QM/QM and QM/MM Hybrid Methods Subsystem and Embedding Methods for Quantum Chemistry

Johannes Neugebauer

ESQC, Sicily, 2022

Lecture 2

Contents

- introduction
- energy-based embedding schemes
- many-body expansions (MBEs)
- subsystem DFT and density-based embedding
- "exact embedding" through potential reconstruction
- "exact embedding" through projection
- WF/DFT embedding
- density matrix embedding theory (DMET)

QM/QM Hybrid Methods

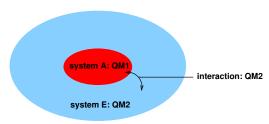
Partitioning is possible at different levels:

- energy partitioning
- wavefunction partitioning
- density-matrix partitioning
- Green's function partitioning
- density partitioning
- ...

Energy-Based Partitioning

and Many-Body Expansions

Simple QM/QM Hybrid Methods



ONIOM (Morokuma): a generalization of subtractive QM/MM

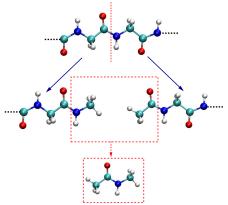
$$E_{
m tot}^{
m QM/QM} \ = \ E_{(A+E)}^{
m QM2} + (E_A^{
m QM1} - E_A^{
m QM2})$$

interaction defined as

$$E_{A\leftrightarrow E}^{\mathrm{QM2}}=E_{(A+E)}^{\mathrm{QM2}}-E_{A}^{\mathrm{QM2}}-E_{E}^{\mathrm{QM2}}$$

- generalizations for many layers (QM1/QM2/MM/continuum) and electrostatic embedding
- properties require corresponding definitions

Fragmentation Methods



Molecular Fractionation with Conjugated Caps (MFCC)

- developed for proteins; partition into oligopeptides
- use model for neighboring fragments as caps
- sum up energies for capped fragments, subtract "concaps"
- no electrostatic embedding; better with larger caps

Increment Methods

General idea:

- largest part of E_{tot} is due to energies of (isolated) subsystems
- interaction energy: mainly due to pair interactions
- general energy expression:

$$E_{\text{tot}} = \sum_{I} E_{I} + \sum_{I < J} E_{I \leftrightarrow J} + \sum_{I < J < K} E_{I \leftrightarrow J \leftrightarrow K} + \dots$$

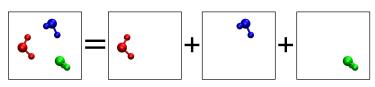
$$E_{I \leftrightarrow J} = E_{IJ} - E_{I} - E_{J}$$

$$E_{I \leftrightarrow J \leftrightarrow K} = E_{IJK} - E_{I} - E_{J} - E_{K}$$

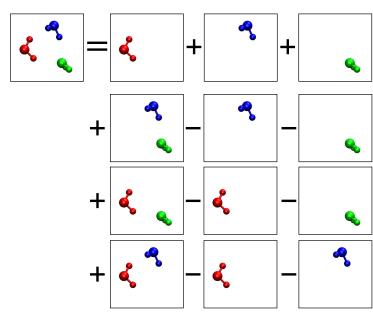
$$-(E_{IJ} - E_{I} - E_{J}) - (E_{IK} - E_{I} - E_{K}) - (E_{JK} - E_{J} - E_{K})$$

nth-order increment method: exact for n subsystems

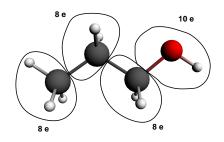
Increment Methods



Increment Methods



Fragment Molecular Orbital Method (1)

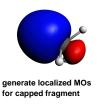


FMO-1

- fragmentation without separation of bond electron pairs
- fragment calculations under full electrostatic embedding
- no capping applied

K. Kitaura et al., Chem. Phys. Lett. 313 (1999), 701.

Fragment Molecular Orbital Method (1)

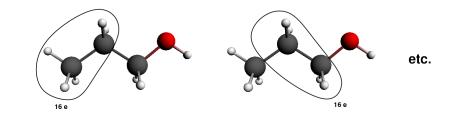


for "true" fragments

FMO-1

- fragment orbitals are expressed through localized orbitals obtained from reference compound (capped fragment)
- minimal basis is applied ⇒ bond electron pairs have no freedom to change compared to reference compound

Fragment Molecular Orbital Method (2)



FMO-2

- 2nd order increment method
- monomers and dimers are obtained with full electrostatic embedding potential, based on localized orbitals
- ⇒ FMO-2 implicitly contains higher-order terms

Density Partitioning

ullet orbital-free DFT: formulated directly in terms of $ho({f r})$

- ullet orbital-free DFT: formulated directly in terms of $ho({f r})$
- Kohn–Sham DFT: non-interacting v-representability assumed,

$$\rho(\mathbf{r}) = \sum_{i} |\phi_i(\mathbf{r})|^2$$

(called v_s -representability in the following)

- orbital-free DFT: formulated directly in terms of $\rho(\mathbf{r})$
- Kohn–Sham DFT: non-interacting *v*-representability assumed,

$$\rho(\mathbf{r}) = \sum_{i} |\phi_i(\mathbf{r})|^2$$

(called v_s -representability in the following)

subsystem DFT:

$$\rho(\mathbf{r}) = \sum_{I} \rho_{I}(\mathbf{r})$$

 v_s -representability assumed for every ρ_I :

$$\rho_I(\mathbf{r}) = \sum_i |\phi_{i_I}(\mathbf{r})|^2$$

(but not necessarily for the total density \Rightarrow different search space than in KS-DFT)

Frozen-Density Embedding:

$$\rho(\mathbf{r}) = \rho_1(\mathbf{r}) + \rho_2^{\text{fixed}}(\mathbf{r}); \qquad \rho_1(\mathbf{r}) = \sum_i |\phi_{i_1}(\mathbf{r})|^2$$

• "sDFT without optimization of $\rho_2(\mathbf{r})$ " (no "freeze-and-thaw")

Frozen-Density Embedding:

$$\rho(\mathbf{r}) = \rho_1(\mathbf{r}) + \rho_2^{\text{fixed}}(\mathbf{r}); \qquad \rho_1(\mathbf{r}) = \sum_i |\phi_{i_1}(\mathbf{r})|^2$$

