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Introduction

“[A] reliable quantum mechanical description . . . of more than a few
atoms was practically impossible for a very long time. . . . The solution

to this challenge . . . has emerged from the realization that a
description of the properties of complex systems does not require the
representation of all parts of the system at the same level of detail.”

A. Warshel, Nobel Lecture, December 8, 2013.



Why Embedding/Subsystem Approaches?

Some answers:

standard QC calculations on system+environment may be very costly
(or even unfeasible)

huge amount of CPU time would be spent on a presumably small effect
of the environment

conformational sampling shall be avoided if possible

for analysis, we want to separate solute and solvent properties/effects



Subsystem vs. Embedding Approaches

embedding (“focussed”) approach:
high accuracy for active part, lower accuracy for environment and interaction

subsystem (fragmentation) approach:
high accuracy within fragments, lower accuracy for fragment interaction
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How to approach the problem?

fragment A fragment Bmonomer A monomer B

Starting point 1: Isolated subsystems

treat interaction as perturbation

Starting point 2: Total system

partition quantum mechanical descriptor into subsystem contributions
(e.g., wave function, density, density matrix, Green’s function)

derive optimization conditions for subsystems



Interacting Subsystems: Some initial thoughts

monomer A monomer B

isolated monomers can be described by individual Hamiltonians:

ĤAΨA = EAΨA

ĤBΨB = EBΨB

assuming zero interaction, the total wavefunction can be factorized,

(ĤA + ĤB)ΨA ·ΨB = (EA + EB)ΨA ·ΨB

true dimer Hamiltonian including interaction:

Ĥ(A+B) = ĤA + ĤB + ĤA↔B



Interacting Subsystems: Some initial thoughts

monomer A monomer B

if interaction is weak: use perturbation theory

E(1) = 〈ΨAΨB|ĤA↔B|ΨAΨB〉

form of the interaction Hamiltonian:

ĤA↔B = −
NA∑

I∈A

nB∑
i∈B

ZI

|RI − ri|
−

NB∑
I∈B

nA∑
i∈A

ZI

|RI − ri|
+

nA∑
i∈A

nB∑
j∈B

1
|ri − rj|

+

NA∑
I∈A

NB∑
J∈B

ZIZJ

|RI − RJ |

conceptual problem: electrons are indistinguishable particles . . .
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Interacting Subsystems: Some initial thoughts

wave function for N independent subsystems:

Ψtot(r11 , r21 , . . . , rnN ) = Ψ1(r11 . . .) ·Ψ2(r12 . . .) . . . ·ΨN(r1N . . . rnN )

non-interacting subsystems: product ansatz

antisymmetrisation necessary (but no effect for non-overlapping wavefunctions)

maybe: configuration interaction
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Interacting Subsystems: Some initial thoughts

wave function for N independent subsystems:

Ψtot(r11 , r21 , . . . , rnN ) =
∑
{KI}

c{KI}ÂΨK1(r11 . . .) ·ΨK2(r12 . . .) . . . ·ΨKN (r1N . . . rnN )

non-interacting subsystems: product ansatz

antisymmetrisation necessary (but no effect for non-overlapping wavefunctions)
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Long-Range Interactions: Results from PT

“Polarization approximation”: Antisymmetrization ignored!

first order: electrostatic interaction (unperturbed monomers)

E(1) = 〈Ψ0,AΨ0,B|ĤA↔B|Ψ0,AΨ0,B〉

=

∫
ρA(r)vnuc,B(r)dr +

∫
ρB(r)vnuc,A(r)dr

+

∫
ρA(r)ρB(r′)
|r− r′|

drdr′ +
NA∑

I∈A

NB∑
J∈B

ZIZJ

|RI − RJ|

possible starting point for further approximations:

point-charge representation of total charge density (fitted to ESP)
multipole expansion of ρA(r) and/or ρB(r)



Long-Range Interactions: Results from PT

“Polarization approximation”: Antisymmetrization ignored!

