QM/QM and QM/MM Hybrid Methods

Subsystem and Embedding Methods for Quantum Chemistry

Johannes Neugebauer

ESQC, Sicily, 2022
Lecture 2

Contents

- introduction
- energy-based embedding schemes
- many-body expansions (MBEs)
- subsystem DFT and density-based embedding
- "exact embedding" through potential reconstruction
- "exact embedding" through projection
- WF/DFT embedding
- density matrix embedding theory (DMET)

QM/QM Hybrid Methods

Partitioning is possible at different levels:

- energy partitioning
- wavefunction partitioning
- density-matrix partitioning
- Green's function partitioning
- density partitioning
- ...

Energy-Based Partitioning

and Many-Body Expansions

Simple QM/QM Hybrid Methods

- ONIOM (Morokuma): a generalization of subtractive QM/MM

$$
E_{\mathrm{tot}}^{\mathrm{QM} / \mathrm{QM}}=E_{(A+E)}^{\mathrm{QM} 2}+\left(E_{A}^{\mathrm{QM} 1}-E_{A}^{\mathrm{QM} 2}\right)
$$

interaction defined as

$$
E_{A \leftrightarrow E}^{\mathrm{QM} 2}=E_{(A+E)}^{\mathrm{QM} 2}-E_{A}^{\mathrm{QM} 2}-E_{E}^{\mathrm{QM} 2}
$$

- generalizations for many layers (QM1/QM2/MM/continuum) and electrostatic embedding
- properties require corresponding definitions

Fragmentation Methods

Molecular Fractionation with Conjugated Caps (MFCC)

- developed for proteins; partition into oligopeptides
- use model for neighboring fragments as caps
- sum up energies for capped fragments, subtract "concaps"
- no electrostatic embedding; better with larger caps

Increment Methods

General idea:

- largest part of $E_{\text {tot }}$ is due to energies of (isolated) subsystems
- interaction energy: mainly due to pair interactions
- general energy expression:

$$
\begin{aligned}
E_{\mathrm{tot}}= & \sum_{I} E_{I}+\sum_{I<J} E_{I \leftrightarrow J}+\sum_{I<J<K} E_{I \leftrightarrow J \leftrightarrow K}+\ldots \\
E_{I \leftrightarrow J}= & E_{I J}-E_{I}-E_{J} \\
E_{I \leftrightarrow J \leftrightarrow K}= & E_{I J K}-E_{I}-E_{J}-E_{K} \\
& -\left(E_{I J}-E_{I}-E_{J}\right)-\left(E_{I K}-E_{I}-E_{K}\right)-\left(E_{J K}-E_{J}-E_{K}\right)
\end{aligned}
$$

- n th-order increment method: exact for n subsystems

Increment Methods

Increment Methods

Fragment Molecular Orbital Method (1)

FMO-1

- fragmentation without separation of bond electron pairs
- fragment calculations under full electrostatic embedding
- no capping applied

Fragment Molecular Orbital Method (1)

FMO-1

- fragment orbitals are expressed through localized orbitals obtained from reference compound (capped fragment)
- minimal basis is applied \Rightarrow bond electron pairs have no freedom to change compared to reference compound

Fragment Molecular Orbital Method (2)

etc.

FMO-2

- 2nd order increment method
- monomers and dimers are obtained with full electrostatic embedding potential, based on localized orbitals
\Rightarrow FMO-2 implicitly contains higher-order terms

Density Partitioning

Some Flavors of DFT

- orbital-free DFT: formulated directly in terms of $\rho(\mathbf{r})$

Some Flavors of DFT

- orbital-free DFT: formulated directly in terms of $\rho(\mathbf{r})$
- Kohn-Sham DFT: non-interacting v-representability assumed,

$$
\rho(\mathbf{r})=\sum_{i}\left|\phi_{i}(\mathbf{r})\right|^{2}
$$

(called v_{s}-representability in the following)

Some Flavors of DFT

- orbital-free DFT: formulated directly in terms of $\rho(\mathbf{r})$
- Kohn-Sham DFT: non-interacting v-representability assumed,

$$
\rho(\mathbf{r})=\sum_{i}\left|\phi_{i}(\mathbf{r})\right|^{2}
$$

(called v_{s}-representability in the following)

- subsystem DFT:

$$
\rho(\mathbf{r})=\sum_{I} \rho_{I}(\mathbf{r})
$$

v_{s}-representability assumed for every ρ_{I} :

$$
\rho_{I}(\mathbf{r})=\sum_{i}\left|\phi_{i_{I}}(\mathbf{r})\right|^{2}
$$

(but not necessarily for the total density \Rightarrow different search space than in KS-DFT)

Some Flavors of DFT

Frozen-Density Embedding:

$$
\rho(\mathbf{r})=\rho_{1}(\mathbf{r})+\rho_{2}^{\mathrm{fixed}}(\mathbf{r}) ; \quad \rho_{1}(\mathbf{r})=\sum_{i}\left|\phi_{i_{1}}(\mathbf{r})\right|^{2}
$$

- "sDFT without optimization of $\rho_{2}(\mathbf{r})$ " (no "rreeze-and-thaw")

Some Flavors of DFT

Frozen-Density Embedding:

$$
\rho(\mathbf{r})=\rho_{1}(\mathbf{r})+\rho_{2}^{\text {fixed }}(\mathbf{r}) ; \quad \rho_{1}(\mathbf{r})=\sum_{i}\left|\phi_{i_{1}}(\mathbf{r})\right|^{2}
$$

- "sDFT without optimization of $\rho_{2}(\mathbf{r})$ " (no "rreeze-and-thaw")
- no orbital representation needed for ρ_{2}, can be taken from:
- simple superpositions of atomic/fragment densities
J. Neugebauer, M.J. Louwerse, E.J. Baerends, T.A. Wesolowski, J. Chem. Phys. 122 (2005) 094115.
- statistically averaged densities
J.W. Kaminski, S. Gusarov, T.A. Wesolowski, A. Kovalenko, J. Phys. Chem. A 114 (2010), 6082.
- experiment
N. Ricardi, M. Ernst, P. Macchi, T.A. Wesolowski, Acta Cryst. A 76 (2020), 571.

Some Flavors of DFT

Frozen-Density Embedding:

$$
\rho(\mathbf{r})=\rho_{1}(\mathbf{r})+\rho_{2}^{\mathrm{fixed}}(\mathbf{r}) ; \quad \rho_{1}(\mathbf{r})=\sum_{i}\left|\phi_{i_{1}}(\mathbf{r})\right|^{2}
$$

- "sDFT without optimization of $\rho_{2}(\mathbf{r})$ " (no "reeze-and-thaw")
- no orbital representation needed for ρ_{2}, can be taken from:
- simple superpositions of atomic/fragment densities
J. Neugebauer, M.J. Louwerse, E.J. Baerends, T.A. Wesolowski, J. Chem. Phys. 122 (2005) 094115.
- statistically averaged densities
J.W. Kaminski, S. Gusarov, T.A. Wesolowski, A. Kovalenko, J. Phys. Chem. A 114 (2010), 6082.
- experiment
N. Ricardi, M. Ernst, P. Macchi, T.A. Wesolowski, Acta Cryst. A 76 (2020), 571.
- but: not well suited/not intended for total-energy calculations
- can only lead to exact solution if $\rho(\mathbf{r}) \geq \rho_{2}^{\text {fixed }}(\mathbf{r}) \quad \forall \mathbf{r}$

Subsystem DFT

- KS energy expression with partitioning $\rho(\mathbf{r})=\sum_{I} \rho_{I}(\mathbf{r})$

$$
E[\rho]=T_{s}[\rho]+V_{\mathrm{ext}}[\rho]+J[\rho]+E_{\mathrm{xc}}[\rho]
$$

- if ρ is given as sum of subsystem densities:

$$
\begin{aligned}
V_{\mathrm{ext}}[\rho] & =V_{\mathrm{ext}}\left[\rho_{1}+\rho_{2}+\ldots\right] \\
J[\rho] & =J\left[\rho_{1}+\rho_{2}+\ldots\right] \\
\tilde{E}_{\mathrm{xc}}[\rho] & =\tilde{E}_{\mathrm{xc}}\left[\rho_{1}+\rho_{2}+\ldots\right]
\end{aligned}
$$

- problem for calculations of KS energy: $T_{s}[\rho]=T_{s}\left[\left\{\phi_{i}^{\mathrm{opt}}\right\}\right]$