- ullet "sDFT without optimization of $ho_2({f r})$ " (no "freeze-and-thaw")
- no orbital representation needed for ρ_2 , can be taken from:
 - simple superpositions of atomic/fragment densities
 Neurophyser M. Louwerse F. L. Barrands, T.A. Wasalawski, J. Chem. Phys. 122 (2005) 09413.
 - J. Neugebauer, M.J. Louwerse, E.J. Baerends, T.A. Wesolowski, J. Chem. Phys. 122 (2005) 094115.
 - statistically averaged densities
 J.W. Kaminski, S. Gusarov, T.A. Wesolowski, A. Kovalenko, J. Phys. Chem. A 114 (2010), 6082.
 - experiment

N. Ricardi, M. Ernst, P. Macchi, T.A. Wesolowski, Acta Cryst. A 76 (2020), 571.

Frozen-Density Embedding:

$$\rho(\mathbf{r}) = \rho_1(\mathbf{r}) + \rho_2^{\text{fixed}}(\mathbf{r}); \qquad \rho_1(\mathbf{r}) = \sum_i |\phi_{i_1}(\mathbf{r})|^2$$

- ullet "sDFT without optimization of $ho_2({f r})$ " (no "freeze-and-thaw")
- no orbital representation needed for ρ_2 , can be taken from:
 - simple superpositions of atomic/fragment densities
 J. Neugebauer, M.J. Louwerse, E.J. Baerends, T.A. Wesolowski, J. Chem. Phys. 122 (2005) 094115.
 - statistically averaged densities
 J.W. Kaminski, S. Gusarov, T.A. Wesolowski, A. Kovalenko, J. Phys. Chem. A 114 (2010), 6082.
 - experiment
 - N. Ricardi, M. Ernst, P. Macchi, T.A. Wesolowski, Acta Cryst. A 76 (2020), 571.
- but: not well suited/not intended for total-energy calculations
- ullet can only lead to exact solution if $ho({f r}) \geq
 ho_2^{
 m fixed}({f r}) \quad orall \, {f r}$

• KS energy expression with partitioning $ho({f r}) = \sum_I
ho_I({f r})$

$$E[\rho] = T_s[\rho] + V_{\text{ext}}[\rho] + J[\rho] + E_{\text{xc}}[\rho]$$

• if ρ is given as sum of subsystem densities:

$$V_{\text{ext}}[\rho] = V_{\text{ext}}[\rho_1 + \rho_2 + \dots]$$

$$J[\rho] = J[\rho_1 + \rho_2 + \dots]$$

$$\tilde{E}_{\text{xc}}[\rho] = \tilde{E}_{\text{xc}}[\rho_1 + \rho_2 + \dots]$$

• problem for calculations of KS energy: $T_s[\rho] = T_s[\{\phi_i^{\text{opt}}\}]$

G. Senatore, K. R. Subbaswamy, *Phys. Rev. B* **34** (1986), 5754;

P. Cortona, *Phys. Rev. B* 44 (1991), 8454;

T.A. Wesolowski, J. Weber, Chem. Phys. Lett. 248 (1996), 71.

• write T_s formally exactly as

$$T_s[
ho] = \sum_I T_s[
ho_I] + \left[T_s[
ho] - \sum_I T_s[
ho_I]
ight]$$
or $T_s[
ho] = \sum_I T_s[
ho_I] + T_s^{
m nad}[
ho, \{
ho_J\}]$

• write T_s formally exactly as

$$T_s[
ho] = \sum_I T_s[
ho_I] + \left[T_s[
ho] - \sum_I T_s[
ho_I]\right]$$

or $T_s[
ho] = \sum_I T_s[
ho_I] + T_s^{
m nad}[
ho, \{
ho_J\}]$

• exact T_s^{nad} :

$$T_s^{\text{nad}}[\rho, \{\rho_I\}] = \min_{\{\phi_i\} \to \rho} \sum_{i=1}^n \langle \phi_i | -\nabla_i^2 / 2 | \phi_i \rangle$$
$$-\sum_I \left(\min_{\{\phi_{i_I}\} \to \rho_I} \sum_{i=1}^n \langle \phi_{i_I} | -\nabla_i^2 / 2 | \phi_{i_I} \rangle \right)$$

• write T_s formally exactly as

$$T_s[
ho] = \sum_I T_s[
ho_I] + \left\lfloor T_s[
ho] - \sum_I T_s[
ho_I]
ight
floor$$
 or $T_s[
ho] = \sum_I T_s[
ho_I] + T_s^{
m nad}[
ho, \{
ho_J\}]$

• exact T_s^{nad} :

$$T_s^{\text{nad}}[\rho, \{\rho_I\}] = \min_{\{\phi_i\} \to \rho} \sum_{i=1}^n \langle \phi_i | -\nabla_i^2 / 2 | \phi_i \rangle$$
$$-\sum_I \left(\min_{\{\phi_{i_I}\} \to \rho_I} \sum_{i=1}^n \langle \phi_{i_I} | -\nabla_i^2 / 2 | \phi_{i_I} \rangle \right)$$

• introduce density-dependent approximation,

$$T_s^{\mathrm{nad}}[\rho, \{\rho_J\}] \approx \tilde{T}_s^{\mathrm{nad}}[\rho, \{\rho_J\}] = \tilde{T}_s[\rho] - \sum_I \tilde{T}_s[\rho_I]$$

• write T_s formally exactly as

$$T_s[
ho] = \sum_I T_s[
ho_I] + \left\lfloor T_s[
ho] - \sum_I T_s[
ho_I]
ight
floor$$
or
 $T_s[
ho] = \sum_I T_s[
ho_I] + T_s^{
m nad}[
ho, \{
ho_J\}]$

• exact T_s^{nad} :

$$T_s^{\text{nad}}[\rho, \{\rho_I\}] = \min_{\{\phi_i\} \to \rho} \sum_{i=1}^n \langle \phi_i | -\nabla_i^2 / 2 | \phi_i \rangle$$
$$-\sum_I \left(\min_{\{\phi_{i_I}\} \to \rho_I} \sum_{i=1}^n \langle \phi_{i_I} | -\nabla_i^2 / 2 | \phi_{i_I} \rangle \right)$$

• introduce density-dependent approximation,

$$T_s^{\text{nad}}[\{\rho_J\}] \approx \tilde{T}_s^{\text{nad}}[\{\rho_J\}] = \tilde{T}_s[\rho_1 + \rho_2 + \ldots] - \sum_I \tilde{T}_s[\rho_I]$$

One-Particle Equations in Subsystem DFT

energy functional:

$$E[\{\rho_J\}] = V_{\rm ext}[\rho] + J[\rho] + E_{\rm xc}[\rho] + \sum_I T_s[\rho_I] + T_s^{\rm nad}[\{\rho_J\}],$$

- choose no. of electrons per subsystem (n_J)
- construct Lagrangian

$$L[\{\rho_J\}] = E[\{\rho_J\}] + \sum_I \mu_I \left(\int d^3 r \rho_I(\mathbf{r}) - n_I \right)$$

and minimize w.r.t. ρ_K

⇒ Euler–Lagrange equations:

$$0 = v_{\text{ext}}(\mathbf{r}) + v_{\text{Coul}}[\rho](\mathbf{r}) + v_{\text{xc}}[\rho](\mathbf{r}) + \frac{\delta T_s[\rho_K]}{\delta \rho_K(\mathbf{r})} + \frac{\delta T_s^{\text{nad}}[\{\rho_J\}]}{\delta \rho_K(\mathbf{r})} + \mu_K$$

Frozen-Density Embedding

- assume all subsystem densities are v_s -representable
- ⇒ subsystem orbitals can be obtained from

$$\left(-\frac{1}{2}\nabla^2 + v_{\rm eff}^{\rm sub}[\rho, \rho_K](\mathbf{r})\right)\phi_{i_K} = \epsilon_{i_K}\phi_{i_K},$$

⇒ if we choose

$$v_{\text{eff}}^{\text{sub}}[\rho, \rho_K](\mathbf{r}) = v_{\text{eff}}[\rho](\mathbf{r}) + \frac{\delta T_s^{\text{nad}}[\{\rho_J\}]}{\delta \rho_K(\mathbf{r})}$$

the systems of non-interacting particles fulfill

$$v_{\text{eff}}^{\text{sub}}[\rho, \rho_K](\mathbf{r}) + \frac{\delta T_s[\rho_K]}{\delta \rho_K(\mathbf{r})} + \mu_K = 0$$

⇒ these are the sought-for densities

Embedding Potential

• define "environmental" density for system I [complementary to $\rho_I(\mathbf{r})$]:

$$ho_I^{
m env}({f r}) = \sum_{J,J
eq I}
ho_J({f r})$$

one-particle equations for FDE calculation become

$$\left(-\frac{1}{2}\nabla^2 + v_{\text{eff}}[\rho_I](\mathbf{r}) + v_{\text{emb}}[\rho_I, \rho_I^{\text{env}}](\mathbf{r})\right)\phi_{i_I} = \epsilon_{i_I}\phi_{i_I}$$

(Kohn-Sham equations with constrained electron density, KSCED)

embedding potential

$$v_{\text{emb}}[\rho_I, \rho_I^{\text{env}}](\mathbf{r}) = \sum_{J,J\neq I} v_{\text{ext}}^J(\mathbf{r}) + \sum_{J,J\neq I} v_{\text{Coul}}[\rho_J](\mathbf{r}) + \{v_{\text{xc}}[\rho](\mathbf{r}) - v_{\text{xc}}[\rho_I](\mathbf{r})\} + \frac{\delta T_s^{\text{nad}}[\{\rho_J\}]}{\delta \rho_K(\mathbf{r})}$$

Embedding Potential

• define "environmental" density for system I [complementary to $\rho_I(\mathbf{r})$]:

$$ho_I^{
m env}({f r}) = \sum_{J,J
eq I}
ho_J({f r})$$

one-particle equations for FDE calculation become

$$\left(-\frac{1}{2}\nabla^2 + v_{\text{eff}}[\rho_I](\mathbf{r}) + v_{\text{emb}}[\rho_I, \rho_I^{\text{env}}](\mathbf{r})\right)\phi_{i_I} = \epsilon_{i_I}\phi_{i_I}$$

(Kohn-Sham equations with constrained electron density, KSCED)

embedding potential

$$v_{\text{emb}}[\rho_{I}, \rho_{I}^{\text{env}}](\mathbf{r}) = \sum_{J,J\neq I} v_{\text{ext}}^{J}(\mathbf{r}) + \sum_{J,J\neq I} v_{\text{Coul}}[\rho_{J}](\mathbf{r}) + v_{\text{xc}}^{\text{nad}}[\rho_{I}, \rho](\mathbf{r}) + v_{I}^{\text{nad}}[\rho_{I}, \rho](\mathbf{r})$$

Solution of the KSCED equations

Approximations that have to be selected:

- non-additive kinetic energy functional T
 ^{nad}
 (and corresponding potential)
- XC functional:
 - either regard $E_{xc}[\rho]$ as *one* energy contribution,

$$E_{\rm xc}[\rho] \approx \tilde{E}_{\rm xc}[\rho_1 + \rho_2 + \ldots]$$

• or approximate components of $E_{xc}[\rho]$,

$$E_{\text{xc}}[\rho] = \sum_{I} E_{\text{xc}}[\rho_{I}] + E_{\text{xc}}^{\text{nad}}[\{\rho_{I}\}]$$

$$\approx \sum_{I} \tilde{E}_{\text{xc}}^{(I)}[\rho_{I}] + \tilde{\tilde{E}}_{\text{xc}}^{\text{nad}}[\{\rho_{I}\}]$$

(facilitates use of different XC approximations for different subsystems and/or the non-additive part)

Allows pragmatic use of hybrid XC functionals in intra-subsystem parts only

Non-additive kinetic-energy functionals

Common decomposable approximations:

- general structure: $T_s^{\mathrm{nad}}[\{\rho_I\},\rho] = T_s[\rho] \sum_I T_s[\rho_I]$
- Thomas–Fermi approximation

$$T_s[\rho] \approx T_{\mathrm{TF}}[\rho] = C_F \int \rho^{5/3}(\mathbf{r}) \mathrm{d}\mathbf{r}$$

L.A. Thomas, *Proc. Camb. Phil. Soc.* **23** (1927) 542; E. Fermi, *Z. Physik* **48** (1928) 73. exact for homogeneous electron gas ("LDA" for kinetic energy)

von Weizsäcker approximation

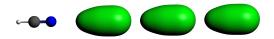
$$T_s[
ho] pprox T_{
m vW}[
ho] = rac{1}{8} \int rac{|
abla
ho(\mathbf{r})|^2}{
ho(\mathbf{r})} \mathrm{d}\mathbf{r}$$

C.F. von Weizsäcker, Z. Physik 96 (1935) 431.

exact for one-orbital systems

Step 1

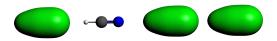
active system



- calculate ρ_{active} with frozen environment
- iterate over all subsystems

Step 2

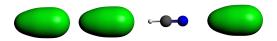
active system



- calculate ρ_{active} with frozen environment
- iterate over all subsystems

Step 3

active system



- calculate ρ_{active} with frozen environment
- iterate over all subsystems

Step 4

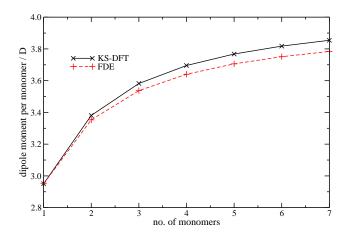
active system

- calculate ρ_{active} with frozen environment
- iterate over all subsystems

Dipole Moment of $(HCN)_N$

Average dipole moment as a function of chain length

BP86/TZP



C.R. Jacob, JN, WIREs Comput. Mol. Sci. 4 (2014), 325.

WF/DFT embedding

From DFT/DFT to

DFT-in-DFT Hybrid Methods

Subsystem DFT

fragmentation scheme,
 KS-DFT for subsystems, OF-DFT for interaction

$$E^{\mathrm{sDFT}}[\rho_{\mathrm{tot}}] \quad = \quad E^{\mathrm{KS}}[\rho_1] + E^{\mathrm{KS}}[\rho_2] + E^{\mathrm{OF}}_{(1 \leftrightarrow 2)}[\rho_1, \rho_2]$$

FDE (without orbital representation of ρ_{env})

QM/QM embedding scheme, KS-DFT/OF-DFT

$$E^{\text{FDE}}[\rho_{\text{tot}}] \quad = \quad E^{\text{KS}}[\rho_1] + E^{\text{OF}}[\rho_2] + E^{\text{OF}}_{(1\leftrightarrow 2)}[\rho_1, \rho_2]$$

Wavefunction-in-DFT Hybrid Methods

Can this idea be transferred to WF-in-DFT embedding?

- within DFT, $v_{\text{emb}}(\mathbf{r})$ is formally exact (contains all non-electrostatic contributions)
- simple idea: include $\langle \chi_{\mu} | v_{\rm emb}({\bf r}) | \chi_{\nu} \rangle$ into one-electron part of WF calculation
- ⇒ gives access to "embedded WF" and properties

Wavefunction-in-DFT Hybrid Methods

WF/DFT energy functional:

$$E^{\text{WF/DFT}}[\Psi_A, \rho_B] \quad = \quad \langle \Psi_A | \hat{H}_A | \Psi_A \rangle + E_B^{\text{KS}}[\rho_B] + \underbrace{E_{(A \leftrightarrow B)}^{\text{OFDFT}}}[\rho_A, \rho_B]$$

 (ρ_A) : density obtained from Ψ_A)

• minimization w.r.t. Ψ_A yields (ρ_B fixed):

$$\hat{H}_A'\Psi_A = \left(\hat{H}_A + \sum_{i=1}^{n_A} v_{\text{emb}}^A[\rho_A, \rho_B](\mathbf{r}_i)\right)\Psi_A = \tilde{E}_A\Psi_A$$

where

$$v_{\text{emb}}^{A}[\rho_{A},\rho_{B}](\mathbf{r}) = v_{\text{ext}}^{B}(\mathbf{r}) + v_{\text{Coul}}[\rho_{B}](\mathbf{r}) + v_{\text{xc}}[\rho](\mathbf{r}) - v_{\text{xc}}[\rho_{A}](\mathbf{r}) + v_{t}^{\text{nad}}[\rho_{A},\rho_{B}](\mathbf{r})$$

 \Rightarrow same form as in sDFT! (but often evaluated with approximate ρ_A , ρ_B)

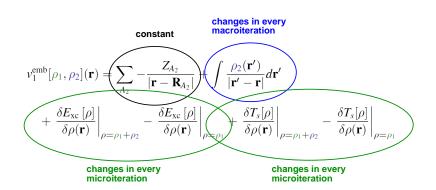
N. Govind, Y.A. Wang, A.J.R. da Silva, E.A. Carter, Chem. Phys. Lett. 295 (1998), 129.

Wavefunction-in-DFT Embedding

$$v_{1}^{\text{emb}}[\rho_{1}, \rho_{2}](\mathbf{r}) = \sum_{A_{2}} -\frac{Z_{A_{2}}}{|\mathbf{r} - \mathbf{R}_{A_{2}}|} + \int \frac{\rho_{2}(\mathbf{r}')}{|\mathbf{r}' - \mathbf{r}|} d\mathbf{r}'$$

$$+ \frac{\delta E_{\text{xc}}[\rho]}{\delta \rho(\mathbf{r})} \bigg|_{\rho = \rho_{1} + \rho_{2}} - \frac{\delta E_{\text{xc}}[\rho]}{\delta \rho(\mathbf{r})} \bigg|_{\rho = \rho_{1}} + \frac{\delta T_{s}[\rho]}{\delta \rho(\mathbf{r})} \bigg|_{\rho = \rho_{1} + \rho_{2}} - \frac{\delta T_{s}[\rho]}{\delta \rho(\mathbf{r})} \bigg|_{\rho = \rho_{1}}$$

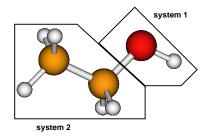
Wavefunction-in-DFT Embedding



"Exact" Density-Based Embedding

Covalent Bonds through Exact Embedding Potentials

Approximations for v_t^{nad} break down for covalent bonds



- What do we know about the exact $v_t^{\text{nad}}(\mathbf{r})$?
- Can we reconstruct the *exact* embedding potential for subsystems 1, 2 that reproduces $\rho_{\text{super}}(\mathbf{r}) = \rho_1(\mathbf{r}) + \rho_2(\mathbf{r})$?

("exact" here excludes errors introduced by finite basis sets, errors introduced in the calculation of ρ_{super} (usually through E_{xc}), and numerical errors in the construction of the potential, e.g., due to finite grid size)

Functional Derivative of T_s^{nad}

problems arise due to

(here: system K = active system)

$$\frac{\delta T_s^{\rm nad}[\{\rho_I\}]}{\delta \rho_K(\mathbf{r})} = \frac{\delta T_s[\rho]}{\delta \rho_K(\mathbf{r})} - \sum_I \frac{\delta T_s[\rho_I]}{\delta \rho_K(\mathbf{r})}$$

with $\rho(\mathbf{r}) = \sum_{I} \rho_{I}(\mathbf{r})$

first term:

$$\frac{\delta T_s[\rho]}{\delta \rho_K(\mathbf{r})} = \int \frac{\delta T_s[\rho]}{\delta \rho(\mathbf{r}')} \cdot \frac{\delta \rho(\mathbf{r}')}{\delta \rho_K(\mathbf{r})} d\mathbf{r}'
= \int \frac{\delta T_s[\rho]}{\delta \rho(\mathbf{r}')} \cdot \delta(\mathbf{r}' - \mathbf{r}) d\mathbf{r}' = \frac{\delta T_s[\rho]}{\delta \rho(\mathbf{r})}$$

second term:

$$\sum_{I} \frac{\delta T_{s}[\rho_{I}]}{\delta \rho_{K}(\mathbf{r})} = \sum_{I} \frac{\delta T_{s}[\rho_{K}]}{\delta \rho_{K}(\mathbf{r})} \cdot \delta_{KI} = \frac{\delta T_{s}[\rho_{K}]}{\delta \rho_{K}(\mathbf{r})}$$

Functional Derivative of T_s^{nad}

⇒ we need to calculate

$$v_t^{\text{nad}}[\rho_K, \rho_{\text{super}}](\mathbf{r}) = \frac{\delta T_s^{\text{nad}}[\{\rho_I\}]}{\delta \rho_K(\mathbf{r})} = \frac{\delta T_s[\rho_{\text{super}}]}{\delta \rho_{\text{super}}(\mathbf{r})} - \frac{\delta T_s[\rho_K]}{\delta \rho_K(\mathbf{r})}$$

or, in other words, we need to find

$$v_t[\rho](\mathbf{r}) = \frac{\delta T_s[\rho]}{\delta \rho(\mathbf{r})}$$

for two different densities ($\rho = \rho_{\text{super}}$ and $\rho = \rho_{\textit{K}}$)

Euler-Lagrange Equation: Kohn-Sham Formalism

Euler–Lagrange Equation:

$$\mu = \left. rac{\delta T_s[
ho]}{\delta
ho(\mathbf{r})} \right|_{
ho =
ho_{ ext{target}}} + v_s[
ho_{ ext{target}}](\mathbf{r})$$

⇒ "Kinetic-energy potential:"

$$v_t[
ho_{ ext{target}}](\mathbf{r}) = \left. rac{\delta T_s[
ho]}{\delta
ho(\mathbf{r})}
ight|_{
ho =
ho_{ ext{target}}} = \mu - v_s[
ho_{ ext{target}}](\mathbf{r})$$

- ullet μ is just a constant shift in the potential (will be ignored here)
- \Rightarrow If we know the potential $v_s[\rho_{\rm target}]({\bf r})$ that results in a set of orbitals $\{\phi_i^{\rm target}\}$ such that

$$\sum_{i} |\phi_{i}^{\text{target}}(\mathbf{r})|^{2} = \rho_{\text{target}}(\mathbf{r}),$$

then we also have access to $v_t[\rho_{\text{target}}](\mathbf{r})$

Why Use "Exact" Embedding at All?

 \Rightarrow we can obtain the exact v_t^{nad} as

$$v_t^{\text{nad}}[\rho_A, \rho_{\text{super}}](\mathbf{r}) = v_s[\rho_A](\mathbf{r}) - v_s[\rho_{\text{super}}](\mathbf{r}) + \Delta\mu$$

(two subsystems assumed for simplicity; $\boldsymbol{v}_t^{\mathrm{nad}}$ is given for subsystem $\boldsymbol{A})$

Exact embedding is expensive:

- either, we first have to solve a KS-DFT calculation for the total system
- or, we have to do (several) reconstructions of total-system potentials

Why Use "Exact" Embedding at All?

 \Rightarrow we can obtain the exact v_t^{nad} as

$$v_t^{\text{nad}}[\rho_A, \rho_{\text{super}}](\mathbf{r}) = v_s[\rho_A](\mathbf{r}) - v_s[\rho_{\text{super}}](\mathbf{r}) + \Delta\mu$$

(two subsystems assumed for simplicity; v_t^{nad} is given for subsystem A)

Exact embedding is expensive:

- either, we first have to solve a KS-DFT calculation for the total system
- or, we have to do (several) reconstructions of total-system potentials

Possible benefits:

- "exact" potential may serve as basis for approximations
- "exact" potential may be transferred to more expensive WF/DFT
- ground-state calculation is not the bottleneck (e.g., response)
- S. Fux, C.R. Jacob, J. Neugebauer, L. Visscher, M. Reiher, J. Chem. Phys. 132 (2010), 164101;
 J.D. Goodpaster, N. Ananth, F.R. Manby, T.F. Miller III, J. Chem. Phys. 133 (2010), 084103;
 D. Schnieders, J. Neugebauer, J. Chem. Phys. 149 (2018), 054103.

Potential Reconstruction

Densities in search of Hamiltonians:

- we need to find $v_s[\rho](\mathbf{r})$ that yields a specific $\rho = \rho^{\text{target}}$
- ⇒ "inverse Kohn–Sham problem"
- \Rightarrow has been solved several times in the context of v_{xc} development:
 - Wang and Parr Phys. Rev. A 47 (1993), R1591.
 - van Leeuwen and Baerends Phys. Rev. A 49 (1994), 2421.
 - Zhao, Morrison and Parr Phys. Rev. A 50 (1994), 2138.
 - Wu and Yang J. Chem. Phys. 118 (2003), 2498.
 - ...

van Leeuwen-Baerends Reconstruction

KS-equation

$$\epsilon_{i}\phi_{i}(\mathbf{r}) = \left[-\frac{\nabla^{2}}{2} + v_{s}(\mathbf{r})\right]\phi_{i}(\mathbf{r})$$

$$\sum_{i} \epsilon_{i}\phi_{i}^{*}(\mathbf{r})\phi_{i}(\mathbf{r}) = \sum_{i} \phi_{i}^{*}(\mathbf{r})\left[-\frac{\nabla^{2}}{2}\right]\phi_{i}(\mathbf{r}) + v_{s}(\mathbf{r})\sum_{i} \phi_{i}^{*}(\mathbf{r})\phi_{i}(\mathbf{r})$$

$$v_{s}(\mathbf{r})\rho(\mathbf{r}) = \sum_{i} \phi_{i}^{*}(\mathbf{r})\left[\frac{\nabla^{2}}{2}\right]\phi_{i}(\mathbf{r}) + \sum_{i} \epsilon_{i}\phi_{i}^{*}(\mathbf{r})\phi_{i}(\mathbf{r})$$

$$v_{s}(\mathbf{r}) = \frac{1}{\rho(\mathbf{r})}\sum_{i} \left\{\phi_{i}^{*}(\mathbf{r})\left[\frac{\nabla^{2}}{2}\right]\phi_{i}(\mathbf{r}) + \epsilon_{i}\phi_{i}^{*}(\mathbf{r})\phi_{i}(\mathbf{r})\right\}$$

R. van Leeuwen, E.J. Baerends, Phys. Rev. A 49 (1994), 2421.

van Leeuwen-Baerends Reconstruction

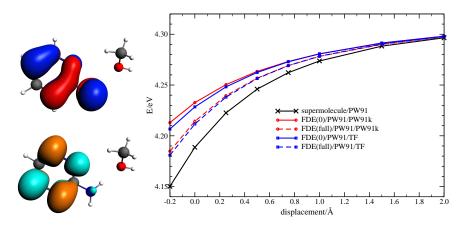
• iterative scheme, iteration (k + 1),

$$v_s^{(k+1)}(\mathbf{r}) = \frac{1}{\rho^{\text{target}}(\mathbf{r})} \sum_i \left\{ \phi_i^{(k)*}(\mathbf{r}) \left[\frac{\nabla^2}{2} \right] \phi_i^{(k)}(\mathbf{r}) + \epsilon_i^{(k)} \phi_i^{(k)*}(\mathbf{r}) \phi_i^{(k)}(\mathbf{r}) \right\}$$
$$= \frac{\rho^k(\mathbf{r})}{\rho^{\text{target}}(\mathbf{r})} \cdot v_s^{(k)}$$

R. van Leeuwen, E.J. Baerends, Phys. Rev. A 49 (1994), 2421.

Excitation Energies with Reconstructed Potentials

Aminopyridine · · · methanol

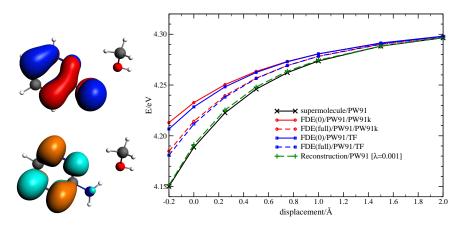


D. Artiukhin, C.R. Jacob, JN, J. Chem. Phys. 142 (2015), 234101.

• $\pi \to \pi^*$ excitation of aminopyridine... MeOH (PW91/TZP)

Excitation Energies with Reconstructed Potentials

Aminopyridine · · · methanol



D. Artiukhin, C.R. Jacob, JN, J. Chem. Phys. 142 (2015), 234101.

- $\pi \to \pi^*$ excitation of aminopyridine···MeOH (PW91/TZP)
- reconstruction using Wu

 Yang algorithm, ALDA kernel

"Exact" Projection-Based

Embedding

T_s^{nad} for Orthogonal Subsystem Orbitals

- assume two-partitioning (A + B); determine supersystem KS orbitals
- define

$$\rho_A(\mathbf{r}) = \sum_{j=1}^{n_A} |\phi_j^{\text{super}}(\mathbf{r})|^2 \quad \text{and} \quad \rho_B(\mathbf{r}) = \sum_{k=n_A+1}^{n_A+n_B} |\phi_k^{\text{super}}(\mathbf{r})|^2 = \rho_{\text{env}}(\mathbf{r})$$

kinetic energy:

$$T_{s}[\{\phi_{i}^{\text{super}}\}] = \sum_{i=1}^{n} \left\langle \phi_{i}^{\text{super}} \left| -\nabla^{2}/2 \right| \phi_{i}^{\text{super}} \right\rangle$$

$$= \sum_{j=1}^{n_{A}} \left\langle \phi_{j}^{\text{super}} \left| -\nabla^{2}/2 \right| \phi_{j}^{\text{super}} \right\rangle + \sum_{k=n_{A}+1}^{n_{A}+n_{B}} \left\langle \phi_{k}^{\text{super}} \left| -\nabla^{2}/2 \right| \phi_{k}^{\text{super}} \right\rangle$$

$$= T_{s}^{A} + T_{s}^{B}$$

apparently, no non-additive kinetic-energy approximation needed!

T_s^{nad} for Orthogonal Subsystem Orbitals

• but: even in case of orthogonal ϕ_i^{super} and exact ρ_A , ρ_B , in general

$$\begin{split} &\sum_{j=1}^{n_{A}} \left\langle \phi_{j}^{\text{super}} \left| -\nabla^{2}/2 \right| \phi_{j}^{\text{super}} \right\rangle + \sum_{k=n_{A}+1}^{n_{A}+n_{B}} \left\langle \phi_{k}^{\text{super}} \left| -\nabla^{2}/2 \right| \phi_{k}^{\text{super}} \right\rangle \\ &\geq \min_{\left\{\phi_{i_{A}}\right\} \rightarrow \rho_{A}} \sum_{i}^{n_{A}} \left\langle \phi_{i_{A}} \left| -\nabla^{2}/2 \right| \phi_{i_{A}} \right\rangle + \min_{\left\{\phi_{i_{B}}\right\} \rightarrow \rho_{B}} \sum_{i}^{n_{B}} \left\langle \phi_{i_{B}} \left| -\nabla^{2}/2 \right| \phi_{i_{B}} \right\rangle \end{split}$$

$T_s^{\rm nad}$ for Orthogonal Subsystem Orbitals

• but: even in case of orthogonal ϕ_i^{super} and exact ρ_A , ρ_B , in general

$$\begin{split} &\sum_{j=1}^{n_{A}} \left\langle \phi_{j}^{\text{super}} \left| -\nabla^{2}/2 \right| \phi_{j}^{\text{super}} \right\rangle + \sum_{k=n_{A}+1}^{n_{A}+n_{B}} \left\langle \phi_{k}^{\text{super}} \left| -\nabla^{2}/2 \right| \phi_{k}^{\text{super}} \right\rangle \\ &\geq \min_{\left\{\phi_{i_{A}}\right\} \rightarrow \rho_{A}} \sum_{i}^{n_{A}} \left\langle \phi_{i_{A}} \left| -\nabla^{2}/2 \right| \phi_{i_{A}} \right\rangle + \min_{\left\{\phi_{i_{B}}\right\} \rightarrow \rho_{B}} \sum_{i}^{n_{B}} \left\langle \phi_{i_{B}} \left| -\nabla^{2}/2 \right| \phi_{i_{B}} \right\rangle \end{split}$$

- \bullet reason: not both subsets of $\{\phi_i^{\rm super}\}$ are, in general, ground-state of some effective potential
- still: subsets of $\{\phi_i^{\mathrm{super}}\}$ can be obtained from projected KS problem without v_t^{nad}

Externally Orthogonal Subsystem Orbitals

In sDFT, orbitals of different subsystems are not necessarily orthogonal:

$$\langle \phi_{i_I} | \phi_{j_I} \rangle = \delta_{ij}, \quad \text{but} \quad \langle \phi_{i_I} | \phi_{j_I} \rangle \quad \text{can be} \quad \neq 0$$

How can we determine orthogonal embedded subsystem orbitals?

Three (related) strategies:

projection-based embedding

F.R. Manby, M. Stella, J.D. Goodpaster, T.F. Miller III, J. Chem. Theory Comput. 2012, 8, 2564.

external orthogonality through extra Lagrangian multipliers

Y.G. Khait, M.R. Hoffmann, Ann. Rep. Comput. Chem. 2012, 8, 53-70; P.K. Tamukono, Y.G. Khait, M.R. Hoffmann, J. Phys. Chem. A 2014, 118, 9182.

Huzinaga equation (transferred to KS-DFT)

S. Huzinaga and A.A. Cantu, J. Chem. Phys. 1971, 55, 5543;
 B. Hégely, P.R. Nagy, G.G. Ferency, M. Kállay, J. Chem. Phys. 2016, 145, 064107.

Exact Embedding through Projection

Basic Idea:

- 1st step: KS-DFT calculation on (A + B)
- 2nd step: localization of KS orbitals $\Rightarrow \{\phi_i^A\}, \{\phi_i^B\}$
- then: construct Fock operator for electrons in subsystem A,

$$\hat{f}^{A} = -\frac{\nabla^{2}}{2} + v_{\text{nuc}}^{A}(\vec{r}) + v_{\text{nuc}}^{B}(\vec{r}) + v_{\text{Coul}}[\rho_{A} + \rho_{B}](\vec{r}) + v_{\text{xc}}[\rho_{A} + \rho_{B}](\vec{r}) + \mu \hat{P}^{B}$$

with projection operator \hat{P}^B ,

$$\hat{P}^B = \sum_{i \in B} |\phi_i^B\rangle\langle\phi_i^B|$$

• for $\lim_{\mu \to \infty}$: eigenfunctions of \hat{f}^A are orthogonal to $\{\phi_i^B\}$

F.R. Manby, M. Stella, J.D. Goodpaster, T.F. Miller III, J. Chem. Theory Comput. 8 (2012), 2564.

Externally Orthogonal Subsystem Orbitals

Enforce external orthogonality through extra constraints

consider sDFT energy as functional of two orbital sets,

$$E^{\text{sDFT}} = E^{\text{sDFT}}[\{\phi_i^A\}, \{\phi_i^B\}]$$

introduce orthonormality constraints through Lagrangian multipliers,

$$E^{\text{sDFT}} \to L^{\text{sDFT}} = E^{\text{sDFT}} - \sum_{I=A,B} \sum_{\substack{i \in I \\ j \in I}} \lambda_{ij}^{I} \left(\langle \phi_{i_I} | \phi_{j_I} \rangle - \delta_{ij} \right) - \sum_{\substack{i \in A \\ j \in B}} \lambda_{ij}^{AB} \langle \phi_{i_A} | \phi_{j_B} \rangle - \sum_{\substack{i \in B \\ j \in A}} \lambda_{ij}^{BA} \langle \phi_{i_B} | \phi_{j_A} \rangle$$

• optimization w.r.t. ϕ_i^A yields (for ϕ_i^B fixed),

$$\left(-\frac{\nabla^2}{2} + v_{\text{eff}}^{\text{KS}}[\rho](\mathbf{r})\right)\phi_i^A(\mathbf{r}) = \epsilon_i^A \phi_i^A(\mathbf{r}) + \sum_{j \in B} \lambda_{ij}^{AB} \phi_j^B(\mathbf{r})$$

• multiply with $\langle \phi_k^B |$; make use of external orthogonality already,

$$\langle \phi_k^{\rm B} | \hat{f}^{\rm KS} | \phi_i^{\rm A} \rangle = \lambda_{ik}^{\rm AB}$$

Externally Orthogonal Subsystem Orbitals

from this it follows that,

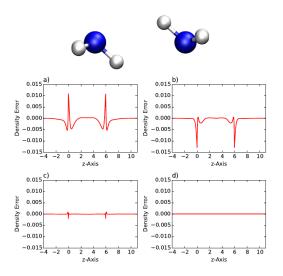
$$\begin{split} \hat{f}^{\text{KS}}|\phi_i^A\rangle &=& \epsilon_i^A|\phi_i^A\rangle + \sum_{j\in B}|\phi_j^B\rangle\langle\phi_j^B|\hat{f}^{\text{KS}}|\phi_i^A\rangle \\ \Rightarrow \underbrace{\left(1-\sum_{j\in B}|\phi_j^B\rangle\langle\phi_j^B|\right)}_{\hat{f}^\prime}\hat{f}^{\text{KS}}\left|\phi_i^A\rangle &=& \left(1-\hat{P}^B\right)\hat{f}^{\text{KS}}|\phi_i^A\rangle = \epsilon_i^A|\phi_i^A\rangle \end{split}$$

- note: \hat{f}' is not Hermitian
- under external orthogonality: $(1 \hat{P}^B)|\phi_i^A\rangle = |\phi_i^A\rangle$

$$\Rightarrow \underbrace{\left(1 - \hat{P}^{B}\right)\hat{f}^{KS}\left(1 - \hat{P}^{B}\right)}_{\hat{f}^{\prime\prime}} |\phi_{i}^{A}\rangle = \epsilon_{i}^{A}|\phi_{i}^{A}\rangle$$

note: \hat{f}'' is Hermitian!

Comparing Density-Based Embedding Schemes



PBE/def2-QZVP; a) sum-of-isolated densities; b) PBE-type T_{e}^{nad} ; c) potential reconstruction d) projection

J.P. Unsleber, T. Dresselhaus, K. Klahr, D. Schnieders, M. Böckers, D. Barton, JN, J. Comput. Chem. 39 (2018), 788.

Density-Matrix

Embedding Theory

Decomposing Total-System States

Consider active system *A* and bath *B*:

states of combined system can be expanded as,

$$|\Psi_{A+B}
angle \ = \ \sum_{i}^{n_{ ext{states}}^{A}} \sum_{j}^{n_{ ext{states}}^{B}} c_{ij} |A_{i}
angle |B_{j}
angle = \sum_{i}^{n_{ ext{states}}^{A}} |A_{i}
angle \left(\sum_{j}^{n_{ ext{states}}^{B}} c_{ij} |B_{j}
angle
ight)$$

$$= \ \sum_{i}^{n_{ ext{states}}^{A}} |A_{i}
angle | ilde{B}_{i}
angle$$

with "relative states" $|\tilde{B}_i\rangle$ (not orthonormal in general)

J. Audretsch, Entangled Systems — New Directions in Quantum Physics, Wiley-VCH, Weinheim, 2007, pp. 149-151; G. Knizia, G.K.-L. Chan, J. Chem. Theory Comput. 9 (2013), 1428.

Decomposing Total-System States

Schmidt Decomposition Theorem:

• any pure state $|\Psi_{A+B}\rangle$ can be written in terms of (orthonormal) *Schmidt states* $|a_i\rangle, |b_i\rangle$

$$|\Psi_{A+B}\rangle = \sum_{k}^{n_{\min}} \sqrt{p_i} |a_i\rangle |b_i\rangle$$

(where $\sqrt{p_i}$ is a real, non-negative number with $\sum_i p_i = 1$, and $n_{\min} = \min(n_{\text{states}}^A, n_{\text{states}}^B)$

reduced density matrices of subsystems A and B are then given as

$$\rho_{A} = \operatorname{Tr}_{B} \left[|\Psi_{A+B}\rangle \langle \Psi_{A+B}| \right] = \sum_{k,l}^{n_{\min}} \sqrt{p_{k}} \sqrt{p_{l}} |a_{k}\rangle \langle a_{l}| \left(\operatorname{Tr}_{B} \left[|b_{k}\rangle \langle b_{l}| \right] \right) \\
= \sum_{k}^{n_{\min}} p_{k} |a_{k}\rangle \langle a_{k}| \\
\rho_{B} = \sum_{k}^{n_{\min}} p_{k} |b_{k}\rangle \langle b_{k}|$$

Decomposing Total-System States

Schmidt Decomposition by SVD

• singular value decomposition of matrix $c = U\lambda V^{\dagger}$

$$|\Psi_{A+B}\rangle = \sum_{i}^{n_{\text{states}}^{A}} \sum_{j}^{n_{\text{states}}^{B}} c_{ij} |A_{i}\rangle |B_{j}\rangle = \sum_{i}^{n_{\text{states}}^{A}} \sum_{j}^{n_{\text{states}}} \sum_{k}^{n_{\text{min}}} U_{ik} \lambda_{k} V_{kj}^{\dagger} |A_{i}\rangle |B_{j}\rangle$$

$$= \sum_{k}^{n_{\text{min}}} \lambda_{k} |a_{k}\rangle |b_{k}\rangle$$

- \Rightarrow even if $n_{\mathrm{states}}^B \gg n_{\mathrm{states}}^A$, exact embedding of A is possible with n_{states}^A bath states
- ullet but: constructing bath states requires knowledge of full $|\Psi_{A+B}
 angle$

Idea of DMET

- ullet construct bath states from simple approximation $|\Phi\rangle$ to $|\Psi_{A+B}\rangle$
- use these bath states to obtain high-level approximation from embedded problem
- H.-P. Breuer, F. Petruccione, *The Theory of Open Quantum Systems*, Oxford University Press, Oxford, 2006, pp. 75-76; G. Knizia, G.K.-L. Chan, *J. Chem. Theory Comput.* 2013, **9**, 1428;
- S. Wouters, C.A. Jiménez-Hoyos, Q. Sun, G.K.-L. Chan, J. Chem. Theory Comput. 2016, 12, 2706.

Density-Matrix Embedding Theory

match one-particle density matrices, i.e., minimize

$$\Delta = \sum_{A} \sum_{rs \in A} ||\langle \Phi | \hat{a}_r^{\dagger} \hat{a}_s | \Phi \rangle - \langle \Psi_A | \hat{a}_r^{\dagger} \hat{a}_s | \Psi_A \rangle ||^2$$

this is achieved by modifying the Fock operator,

$$\hat{f}
ightarrow \hat{f} + \sum_{A} \hat{\mu}_{A} \qquad ext{with} \quad \hat{\mu}_{A} = \sum_{rs \in A} \mu_{rs}^{A} \hat{a}_{r}^{\dagger} \hat{a}_{s}$$

in the calculation of the mean-field wavefunction $|\Phi\rangle$ (i.e., Δ is minimized w.r.t. all μ_{rs}^A)

related method with overlapping fragments: bootstrap embedding
 M. Welborn, T. Tsuchimochi, T. Van Voorhis, J. Chem. Phys. 145 (2016), 074102.

G. Knizia, G.K.-L. Chan, J. Chem. Theory Comput. 9 (2013), 1428.

Conclusion

QM/QM methods

- there are several QM/QM methods available now which are (formally) exact under certain conditions
- but: using "exact" embedding directly does not lead to gain in efficiency
- however, it can be the starting point for new approximations or new (approximate) fields of application

Conclusion

QM/QM methods

- there are several QM/QM methods available now which are (formally) exact under certain conditions
- but: using "exact" embedding directly does not lead to gain in efficiency
- however, it can be the starting point for new approximations or new (approximate) fields of application

QM/(QM,MM) methods?

 "Polarizable Density Embedding": combines elements from FDE, polarizable force fields, and Huzinaga-type embedding

J.M.H. Olsen, C. Steinmann, K. Ruud, J. Kongsted, J. Phys. Chem. A 2015, 119, 5344.