second order: E(2) = E(2)
ind,A + E(2)

ind,B + E(2)
disp,

E(2)
ind,A =

∑
K

〈Ψ0,AΨ0,B|ĤA↔B|ΨK,AΨ0,B〉〈ΨK,AΨ0,B|ĤA↔B|Ψ0,AΨ0,B〉
EA,K − EA,0

E(2)
ind,B =

∑
K

〈Ψ0,AΨ0,B|ĤA↔B|Ψ0,AΨK,B〉〈Ψ0,AΨK,B|ĤA↔B|Ψ0,AΨ0,B〉
EB,K − EB,0

E(2)
disp =

∑
KL

〈Ψ0,AΨ0,B|ĤA↔B|ΨK,AΨL,B〉〈ΨK,AΨL,B|ĤA↔B|Ψ0,AΨ0,B〉
EA,K + EB,L − EA,0 − EB,0



Short-Range Interactions

Phenomenologically:

exchange-repulsion (exchange + Pauli repulsion), ∝ exp[−ηR]

“charge-transfer” (sometimes included in induction)

charge penetration (effect of non-converging multipole expansions)

additional terms arise if correlation is considered (SAPT)



Short-Range Interactions

Perturbation theory:

first-order term (leading contributions):

E(1) =
〈Ψ0,AΨ0,B|ĤA↔B|Ψ0,AΨ0,B〉+ 〈Ψ0,AΨ0,B|ĤA↔BP̂AB|Ψ0,AΨ0,B〉

1 + 〈Ψ0,AΨ0,B|P̂AB|Ψ0,AΨ0,B〉

terms in blue: ∝ S2

⇒ models often employ corrections based on overlap

. . . but antisymmetrization complicates the perturbation analysis . . .

For more details, see, e.g., A. Stone, The Theory of Intermolecular Forces, Oxford University Press, 2013.



QM/MM Partitioning



Starting Point for Approximations

partition Hamiltonian into active system (A) and environment (E)

ĤA+E = ĤA + ĤE + ĤA↔E

treat A, E, and/or A↔ E with different approximations

maybe several active systems, maybe more layers, . . .

But how exactly? At which stage shall we introduce approximations?
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QM/MM Hybrid Methods

system A: QM

interaction: MM

system E: MM

additive QM/MM:

Eadd
tot = EQM

A + EMM
E + EMM

A↔E

subtractive QM/MM (easier to generalize to QM/QM methods):

Esub
tot = EMM

(A+E) + (EQM
A − EMM

A )

identical if

EMM
(A+E) = EMM

A + EMM
E + EMM

A↔E ⇔ EMM
A↔E = EMM

(A+E) − EMM
A − EMM

E



QM/MM: Partitioning the Energy

Three energy contributions:

(1) active-system energy
EQM

A = 〈ΨA|ĤA|ΨA〉

(note: ĤA is the isolated-system Hamiltonian for system A)

(2) environment energy

EMM
E = Ebonded(RE) + Enonbonded(RE)

where typically

Ebonded(RE) = Estretch(RE) + Ebend(RE) + Etorsion(RE)

Enonbonded(RE) = Eelectrostatic(RE) + EvdW(RE)

EvdW accounts for dispersion and exchange-repulsion



QM/MM: Partitioning the Energy

Prototypical MM energy expressions:

Estretch(RE) =

bonds∑
b

kb(db − db,0)2

Ebend(RE) =

angles∑
a

ka(θa − θa,0)2

Etorsion(RE) =

dihedrals∑
d

kd[1 + cos(nφ+ δ)]2

Eelectrostatic(RE) =

nb pairs∑
a<b

QaQb

Rab

EvdW(RE) =

nb pairs∑
a<b

εab

[(
σab

rab

)12

−
(
σab

rab

)6
]



QM/MM: Partitioning the Energy

Three energy contributions (cont’d):

(3) QM↔MM interaction: Apply MM energy expression

EMM
A↔E = Ebonded,A↔E + EvdW,A↔E + Eelectrostatic,A↔E

Notes:

availability of suitable FF parameters for QM atoms can be problematic

bonds across the QM-MM boundary require link-atom formalism



QM/MM Interaction

QM

MM

Mechanical Embedding: Wavefunction of QM part unchanged

Hamiltonian/Electronic Embedding: QM part polarized by environment

Polarizable Embedding: Mutual polarization of QM and MM part

Note: This usually only applies to electrostatics, but could be generalized
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QM/MM Interaction

Mechanical Embedding:

Eelectrostatic,A↔E evaluated with MM charges for QM atoms

⇒ No polarization of QM wavefunction

⇒ Only indirect effects (change in equilibrium structure)

⇒ Changes in QM charge distribution not reflected in interaction term
(e.g., along reaction coordinates)



QM/MM Interaction

Hamiltonian Embedding:

electrostatic interaction Hamiltonian:

Ĥelstat,A↔E = −
el.∑
i

MM atoms∑
a

qa

|ri − Ra|
+

nuc.∑
I

MM atoms∑
a

ZIqa

|RI − Ra|

=

el.∑
i

velstat
emb (ri) +

nuc.∑
I

MM atoms∑
a

ZIqa

|RI − Ra|

⇒ obtain ΨA from

Ĥ′AΨA =

(
ĤA +

el.∑
i

velstat
emb (ri)

)
ΨA = E′AΨA

⇒ polarizes ΨA, changes all energy terms in EQM
A = 〈ΨA|ĤA|ΨA〉



QM/MM Interaction

Hamiltonian Embedding:

electrostatic interaction energy:

Eelstat,A↔E =

〈
ΨA

∣∣∣∣∣
el.∑
i

velstat
emb (ri)

∣∣∣∣∣ΨA

〉
+

nuc.∑
I

MM atoms∑
a

ZIqa

|RI − Ra|

total QM/MM energy:

EQM/MM
tot = EQM

A + EMM
E + EvdW,A↔E

+

〈
ΨA

∣∣∣∣∣
el.∑
i

velstat
emb (ri)

∣∣∣∣∣ΨA

〉
+

nuc.∑
I

MM atoms∑
a

ZIqa

|RI − Ra|

= E′A + EMM
E + EvdW,A↔E +

nuc.∑
I

MM atoms∑
a

ZIqa

|RI − Ra|

(assuming no bonding interactions across the QM/MM boundary)



QM/MM Interaction

Polarizable Embedding:
Introduce flexible MM charge model, polarized by QM charge distribution

Induced point dipoles:

assign polarizabilities to all MM atoms (or general expansion points)

determine induced dipoles as:

µind
a = αa · ~F(Ra)

electric field at MM atom a originates from MM point charges, other
induced dipoles, and QM charge distribution

Alternatives:

fluctuating charges

drude oscillators (charge-on-spring models)



An Example: The DRF Model

Discrete Reaction Field Operator

ĤQM/MM =
∑

i

vDRF(ri)

vDRF(r) =

MM atoms∑
a

qa

|r− Ra|
+

MM atoms∑
a

µind
a ·

(r− Rs)

|r− Rs|

3

induced dipoles are computed self-consistently from

µind
a = αa

[
FQM, nuc(Ra) + FQM, el(Ra) + FMM charges(Ra) + FMM ind. dip(Ra)

]
T.D. Poulsen, P.R. Ogilby, K.V. Mikkelsen, J. Chem. Phys. 2002, 116, 3730;

L. Jensen, P.Th. van Duijnen, J.G. Snijders, J. Chem. Phys. 2003, 118, 514.



Other Polarizable Embedding Schemes

PE model (Kongsted and co-workers)

QM/MMpol (Mennucci and co-workers)

EFP (Gordon, Slipchenko and co-workers)

. . .

Parameters for charges/polarizabilities

either calculated for solvent molecules/env. fragments
(e.g., CHELPG charges, LOPROP polarizabilities)

or fitted, e.g., to experimental polarizabilities



QM/MM Interaction

Hamiltonian Embedding:

effects of dispersion/Pauli repulsion: often not included in Ĥ′A

⇒ MM atoms can act as electron traps (overpolarization, electron spill-out, or electron leaking)

one solution strategy: replace Coulombic potential (−1/r) by

va(r) = −
rn

a,cov − rn

rn+1
a,cov − rn+1

A. Laio, J. VandeVondele, U. Rothlisberger, J. Chem. Phys. 2002, 116, 6941.

strategies to include Hamiltonian embedding for Pauli
repulsion/dispersion based on “model MM density matrices”:
T. Giovannini, P. Lafiosca, C. Cappelli, J. Chem. Theory Comput. 2017, 13, 4854.



QM-derived Embedding Potentials

The Effective Fragment Potential (EFP) method

effective-fragment orbitals are obtained from DFT/HF (+ localization)

interaction Hamiltonian:

ĤA↔E = V̂elstat + V̂pol + V̂ex−rep

V̂ex−rep denotes the exchange-repulsion interaction,

V̂ex−rep =
∑

i

∑
j

βje−αj(ri−Rj)
2

(local potential; Rj is coordinate vector of an LMO centroid; αj and βj are parameters)

C.I. Viquez Rojas, L.V. Slipchenko, J. Chem. Theory Comput. 2020, 16, 6408.



QM-derived Embedding Potentials

Electrostatic potential in EFP:

based on a distributed multipolar analysis of fragment charge
distributions

expansion points k:

each nuclear center
each bond midpoint

multipoles up to octopoles

V̂elstat
k (r) = qkT(rk)−

x,y,z∑
a

µk
aTa(rk) +

1
3

x,y,z∑
a,b

Θk
a,bTa,b(rk)−

1
15

x,y,z∑
a,b

Ωk
a,b,cTa,b,c(rk)

general definition of full interaction tensor: T(k)(rk) = ∇k 1
|r−rk|

here: T(rk) = 1/|r− rk|, Ta: element of T(1)(rk) = ∇ 1
|r−rk| etc.

M. Gordon et al., J. Phys. Chem. A 2001, 105, 293.

C.I. Viquez Rojas, L.V. Slipchenko, J. Chem. Theory Comput. 2020, 16, 6408.



QM-derived Embedding Potentials

Polarization in EFP:

based on distributed polarizabilities on LMO centroids

⇒ localized “orbital” polarizabilities from finite field calculations

M. Gordon et al., J. Phys. Chem. A 2001, 105, 293.

C.I. Viquez Rojas, L.V. Slipchenko, J. Chem. Theory Comput. 2020, 16, 6408.



Continuum Solvation Models



Continuum Solvation Models

Overall Goal: Solvation Free Energies

∆Gsolv = ∆Gcavity + ∆GDispersion + ∆Gelstat

cavity formation and dispersion terms:
often assumed proportional to “solute surface”

only electrostatic term enters the QM Hamiltonian

solvent: homogeneous medium with dielectric constant εout

electrostatic potential ϕ(r): from Poissson’s equation,

∇ · [ε(r)∇ϕ(r)] = −4πρ(r)

note: ε(r) = εin = 1 within QM region, εout outside

J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999;
J.M. Herbert, WIREs Comput. Mol. Sci. 2021, 11, e1519;
F. Jensen, Introduction to Compututational Chemistry, 2nd ed., Wiley, 2007, Section 14.7.



Continuum Solvation Models

reaction potential: ϕreac(r) = ϕ(r)− ϕmol(r), with

ϕmol(r) =

∫
ρmol(r′)
|r− r′|

dr′

(electrostatic potential generated by molecular charge density)

electrostatic solvation energy:

∆Gelstat =
1
2

∫
ϕreac(r)ρmol(r)dr

analytic solutions available for

charge monopole in a spherical cavity (Born model)
point dipole in a spherical cavity (Onsager model)
general multipoles in a spherical cavity (Kirkwood model)
. . . and in ellisoidal cavities (Kirkwood–Westheimer model)



Polarizable Continuum Models

3D polarization problem is turned into a surface charge problem

reaction potential can be expressed exactly as

ϕreac(r) =

∫
surface

σ(s)
|r− s|

ds

surface charge σ(s): defined through jump condition for E-field,

εout(~ns · ~∇)ϕ(s)|out = εin(~ns · ~∇)ϕ(s)|in

in practice: surface charge is discretized,

ϕreac(r) ≈
∑

k

σ(sk)Ak

|r− sk|



Conductor-Like Screening Model (COSMO)

dielectric constant is set to ε =∞

most important consequence:

ϕ(r) = ϕreac(r) + ϕmol(r) = 0

at boundary between molecule and dielectric environment

this condition fixes the values of the surface charges

the same condition can be derived by minimizing the electrostatic
energy of the molecule–surface charge system w.r.t. the surface
charges

ideal, unscreened charges are finally scaled by

f (ε) =
ε− 1
ε+ k

(k = 0.5 in original work by Klamt, later versions often use k = 0)

A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 2 (1993), 799;



Conductor-Like Screening Model (COSMO)

electrostatic part of solvation energy in COSMO

Eel,COSMO =
1
2

∑
µ

∑
ν

qµAµνqν +
∑

A

∑
µ

qµBAµZA +
∑
µ

qµCµ

qµ = apparent surface charges (ASCs), from minimization of Esolv,

A~q = −(B~Z + ~C)

with

Aµν =

{
|~rµ −~rν |−1 for µ 6= ν

1.07
√

4π
Sµ

for µ = ν

BAµ = |~rµ −~rA|−1

Cµ = vCoul[ρ](~rµ)

A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 2 (1993), 799;

C.C. Pye, T. Ziegler, Theor. Chem. Acc. 101 (1999), 396



A Local COSMO Variant

Ubiquitin, > 1200 atoms; (a) Cartoon representation, (b) atomistic representation

Problem: Size of matrix A for large systems

Matrix Dimension H2O Ubiquitin FMO
A O(n2

ASCs) 12 769 4.2 · 108 7.0 · 109

solution: update only active ASCs (around active fragment)
A. Goez, J. Neugebauer, J. Chem. Theory Comput. 2015 11, 5277.



Polarizable Continuum Models

A B

δ

R *

(R∗ = RA + Rsolv
vdW)

Further important aspects:

shape of molecular cavity

outlying charge corrections

extensions for dispersion, exchange–repulsion
J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999;
J.M. Herbert, WIREs Comput. Mol. Sci. 2021, 11, e1519.



QM/MM: Conclusions/Further Comments

various ways to include electrostatics (and systematically improve it)

polarizable force fields also directly affect response properties

alternatively, polarizable force fields can result in state-specific
embedding potentials

repulsive short-range correction needed to avoid overpolarization

continuum models solve sampling problem in addition



QM/QM Hybrid Methods:
An Introduction



Methods for Environmental Effects

continuum models QM/MM methods pure QM methods

Wish list for an “ideal” environmental model:

should be efficient (comparable to isolated molecule)
should be able to model specific effects (atomistic structure)
should be transferable (parameter-free)
should focus on the embedded system

⇒ QM/QM embedding methods
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QM/QM Hybrid Methods

Partitioning is possible at different levels:

energy partitioning

wavefunction partitioning

density-matrix partitioning

Green’s function partitioning

density partitioning



Simple QM/QM Hybrid Methods

system A: QM1

interaction: QM2

system E: QM2

ONIOM: a generalization of subtractive QM/MM

EQM/QM
tot = EQM2

(A+E) + (EQM1
A − EQM2

A )

interaction defined as

EQM2
A↔E = EQM2

(A+E) − EQM2
A − EQM2

E

generalizations for many layers (QM1/QM2/MM/continuum) and electrostatic
embedding

properties require corresponding definitions



Fragmentation Methods

Molecular Fractionation with Conjugated Caps (MFCC)
developed for proteins; partition into oligopeptides
use model for neighboring fragments as caps
sum up results for all capped fragments, subtract concaps
no electrostatic embedding; better with larger caps

D.W. Zhang, J.Z.H. Zhang, J. Chem. Phys. 119 (2003), 3599.



Increment Methods

General idea:
largest part of Etot is due to energies of (isolated) subsystems
interaction energy: mainly due to pair interactions
general energy expression:

Etot =
∑

I

EI +
∑
I<J

EI↔J +
∑

I<J<K

EI↔J↔K + . . .

EI↔J = EIJ − EI − EJ

EI↔J↔K = EIJK − EI − EJ − EK

−(EIJ − EI − EJ)− (EIK − EI − EK)− (EJK − EJ − EK)

nth-order increment method: exact for n subsystems



Increment Methods



Increment Methods



Fragment Molecular Orbital Method (1)

8 e

8 e

8 e

10 e

FMO-1
fragmentation without separation of bond electron pairs
fragment calculations under full electrostatic embedding
no capping applied

K. Kitaura et al., Chem. Phys. Lett. 313 (1999), 701.



Fragment Molecular Orbital Method (1)

generate localized MOs
for capped fragment

use these LMOs as basis
for "true" fragments

FMO-1
fragment orbitals are expressed through localized orbitals
obtained from reference compound (capped fragment)
minimal basis is applied⇒ bond electron pairs have no freedom
to change compared to reference compound



Fragment Molecular Orbital Method (2)

FMO-2
2nd order increment method
monomers and dimers are obtained with full electrostatic
embedding potential, based on localized orbitals

⇒ FMO-2 implicitly contains higher-order terms



More about QM/QM tomorrow . . .