[^0]
Subsystem DFT

- write T_{s} formally exactly as

$$
\begin{aligned}
T_{s}[\rho] & =\sum_{I} T_{s}\left[\rho_{I}\right]+\left[T_{s}[\rho]-\sum_{I} T_{s}\left[\rho_{I}\right]\right] \\
\text { or } \quad T_{s}[\rho] & =\sum_{I} T_{s}\left[\rho_{I}\right]+T_{s}^{\mathrm{nad}}\left[\rho,\left\{\rho_{J}\right\}\right]
\end{aligned}
$$

Subsystem DFT

- write T_{s} formally exactly as

$$
\begin{aligned}
T_{s}[\rho] & =\sum_{I} T_{s}\left[\rho_{I}\right]+\left[T_{s}[\rho]-\sum_{I} T_{s}\left[\rho_{I}\right]\right] \\
\text { or } \quad & T_{s}[\rho]
\end{aligned}=\sum_{I} T_{s}\left[\rho_{I}\right]+T_{s}^{\mathrm{nad}}\left[\rho,\left\{\rho_{J}\right\}\right],
$$

- exact T_{s}^{nad} :

$$
\begin{aligned}
T_{s}^{\mathrm{nad}}\left[\rho,\left\{\rho_{I}\right\}\right]= & \min _{\left\{\phi_{i}\right\} \rightarrow \rho} \sum_{i=1}^{n}\left\langle\phi_{i}\right|-\nabla_{i}^{2} / 2\left|\phi_{i}\right\rangle \\
& -\sum_{I}\left(\min _{\left\{\phi_{i_{I}}\right\} \rightarrow \rho_{I}} \sum_{i=1}^{n}\left\langle\phi_{i_{I}}\right|-\nabla_{i}^{2} / 2\left|\phi_{i_{I}}\right\rangle\right)
\end{aligned}
$$

Subsystem DFT

- write T_{s} formally exactly as

$$
\begin{aligned}
T_{s}[\rho] & =\sum_{I} T_{s}\left[\rho_{I}\right]+\left[T_{s}[\rho]-\sum_{I} T_{S}\left[\rho_{I}\right]\right] \\
\text { or } \quad T_{s}[\rho] & =\sum_{I} T_{s}\left[\rho_{I}\right]+T_{s}^{\mathrm{nad}}\left[\rho,\left\{\rho_{J}\right\}\right]
\end{aligned}
$$

- exact T_{s}^{nad} :

$$
\begin{aligned}
T_{s}^{\mathrm{nad}}\left[\rho,\left\{\rho_{I}\right\}\right]= & \min _{\left\{\phi_{i}\right\} \rightarrow \rho} \sum_{i=1}^{n}\left\langle\phi_{i}\right|-\nabla_{i}^{2} / 2\left|\phi_{i}\right\rangle \\
& -\sum_{I}\left(\min _{\left\{\phi_{i_{I}}\right\} \rightarrow \rho_{I}} \sum_{i=1}^{n}\left\langle\phi_{i_{I}}\right|-\nabla_{i}^{2} / 2\left|\phi_{i_{I}}\right\rangle\right)
\end{aligned}
$$

- introduce density-dependent approximation,

$$
T_{s}^{\mathrm{nad}}\left[\rho,\left\{\rho_{J}\right\}\right] \approx \tilde{T}_{s}^{\mathrm{nad}}\left[\rho,\left\{\rho_{J}\right\}\right]=\tilde{T}_{s}[\rho]-\sum_{I} \tilde{T}_{s}\left[\rho_{I}\right]
$$

Subsystem DFT

- write T_{s} formally exactly as

$$
\begin{aligned}
T_{s}[\rho] & =\sum_{I} T_{s}\left[\rho_{I}\right]+\left[T_{S}[\rho]-\sum_{I} T_{s}\left[\rho_{I}\right]\right] \\
\text { or } \quad & T_{s}[\rho]
\end{aligned}=\sum_{I} T_{s}\left[\rho_{I}\right]+T_{s}^{\mathrm{nad}}\left[\rho,\left\{\rho_{J}\right\}\right],
$$

- exact T_{s}^{nad} :

$$
\begin{aligned}
T_{s}^{\mathrm{nad}}\left[\rho,\left\{\rho_{I}\right\}\right]= & \min _{\left\{\phi_{i}\right\} \rightarrow \rho} \sum_{i=1}^{n}\left\langle\phi_{i}\right|-\nabla_{i}^{2} / 2\left|\phi_{i}\right\rangle \\
& -\sum_{I}\left(\min _{\left\{\phi_{i_{I}}\right\} \rightarrow \rho_{I}} \sum_{i=1}^{n}\left\langle\phi_{i_{I}}\right|-\nabla_{i}^{2} / 2\left|\phi_{i_{I}}\right\rangle\right)
\end{aligned}
$$

- introduce density-dependent approximation,

$$
T_{s}^{\mathrm{nad}}\left[\left\{\rho_{J}\right\}\right] \approx \tilde{T}_{s}^{\mathrm{nad}}\left[\left\{\rho_{J}\right\}\right]=\tilde{T}_{s}\left[\rho_{1}+\rho_{2}+\ldots\right]-\sum_{I} \tilde{T}_{s}\left[\rho_{I}\right]
$$

One-Particle Equations in Subsystem DFT

- energy functional:

$$
E\left[\left\{\rho_{J}\right\}\right]=V_{\mathrm{ext}}[\rho]+J[\rho]+E_{\mathrm{xc}}[\rho]+\sum_{I} T_{s}\left[\rho_{I}\right]+T_{s}^{\mathrm{nad}}\left[\left\{\rho_{J}\right\}\right]
$$

- choose no. of electrons per subsystem $\left(n_{J}\right)$
- construct Lagrangian

$$
L\left[\left\{\rho_{J}\right\}\right]=E\left[\left\{\rho_{J}\right\}\right]+\sum_{I} \mu_{I}\left(\int \mathrm{~d}^{3} r \rho_{I}(\mathbf{r})-n_{I}\right)
$$

and minimize w.r.t. ρ_{K}
\Rightarrow Euler-Lagrange equations:

$$
0=v_{\mathrm{ext}}(\mathbf{r})+v_{\mathrm{Coul}}[\rho](\mathbf{r})+v_{\mathrm{xc}}[\rho](\mathbf{r})+\frac{\delta T_{s}\left[\rho_{K}\right]}{\delta \rho_{K}(\mathbf{r})}+\frac{\delta T_{s}^{\mathrm{nad}}\left[\left\{\rho_{J}\right\}\right]}{\delta \rho_{K}(\mathbf{r})}+\mu_{K}
$$

Frozen-Density Embedding

- assume all subsystem densities are v_{s}-representable
\Rightarrow subsystem orbitals can be obtained from

$$
\left(-\frac{1}{2} \nabla^{2}+v_{\mathrm{eff}}^{\mathrm{sub}}\left[\rho, \rho_{K}\right](\mathbf{r})\right) \phi_{i_{K}}=\epsilon_{i_{K}} \phi_{i_{K}}
$$

\Rightarrow if we choose

$$
v_{\mathrm{eff}}^{\mathrm{sub}}\left[\rho, \rho_{K}\right](\mathbf{r})=v_{\mathrm{eff}}[\rho](\mathbf{r})+\frac{\delta T_{s}^{\mathrm{nad}}\left[\left\{\rho_{J}\right\}\right]}{\delta \rho_{K}(\mathbf{r})}
$$

the systems of non-interacting particles fulfill

$$
v_{\mathrm{eff}}^{\mathrm{sub}}\left[\rho, \rho_{K}\right](\mathbf{r})+\frac{\delta T_{s}\left[\rho_{K}\right]}{\delta \rho_{K}(\mathbf{r})}+\mu_{K}=0
$$

\Rightarrow these are the sought-for densities

Embedding Potential

- define "environmental" density for system I [complementary to $\rho_{I}(\mathbf{r})$]:

$$
\rho_{I}^{\mathrm{env}}(\mathbf{r})=\sum_{J, J \neq I} \rho_{J}(\mathbf{r})
$$

- one-particle equations for FDE calculation become

$$
\left(-\frac{1}{2} \nabla^{2}+v_{\mathrm{eff}}\left[\rho_{I}\right](\mathbf{r})+v_{\mathrm{emb}}\left[\rho_{I}, \rho_{I}^{\mathrm{env}}\right](\mathbf{r})\right) \phi_{i_{I}}=\epsilon_{i_{l}} \phi_{i_{l}}
$$

(Kohn-Sham equations with constrained electron density, KSCED)

- embedding potential

$$
\begin{aligned}
v_{\mathrm{emb}}\left[\rho_{I}, \rho_{I}^{\mathrm{env}}\right](\mathbf{r})= & \sum_{J, J \neq I} v_{\mathrm{ext}}^{J}(\mathbf{r})+\sum_{J, J \neq I} v_{\mathrm{Coul}}\left[\rho_{J}\right](\mathbf{r}) \\
& +\left\{v_{\mathrm{xc}}[\rho](\mathbf{r})-v_{\mathrm{xc}}\left[\rho_{I}\right](\mathbf{r})\right\}+\frac{\delta T_{s}^{\mathrm{nad}}\left[\left\{\rho_{J}\right\}\right]}{\delta \rho_{K}(\mathbf{r})}
\end{aligned}
$$

Embedding Potential

- define "environmental" density for system I [complementary to $\rho_{I}(\mathbf{r})$]:

$$
\rho_{I}^{\mathrm{env}}(\mathbf{r})=\sum_{J, J \neq I} \rho_{J}(\mathbf{r})
$$

- one-particle equations for FDE calculation become

$$
\left(-\frac{1}{2} \nabla^{2}+v_{\mathrm{eff}}\left[\rho_{I}\right](\mathbf{r})+v_{\mathrm{emb}}\left[\rho_{I}, \rho_{I}^{\mathrm{env}}\right](\mathbf{r})\right) \phi_{i_{I}}=\epsilon_{i_{l}} \phi_{i_{l}}
$$

(Kohn-Sham equations with constrained electron density, KSCED)

- embedding potential

$$
\begin{aligned}
v_{\mathrm{emb}}\left[\rho_{I}, \rho_{I}^{\mathrm{env}}\right](\mathbf{r})= & \sum_{J, J \neq I} v_{\mathrm{ext}}^{J}(\mathbf{r})+\sum_{J, J \neq I} v_{\mathrm{Coul}}\left[\rho_{J}\right](\mathbf{r}) \\
& +v_{\mathrm{xc}}^{\mathrm{nad}}\left[\rho_{I}, \rho\right](\mathbf{r})+v_{t}^{\mathrm{nad}}\left[\rho_{I}, \rho\right](\mathbf{r})
\end{aligned}
$$

Solution of the KSCED equations

Approximations that have to be selected:

- non-additive kinetic energy functional $\tilde{T}_{s}^{\text {nad }}$ (and corresponding potential)
- XC functional:
- either regard $E_{\mathrm{xc}}[\rho]$ as one energy contribution,

$$
E_{\mathrm{xc}}[\rho] \approx \tilde{E}_{\mathrm{xc}}\left[\rho_{1}+\rho_{2}+\ldots\right]
$$

- or approximate components of $E_{\mathrm{xc}}[\rho]$,

$$
\begin{aligned}
E_{\mathrm{xc}}[\rho] & =\sum_{I} E_{\mathrm{xc}}\left[\rho_{I}\right]+E_{\mathrm{xc}}^{\mathrm{nad}}\left[\left\{\rho_{I}\right\}\right] \\
& \approx \sum_{I} \tilde{E}_{\mathrm{xc}}^{(I)}\left[\rho_{I}\right]+\tilde{\tilde{E}}_{\mathrm{xc}}^{\mathrm{nad}}\left[\left\{\rho_{I}\right\}\right]
\end{aligned}
$$

(facilitates use of different XC approximations for different subsystems and/or the non-additive part)
Allows pragmatic use of hybrid XC functionals in intra-subsystem parts only

Non-additive kinetic-energy functionals

Common decomposable approximations:

- general structure: $T_{s}^{\mathrm{nad}}\left[\left\{\rho_{I}\right\}, \rho\right]=T_{s}[\rho]-\sum_{I} T_{s}\left[\rho_{I}\right]$
- Thomas-Fermi approximation

$$
T_{s}[\rho] \approx T_{\mathrm{TF}}[\rho]=C_{F} \int \rho^{5 / 3}(\mathbf{r}) \mathrm{d} \mathbf{r}
$$

L.A. Thomas, Proc. Camb. Phil. Soc. 23 (1927) 542; E. Fermi, Z. Physik 48 (1928) 73.
exact for homogeneous electron gas ("LDA" for kinetic energy)

- von Weizsäcker approximation

$$
T_{s}[\rho] \approx T_{\mathrm{vW}}[\rho]=\frac{1}{8} \int \frac{|\nabla \rho(\mathbf{r})|^{2}}{\rho(\mathbf{r})} \mathrm{d} \mathbf{r}
$$

C.F. von Weizsäcker, Z. Physik 96 (1935) 431.
exact for one-orbital systems

Subsystem DFT at Work

Step 1
active system

environment

- calculate $\rho_{\text {active }}$ with frozen environment
- iterate over all subsystems

Subsystem DFT at Work

Step 2
active system

environment

- calculate $\rho_{\text {active }}$ with frozen environment
- iterate over all subsystems

Subsystem DFT at Work

Step 3
active system

environment

- calculate $\rho_{\text {active }}$ with frozen environment
- iterate over all subsystems

Subsystem DFT at Work

Step 4
active system

environment

- calculate $\rho_{\text {active }}$ with frozen environment
- iterate over all subsystems

Dipole Moment of $(\mathrm{HCN})_{N}$

Average dipole moment as a function of chain length
BP86/TZP

C.R. Jacob, JN, WIREs Comput. Mol. Sci. 4 (2014), 325.

From DFT/DFT to

WF/DFT embedding

DFT-in-DFT Hybrid Methods

Subsystem DFT

- fragmentation scheme, KS-DFT for subsystems, OF-DFT for interaction

$$
E^{\mathrm{sPFT}}\left[\rho_{\mathrm{tot}}\right]=E^{\mathrm{KS}}\left[\rho_{1}\right]+E^{\mathrm{KS}}\left[\rho_{2}\right]+E_{(1 \leftrightarrow 2)}^{\mathrm{OF}}\left[\rho_{1}, \rho_{2}\right]
$$

FDE (without orbital representation of $\rho_{\text {env }}$)

- QM/QM embedding scheme, KS-DFT/OF-DFT

$$
E^{\mathrm{FDE}}\left[\rho_{\mathrm{tot}}\right]=E^{\mathrm{KS}}\left[\rho_{1}\right]+E^{\mathrm{OF}}\left[\rho_{2}\right]+E_{(1 \leftrightarrow 2)}^{\mathrm{OF}}\left[\rho_{1}, \rho_{2}\right]
$$

Wavefunction-in-DFT Hybrid Methods

Can this idea be transferred to WF-in-DFT embedding?

- within DFT, $v_{\text {emb }}(\mathbf{r})$ is formally exact (contains all non-electrostatic contributions)
- simple idea:
include $\left\langle\chi_{\mu}\right| v_{\mathrm{emb}}(\mathbf{r})\left|\chi_{\nu}\right\rangle$ into one-electron part of WF calculation
\Rightarrow gives access to "embedded WF" and properties

Wavefunction-in-DFT Hybrid Methods

- WF/DFT energy functional:

$$
E^{\mathrm{WF} / \mathrm{DFT}}\left[\Psi_{A}, \rho_{B}\right]=\left\langle\Psi_{A}\right| \hat{H}_{A}\left|\Psi_{A}\right\rangle+E_{B}^{\mathrm{KS}}\left[\rho_{B}\right]+E_{(A \leftrightarrow B)}^{\mathrm{OFDFT}}\left[\rho_{A}, \rho_{B}\right]
$$

(ρ_{A} : density obtained from Ψ_{A})

- minimization w.r.t. Ψ_{A} yields (ρ_{B} fixed):

$$
\hat{H}_{A}^{\prime} \Psi_{A}=\left(\hat{H}_{A}+\sum_{i=1}^{n_{A}} v_{\mathrm{emb}}^{A}\left[\rho_{A}, \rho_{B}\right]\left(\mathbf{r}_{i}\right)\right) \Psi_{A}=\tilde{E}_{A} \Psi_{A}
$$

where
$v_{\mathrm{emb}}^{A}\left[\rho_{A}, \rho_{B}\right](\mathbf{r})=v_{\mathrm{ext}}^{B}(\mathbf{r})+v_{\mathrm{Coul}}\left[\rho_{B}\right](\mathbf{r})+v_{\mathrm{xc}}[\rho](\mathbf{r})-v_{\mathrm{xc}}\left[\rho_{A}\right](\mathbf{r})+v_{t}^{\mathrm{nad}}\left[\rho_{A}, \rho_{B}\right](\mathbf{r})$
\Rightarrow same form as in sDFT! (but often evaluated with approximate ρ_{A}, ρ_{B})
N. Govind, Y.A. Wang, A.J.R. da Silva, E.A. Carter, Chem. Phys. Lett. 295 (1998), 129.

Wavefunction-in-DFT Embedding

$$
\begin{aligned}
& v_{1}^{\mathrm{emb}}\left[\rho_{1}, \rho_{2}\right](\mathbf{r})=\sum_{A_{2}}-\frac{Z_{A_{2}}}{\left|\mathbf{r}-\mathbf{R}_{A_{2}}\right|}+\int \frac{\rho_{2}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}^{\prime}-\mathbf{r}\right|} d \mathbf{r}^{\prime} \\
& \quad+\left.\frac{\delta E_{\mathrm{xc}}[\rho]}{\delta \rho(\mathbf{r})}\right|_{\rho=\rho_{1}+\rho_{2}}-\left.\frac{\delta E_{\mathrm{xc}}[\rho]}{\delta \rho(\mathbf{r})}\right|_{\rho=\rho_{1}}+\left.\frac{\delta T_{s}[\rho]}{\delta \rho(\mathbf{r})}\right|_{\rho=\rho_{1}+\rho_{2}}-\left.\frac{\delta T_{s}[\rho]}{\delta \rho(\mathbf{r})}\right|_{\rho=\rho_{1}}
\end{aligned}
$$

Wavefunction-in-DFT Embedding

"Exact" Density-Based Embedding

Covalent Bonds through Exact Embedding Potentials

Approximations for $\nu_{t}^{\text {nad }}$ break down for covalent bonds

system 2

- What do we know about the exact $v_{t}^{\mathrm{nad}}(\mathbf{r})$?
- Can we reconstruct the exact embedding potential for subsystems 1, 2 that reproduces $\rho_{\text {super }}(\mathbf{r})=\rho_{1}(\mathbf{r})+\rho_{2}(\mathbf{r})$?
("exact" here excludes errors introduced by finite basis sets, errors introduced in the calculation of $\rho_{\text {super }}$ (usually
through E_{xc}), and numerical errors in the construction of the potential, e.g., due to finite grid size)

Functional Derivative of T_{s}^{nad}

- problems arise due to
(here: system $K=$ active system)

$$
\frac{\delta T_{s}^{\mathrm{nad}}\left[\left\{\rho_{I}\right\}\right]}{\delta \rho_{K}(\mathbf{r})}=\frac{\delta T_{s}[\rho]}{\delta \rho_{K}(\mathbf{r})}-\sum_{I} \frac{\delta T_{s}\left[\rho_{I}\right]}{\delta \rho_{K}(\mathbf{r})}
$$

with $\rho(\mathbf{r})=\sum_{I} \rho_{I}(\mathbf{r})$

- first term:

$$
\begin{aligned}
\frac{\delta T_{s}[\rho]}{\delta \rho_{K}(\mathbf{r})} & =\int \frac{\delta T_{s}[\rho]}{\delta \rho\left(\mathbf{r}^{\prime}\right)} \cdot \frac{\delta \rho\left(\mathbf{r}^{\prime}\right)}{\delta \rho_{K}(\mathbf{r})} \mathrm{d} \mathbf{r}^{\prime} \\
& =\int \frac{\delta T_{s}[\rho]}{\delta \rho\left(\mathbf{r}^{\prime}\right)} \cdot \delta\left(\mathbf{r}^{\prime}-\mathbf{r}\right) \mathrm{d} \mathbf{r}^{\prime}=\frac{\delta T_{s}[\rho]}{\delta \rho(\mathbf{r})}
\end{aligned}
$$

- second term:

$$
\sum_{I} \frac{\delta T_{s}\left[\rho_{I}\right]}{\delta \rho_{K}(\mathbf{r})}=\sum_{I} \frac{\delta T_{s}\left[\rho_{K}\right]}{\delta \rho_{K}(\mathbf{r})} \cdot \delta_{K I}=\frac{\delta T_{s}\left[\rho_{K}\right]}{\delta \rho_{K}(\mathbf{r})}
$$

Functional Derivative of T_{s}^{nad}

\Rightarrow we need to calculate

$$
v_{t}^{\text {nad }}\left[\rho_{K}, \rho_{\text {super }}\right](\mathbf{r})=\frac{\delta T_{s}^{\text {nad }}\left[\left\{\rho_{I}\right\}\right]}{\delta \rho_{K}(\mathbf{r})}=\frac{\delta T_{s}\left[\rho_{\text {super }}\right]}{\delta \rho_{\text {super }}(\mathbf{r})}-\frac{\delta T_{s}\left[\rho_{K}\right]}{\delta \rho_{K}(\mathbf{r})}
$$

- or, in other words, we need to find

$$
v_{t}[\rho](\mathbf{r})=\frac{\delta T_{s}[\rho]}{\delta \rho(\mathbf{r})}
$$

for two different densities ($\rho=\rho_{\text {super }}$ and $\rho=\rho_{K}$)

Euler-Lagrange Equation: Kohn-Sham Formalism

- Euler-Lagrange Equation:

$$
\mu=\left.\frac{\delta T_{s}[\rho]}{\delta \rho(\mathbf{r})}\right|_{\rho=\rho_{\text {target }}}+v_{s}\left[\rho_{\text {target }}\right](\mathbf{r})
$$

\Rightarrow "Kinetic-energy potential:"

$$
v_{t}\left[\rho_{\text {target }}\right](\mathbf{r})=\left.\frac{\delta T_{s}[\rho]}{\delta \rho(\mathbf{r})}\right|_{\rho=\rho_{\text {arget }}}=\mu-v_{s}\left[\rho_{\text {target }}\right](\mathbf{r})
$$

- μ is just a constant shift in the potential (will be ignored here)
\Rightarrow If we know the potential $v_{s}\left[\rho_{\text {target }}\right](\mathbf{r})$ that results in a set of orbitals $\left\{\phi_{i}^{\text {target }}\right\}$ such that

$$
\sum_{i}\left|\phi_{i}^{\text {target }}(\mathbf{r})\right|^{2}=\rho_{\text {target }}(\mathbf{r})
$$

then we also have access to $v_{t}\left[\rho_{\text {target }}\right](\mathbf{r})$

Why Use "Exact" Embedding at All?

\Rightarrow we can obtain the exact $v_{t}^{\text {nad }}$ as

$$
v_{t}^{\mathrm{nad}}\left[\rho_{A}, \rho_{\text {super }}\right](\mathbf{r})=v_{s}\left[\rho_{A}\right](\mathbf{r})-v_{s}\left[\rho_{\text {super }}\right](\mathbf{r})+\Delta \mu
$$

(two subsystems assumed for simplicity; $v_{t}^{\text {nad }}$ is given for subsystem A)

Exact embedding is expensive:

- either, we first have to solve a KS-DFT calculation for the total system
- or, we have to do (several) reconstructions of total-system potentials

Why Use "Exact" Embedding at All?

\Rightarrow we can obtain the exact $v_{t}^{\text {nad }}$ as

$$
v_{t}^{\text {nad }}\left[\rho_{A}, \rho_{\text {super }}\right](\mathbf{r})=v_{s}\left[\rho_{A}\right](\mathbf{r})-v_{s}\left[\rho_{\text {super }}\right](\mathbf{r})+\Delta \mu
$$

(two subsystems assumed for simplicity; $v_{t}^{\text {nad }}$ is given for subsystem A)
Exact embedding is expensive:

- either, we first have to solve a KS-DFT calculation for the total system
- or, we have to do (several) reconstructions of total-system potentials

Possible benefits:

- "exact" potential may serve as basis for approximations
- "exact" potential may be transferred to more expensive WF/DFT
- ground-state calculation is not the bottleneck (e.g., response)
S. Fux, C.R. Jacob, J. Neugebauer, L. Visscher, M. Reiher, J. Chem. Phys. 132 (2010), 164101;
J.D. Goodpaster, N. Ananth, F.R. Manby, T.F. Miller III, J. Chem. Phys. 133 (2010), 084103;
D. Schnieders, J. Neugebauer, J. Chem. Phys. 149 (2018), 054103.

Potential Reconstruction

Densities in search of Hamiltonians:

- we need to find $v_{s}[\rho](\mathbf{r})$ that yields a specific $\rho=\rho^{\text {target }}$
\Rightarrow "inverse Kohn-Sham problem"
\Rightarrow has been solved several times in the context of v_{xc} development:
- Wang and Parr Phys. Rev. A 47 (1993), R1591.
- van Leeuwen and Baerends Phys. Rev. A 49 (1994), 2421.
- Zhao, Morrison and Parr Phys. Rev. A 50 (1994), 2138.
- