

Ts[ρA] + [Ts[ρ] − ∑
A

Ts[ρA]]
could be approximated

+ ∫ ρvext + J[ρ] + Exc[ρ]



DFT-based embedding methods

• Suppose a system has a ground-state one-particle density  

• HK theorem provides that there is a functional for the energy: 
 
                                         

• Cut this density into two parts (such that each part is also a ground-
state density): 
 
          

• People have (on several occasions) noticed that you could use 
“proper” DFT for   and   and approximate  

ρ

E0 = E[ρ]

ρ = ρA + ρB E0 = E[ρA + ρB] = E[ρA] + E[ρB] + ΔE[ρA, ρB]

E[ρA] E[ρB] ΔE[ρA, ρB]

Wesolowski & Warshel, Carter,  Visscher, Neugebauer, Jacob, …



Wavefunction in DFT embedding

• The very simple form of DFT-based embedding 
 
                          
 
suggests there should be no problem in using a wavefunction method

• To set this up, find the potential experienced by electrons in A as a 
result of interaction with B: 
 
                             

• Then do a WF calculation in A with   as an additional external pot.

E0 = E[ρA] + E[ρB] + ΔE[ρA, ρB]

vemb = δΔE[ρA, ρB]
δρA

vemb



The problem with all this

• All of this is exact in principle (so exact WF in exact DFT is exact)

• But the difficulty beyond that of normal DFT is that   
contains  

• The   functional has to be approximated – this is hard, but why? 
 
                         
 
                        

ΔE[ρA, ρB]
ΔTs[ρA, ρB] = Ts[ρA + ρB] − Ts[ρA] − Ts[ρB]

Ts

Ex[ρ1] = 1
2 ∫ dr ∫ dr′ � |ρ1(r, r′�) |2

|r − r′ �|

Ts[ρ1] = − 1
2 ∫ dr [∇2

r′�ρ1(r, r′�)]r′�→r



The problem with all this
• Anyway: existing approximations (Thomas-Fermi, GGAs, more 

advanced functionals) are not accurate enough to allow cutting 
systems through covalent bonds

• Of course I would say that, but…
to be chosen such that it fulfills certain criteria,15,16 which is
in practice difficult to achieve. This problem will be dis-
cussed in more detail in Sec. II C.

Therefore, the FDE scheme can be employed in two dif-
ferent ways. First, it can be used as an effective environment
model by using an approximate frozen density to model the
environment.11,15 In this case, it is possible to obtain an ac-
curate description of an active subsystem of interest, but it
will, in general, neither be possible to correct for deficiencies
of the frozen density nor to describe a polarization of the
environment density. This strategy has, for instance, success-
fully been applied to model solvent effects on molecular
properties15,17–20 and to account for environment effects on
free energies in solution and in proteins.21–24 Second, the
FDE scheme can be used as a subsystem alternative to con-
ventional KS-DFT calculations by iteratively exchanging the
roles of the frozen and nonfrozen subsystems in the so-called
freeze-and-thaw cycles.25 This allows the frozen density to
change, so that in principle it should be possible to obtain
subsystem densities that add up to the correct total electron
densities, even if the initial densities do not fulfill the re-
quired criteria. However, whether such a freeze-and-thaw
procedure eventually converges to the correct total density
has recently been questioned.26 Such a subsystem DFT for-
mulation can be generalized to time-dependent !TD" DFT to
allow for a description of coupled electronic excitations27,28

as well as the calculation of polarizabilities and other general
response properties,29 following the earlier work on TDDFT
within the two-partition FDE context.30,31 Of course, inter-
mediate setups, in which only parts of the frozen density are
updated, are also possible.14

Even though FDE is in principle exact, the exact nonad-
ditive kinetic-energy functional Ts

nadd#!1 ,!2$ is not available
in practical calculations. The evaluation of the nonadditive
kinetic energy for the total density Ts#!tot$ requires the
knowledge of the KS orbitals of the total system, but only
those of the subsystems are available in FDE calculations.
Therefore, in practical calculations the nonadditive kinetic
energy and its contribution to the embedding potential,

vT#!1,!2$ =
"Ts

nadd#!1,!2$
"!1

=
"Ts#!tot$

"!tot
−

"Ts#!1$
"!1

, !3"

have to be approximated. Usually, this is done by applying
an approximate kinetic-energy density functional for evalu-
ating the functional derivative of Ts#!$. Both the local-
density approximation !LDA", corresponding to the well-
known Thomas–Fermi !TF" functional,32,33 as well as
generalized-gradient approximation !GGA" functionals !for
an overview, see Ref. 34" have been used in this context.35,36

In particular, when the popular PW91k kinetic-energy
functional37 is used to approximate vT #this approximation
has also been referred to as GGA97 !Ref. 35"$, accurate re-
sults can be obtained for van der Waals complexes38–40 as
well as for hydrogen-bonded systems.31,35,36,41,42 Recently,
more advanced approximations to vT, which are not derived
from a parent kinetic-energy functional but which try to ap-
proximate the nonadditive kinetic-energy or its functional
derivative directly !the so-called nondecomposable
approximations"—either as an explicit density functional or

as an implicit functional—have also been proposed.43,44

However, the applicability of the currently available ap-
proximations to vT is mostly limited to van der Waals com-
plexes and subsystems connected by hydrogen bonds. If the
interaction between the subsystems has a larger covalent
character, the available approximations for vT break down.45

For instance, it was recently shown that there are severe
deficiencies already for the coordination bond in ammonia
borane46 as well as for the weak covalent bond in complexes
of noble gas atoms and AuF.47 Furthermore, while the avail-
able approximations work reasonably well for complexes
where bonding is mainly ionic, they completely break down
for transition metal complexes with more challenging bond-
ing situations, such as carbonyl complexes where
# -backbonding plays an important role.46 However, in par-
ticular for a subsystem description of biological systems, it is
usually necessary to treat subsystems connected by covalent
bonds. To allow for a rigorous subsystem description of pro-
teins in terms of their amino acid building blocks, a three
partition FDE scheme, in which capping groups are intro-
duced to model covalent bonds between subsystems, has re-
cently been proposed.48 However, such a scheme introduces
additional approximations and can only be considered as a
pragmatic solution for circumventing the insufficiencies of
current approximations to vT.

Thus, to extend to applicability of FDE beyond
hydrogen-bonded systems, the development of improved ap-
proximations to vT is mandatory.45 A promising strategy to
achieve this goal is to investigate exact properties of vT,
which can then be used as guidance in constructing approxi-
mations. In particular, the knowledge of accurate reference
potentials of selected model systems is invaluable for under-
standing such exact properties of vT as well as for identifying
shortcomings of current approximations. Such a strategy has
already been very successful in the development of approxi-
mations to the xc-potential, where the consideration of exact
properties of the xc-potential led, for instance, to the widely
used SAOP potential49–51 or where the comparison to accu-
rate xc-potentials inspired the development of the KTn fam-
ily of xc-functionals.52,53 For approximations to vT much at-
tention has recently been paid to the investigation of exact
properties and the development of approximations enforcing
these properties.43,44 However, exact reference potentials for
vT are so far only known for special limits—such as infi-
nitely separated subsystems43 or close to the nuclei of the
frozen subsystems44—and for four-electron systems.54 As a
first step toward the development of improved approxima-
tions to vT, in this paper, we built on these efforts by numeri-
cally calculating accurate reference potentials for vT and the
effective embedding potential for arbitrary systems, which
allows for a spatially resolved comparison to approximate
potentials.

This work is organized as follows. In Sec. II, the theo-
retical background and the computational methodology used
for the calculation of accurate embedding potentials are pre-
sented. This is followed by a careful assessment of the accu-
racy of this methodology. The quality of the electron density
resulting from the reconstructed potentials is analyzed in
Sec. III, whereas the shape and the accuracy of the potentials

164101-2 Fux et al. J. Chem. Phys. 132, 164101 !2010"

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
129.132.118.73 On: Mon, 30 Nov 2015 15:31:23

Accurate frozen-density embedding potentials as a first step
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The frozen-density embedding !FDE" scheme #Wesolowski and Warshel, J. Phys. Chem. 97, 8050
!1993"$ relies on the use of approximations for the kinetic-energy component vT#!1 ,!2$ of the
embedding potential. While with approximations derived from generalized-gradient approximation
kinetic-energy density functional weak interactions between subsystems such as hydrogen bonds
can be described rather accurately, these approximations break down for bonds with a covalent
character. Thus, to be able to directly apply the FDE scheme to subsystems connected by covalent
bonds, improved approximations to vT are needed. As a first step toward this goal, we have
implemented a method for the numerical calculation of accurate references for vT. We present
accurate embedding potentials for a selected set of model systems, in which the subsystems are
connected by hydrogen bonds of various strength !water dimer and F–H–F−", a coordination bond
!ammonia borane", and a prototypical covalent bond !ethane". These accurate potentials are
analyzed and compared to those obtained from popular kinetic-energy density functionals. © 2010
American Institute of Physics. #doi:10.1063/1.3376251$

I. INTRODUCTION

The quantum chemical description of biomolecules is
challenging because of the large size of such molecules.
Such calculations also produce a large amount of data, which
become increasingly difficult to interpret. Subsystem ap-
proaches, in which a large system is divided into its consti-
tuting fragments, offer a theoretical description which is not
only more efficient but also provides a picture that is much
more accessible for a chemical interpretation !for recent re-
views, see Refs. 1 and 2". Most prominent examples of such
approaches are combined quantum mechanics/molecular me-
chanics schemes,3–7 which allow one to focus on a specific
region of interest, as well as methods for describing proteins
in terms of their amino acid building blocks,8–10 in which all
subsystems are treated on an equal footing.

The frozen-density embedding !FDE" scheme, which has
been introduced by Wesolowski and Warshel11 based on ear-
lier work by Cortona,12 is a very appealing realization of a
subsystem approach within the framework of density-
functional theory !DFT". It is based on a partitioning of the
electron density !tot!r" of the full system into the density
!1!r" of an active subsystem and the density !2!r" of a frozen
environment. A generalization to an arbitrary number of sub-
systems is straightforward !see, e.g., Refs. 13 and 14". For a

given frozen density !2!r", the electron density !1!r" of the
active subsystem can then be determined from a set of one-
electron equations, in which the effect of the frozen environ-
ment is taken into account through an effective embedding
potential given by

!1"

In this embedding potential, v2
nuc!r" denotes the nuclear po-

tential of the environment, Exc#!$ is the exchange-correlation
!xc" energy functional and

Ts
nadd#!1,!2$ = Ts#!tot$ − Ts#!1$ − Ts#!2$ !2"

is the nonadditive kinetic energy functional.
The FDE scheme provides a subsystem description that

is in principle exact. With the exact nonadditive kinetic-
energy functional Ts

nadd#!1 ,!2$, the use of the above effective
embedding potential would yield the exact density !1!r" for
the active subsystem, i.e., the resulting density !1!r" is such
that !tot!r"=!1!r"+!2!r" is equal to the total electron density
obtained from a Kohn-Sham !KS"-DFT calculation on the
full system using the same !approximate" xc-functional.
However, for this to be possible the frozen density !2!r" has

a"Authors to whom correspondence should be addressed. Electronic mail:
christoph.jacob@kit.edu and j.neugebauer@chem.leidenuniv.nl.

b"Present address: Karlsruhe Institute of Technology !KIT", Center for Func-
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many.
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‘Exact’ DFT embedding
• But   can be calculated exactly (in principle):

• Find the KS potential for which   is the ground-state density

• Find the KS orbitals in this potential

• Evaluate the kinetic energy

Ts[ρ]

ρ

ρ ⟶ vKS ⟶ ϕi ⟶ Ts[ρ]

Fux, Jacob, Neugebauer,  Visscher, Reiher, JCP 132, 164101 (2010)
Goodpaster, Ananth, Manby, Miller, JCP 133, 084103 (2010)  

Goodpaster, Barnes, Miller, JCP 134, 164108 (2011)  
Huang, Pavone, Carter, JCP 134, 154110 (2011)

Nafziger, Wu, Wasserman, JCP 135, 234101 (2011)



The source of the problem

• Why is just doing DFT-in-DFT exactly so hard?

• The trouble comes from trying to partition the system arbitrarily

• If we make the “right” partition we can eliminate all the problems



Non-additivity in kinetic energy
• The non-interacting kinetic energy in KS theory is just  
 
                         

• In other words it is additively decomposable

• Let’s partition the occupied orbitals into two sets,  , then  
 
                           

 
        

 
              

Ts[ρ] = ∑
i∈occ

⟨φi |− 1
2 ∇2 |φi⟩

A ∪ B = occ

ρ = ∑
i∈A

|φA
i |2 + ∑

i∈B
|φB

i |2

Ts[ρ] = ∑
i∈A

⟨φA
i |− 1

2 ∇2 |φA
i ⟩ + ∑

i∈B
⟨φB

i |− 1
2 ∇2 |φB

i ⟩

= Ts[ρA] + Ts[ρB] + ΔTs[ρA, ρB]



Non-additivity in kinetic energy

• The non-interacting kinetic energy in KS theory is just  
 
                         

• Let’s partition the occupied orbitals into two sets,  , then  
 
                           

 
        

 
              

Ts[ρ] = ∑
i∈occ

⟨φi |− 1
2 ∇2 |φi⟩

A ∪ B = occ

ρ = ∑
i∈A

|φA
i |2 + ∑

i∈B
|φB

i |2

Ts[ρ] = ∑
i∈A

⟨φA
i |− 1

2 ∇2 |φA
i ⟩ + ∑

i∈B
⟨φB

i |− 1
2 ∇2 |φB

i ⟩

= Ts[ρA] + Ts[ρB] + ΔTs[ρA, ρB]

Manby, Stella, Goodpaster, Miller,  JCTC 8 2564 (2012)



Long history of methods based on 
orthogonalization

• Treating   orbitals separately; frozen core orbitals

• Work by McWeeny (self-consistent electron groups)

• Huzinaga method

• Spatially localized local-correlation methods

• Frozen-core calculations

π

A Simple, Exact Density-Functional-Theory Embedding Scheme
Frederick R. Manby,*,† Martina Stella,† Jason D. Goodpaster,‡ and Thomas F. Miller, III‡
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ABSTRACT: Density functional theory (DFT) provides a formally exact framework for quantum embedding. The appearance
of nonadditive kinetic energy contributions in this context poses significant challenges, but using optimized effective potential
(OEP) methods, various groups have devised DFT-in-DFT methods that are equivalent to Kohn−Sham (KS) theory on the
whole system. This being the case, we note that a very considerable simplification arises from doing KS theory instead. We then
describe embedding schemes that enforce Pauli exclusion via a projection technique, completely avoiding numerically demanding
OEP calculations. Illustrative applications are presented using DFT-in-DFT, wave-function-in-DFT, and wave-function-in-
Hartree−Fock embedding, and using an embedded many-body expansion.

1. INTRODUCTION
Kohn−Sham (KS) density functional theory (DFT) provides a
powerful theoretical framework for performing calculations on
a subsystem exactly embedded in its full, quantum-mechanical
environment.1−3 The quantity that mediates the interaction
between subsystems is the electronic density, which is
partitioned into two terms

ρ ρ ρ= +A B

The KS energy consists of terms relating to subsystems A
and B and an interaction term containing all nonadditive parts
of the energy:

ρ ρ ρ δ ρ ρ= + +E E E E[ ] [ ] [ ] [ , ]A B A B

This last term includes an explicitly known Coulomb
contribution

∫ ∫
ρ ρ ρ ρ ρ

ρ ρ
Δ = − −

=

J J J J

dr dr
r

[ , ] [ ] [ ] [ ]
(1) (2)

A B A B

1 2
A B

12

and, depending on the details of the subsystem partitioning,
simple electrostatic interaction of electrons in A with nuclei in
B and vice versa. Exchange-correlation effects between
subsystems are included through

δ ρ ρ ρ ρ ρ= − −E E E E[ , ] [ ] [ ] [ ]xc A B xc xc A xc B

which of course must be approximated in practical calculations.
If the subsystem densities ρA and ρB are constructed from

mutually orthogonal orbitals, the kinetic energy of the whole
system is simply given by the sum

ρ ρ ρ= +T T T[ ] [ ] [ ]s s A s B

In general, however, there will also be a nonadditive term

ρ ρ ρ ρ ρΔ = − −T T T T[ , ] [ ] [ ] [ ]s A B s s A s B

which must be approximated3,4 or, in more recent versions of
the theory, computed exactly using optimized effective potential
(OEP) methods.5−9

The current authors have demonstrated that OEP methods
can be used in an iterative scheme to obtain the Kohn−Sham
ground state density for molecular systems, including those that
exhibit strongly overlapping subsystem densities.5,6 Reiher and
co-workers used OEP methods to analyze and compare
accurate embedding potentials in approximate embedding
schemes,7 and OEP methods were used to solve for a unique
partitioning of a system by allowing the subsystems to share a
common embedding potential.8,9 Finally, several groups have
utilized these DFT embedding methods to describe the
interface between high-level and low-level subsystems in
wave-function-in-DFT (WF-in-DFT) approaches.9,10,11

In what follows, we avoid the complications of OEP through
three simple, robust innovations: (1) We replace the iterated
DFT-in-DFT with a single conventional KS calculation. (2) We
completely avoid the issue of kinetic energy nonadditivity
through the use of a level shifting projection operator to keep
the orbitals of one subsystem orthogonal to those of another.
And, (3) we develop a simple but effective perturbation theory
to eliminate practically all dependence on the level shift
parameter.
Embedding methods that maintain orthogonality between

subsystem orbitals have been in use for decades. What has not
been recognized is that these can be used to formulate a
formally exact DFT embedding scheme, equivalent to but much
simpler than the recently developed OEP-based methods. The
Philips−Kleinman pseudopotential approach starts by level
shifting the core orbitals12 to produce valence orbitals implicitly
orthogonalized to the core. Even frozen core approximations,
which have been in use in quantum chemistry at least since the
1950s,13 amount to a sort of Hartree−Fock (HF)-based
embedding scheme in which the core and valence subsystems
are described by mutually orthogonal orbitals. Similar ideas
operate in the incremental scheme introduced by Stoll and co-
workers,14 in the region method of Mata and et al.,15 and in
Henderson’s embedding scheme.16 Further details of the large
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Calculating a subsystem density
• Take ethanol, localize KS orbitals

• Take  A  =

• Form projector (onto B orbitals): 
 
 

• Do a 10-electron KS calculation with

P̂ =
X

i

|�B
i ih�B

i |

f̂A = (1� P̂ )f̂(1� P̂ )

{ }



Maintaining orthogonality

f̂A = (1� P̂ )f̂(1� P̂ )f̂A = f̂ + µP̂ f̂A = f̂ + µP̂

A

A

A
B

B
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P̂ =
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Calculating a subsystem density
• Take ethanol, localize KS orbitals

• Take A  =

• Form projector (onto B orbitals): 
 
 

• Do a 10-electron KS calculation with

P̂ =
X

i

|�B
i ih�B

i |

f̂A = f̂ + µP̂



Assembling the KS Fock matrix
• All done in matrix form

• In embedding calculations, extra terms for coupling to subsystem B

F = T + Vnuc + J + Vxc

F = T + Vnuc + J + Vxc + μP P = SDBS



Effect of µ
energy /  Eh    

PBE on whole system –154.82798488

PBE in PBE –154.82800669

0.00002181

PBE in PBE + corr. –154.82798488

µ tr�P

f̂0 = f̂ + µP̂ f̂1 = f̂ +1P̂f̂⇣ = f̂ +
µ

1� ⇣
P̂

(f̂ + µP̂ + µ⇣P̂ + · · · )(|0i+ ⇣|1i+ · · · ) = (✏0 + ⇣✏1 + · · · )(|0i+ ⇣|1i+ · · · )
(f̂ + µP̂ + µ⇣P̂ + · · · )(|0i+ ⇣|1i+ · · · ) = (✏0 + ⇣✏1 + · · · )(|0i+ ⇣|1i+ · · · )
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Doing something useful
• Embedding with different mean-field methods 

• Solve SCF to update  

• Go on to perform a correlated calculation in subsystem A

DA

F = T + Vnuc + J + Vxc,2(DA) − Vxc,1(DA) + Vxc,2(D) + μP

E = EDFT − EDFT− in− DFT + EWF− in− DFT



Fluorohydrocarbon exchange reaction
18A507-8 Goodpaster et al. J. Chem. Phys. 140, 18A507 (2014)
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FIG. 6. The error in CCSD(T)-in-B3LYP embedding (black open circles)
and MP2-corrected CCSD(T)-in-B3LYP embedding (red filled circles) as a
function of the number of carbons included in subsystem A for the exchange
of fluoride to a hydride in (a) 1-fluorodecane and (b) 1-fluoro-1,3,5,7,9-
decapentaene.

potential. When a chemical process involves a large change in
the Mulliken population of subsystem B located on the sub-
system A atoms, it is likely that the embedding error will be
dominated by errors arising from the DFT-level treatment of
subsystem B; errors of this sort cannot be reduced by the MP2
correction.

V. CONCLUSIONS

Projector-based quantum embedding provides a scheme
for multiscale descriptions with the exactness property that
DFT-in-DFT is equivalent to DFT on the whole system.36, 37

In many tests and applications, we find the accuracy of the
scheme to be excellent, allowing for aggressive partitioning
across covalent bonds close to the reactive center of the sys-
tem of interest. However, for some applications, the errors in-
troduced by embedding are larger than would typically be ac-
ceptable, and the principal aims of this paper have been to
understand and take steps towards resolving the errors in such
cases.

Careful comparison of CCSD(T)-in-DFT embedding cal-
culations with CCSD(T) calculations performed over the full
system has led to key insights regarding the sources of error
in the embedding calculations. First, the embedding potential
obtained using approximate density functionals is found to be
accurate for all of the cases we have investigated, making a
contribution to the overall error of the embedding calculation
that is negligible compared to other sources of error. It was
not immediately obvious that this would be the case, because
functionals (particularly in cases where they are parameter-
ized) are designed with accurate energies in mind.

And second, it is found that in many cases, the primary
source of error in CCSD(T)-in-DFT embedding is the treat-
ment of nonadditive exchange-correlation effects with an ap-
proximate density functional. This is important because it is

the one term in the error for which simple corrections can be
developed that conserve the efficiency of the original method.
Here, we found that use of MP2 or SOS-MP2 corrections for
this term typically improved the accuracy of the energetics for
chemical reactions, reducing the average error from 4.6 mEh

to 1.2 mEh with respect to CCSD(T) calculations performed
over the full system.

To investigate the convergence with respect to the size of
subsystem A, we studied dissociation and exchange events at
the terminus of 10-carbon alkyl and conjugated chains. For
the removal of F−, the results of the CCSD(T)-in-DFT em-
bedding calculation for the conjugated system are noticeably
worse than for the alkane, and it is found that the MP2 cor-
rection does not reduce this error in the computed reaction
energy. Our analysis shows, however, that these results follow
from the fact that DFT provides a poor description of the po-
larization of the charged alkene fragment and that the uncor-
rected CCSD(T)-in-DFT results benefit from a cancellation of
errors in the DFT treatment of subsystem B and in the DFT
treatment of nonadditive exchange-correlation. The MP2 cor-
rection improves the description of nonadditive energy term,
but it does not compensate for the inaccuracies in the DFT
description of subsystem B.

For a hydride exchange reaction at the terminus of
the alkyl and conjugated chains, the CCSD(T)-in-DFT em-
bedding results converge smoothly and rapidly to reference
CCSD(T) calculations performed over the full system, regard-
less of inclusion of the MP2 correction and regardless of con-
jugation in the chain. These results demonstrate that in the
regime where DFT is adequate for the treatment of the en-
vironment, our projector-based embedding scheme can effec-
tively partition the system, even in conjugated molecules.

The current work demonstrates that projection-based em-
bedding provides both a rigorous and practical approach to
embedding correlated wavefunctions in a DFT description of
the environment. Although the results presented here utilize
coupled-cluster methods for describing the correlated wave-
fuction, we emphasize that projection-based embedding can
be combined just as easily with multi-reference electronic
structure methods, as well as any mean-field description of
the environment. The embedding method is straightforward
to employ—requiring only the specification of which atoms
are to be treated at the WFT and DFT levels of theory—and
it is fully implemented and available in the MOLPRO quantum
chemistry package.
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+

method error wrt MRCI (mEh)

PBE 89.6
CCSD(T) 46.4
MRCI-in-PBE –5.0

basis = aug-cc-pVTZ; full MRCI = 225.9 mEh; 
active = Fe, N

MRCI-in-DFT

method error wrt MRCI (mEh)

PBE 79.7
CCSD(T) 63.1
MRCI-in-PBE 2.6

basis = aug-cc-pVTZ; full MRCI = 123.9 mEh

Jason Goodpaster



Citrate synthase: CCSD(T)-in-DFT-in-MM
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Citrate synthase: CCSD(T)-in-DFT-in-MM



Summary

• Wavefunctions are suitable descriptions of isolated systems

• States of a bit of a system are not (typically) pure states

• By making low-entanglement partitions, you can often get away with 
using wavefunctions in subsystems

• But eventually we need more and better embedding schemes that 
include correlations with the environment (and are widely applicable 
to chemical problems)


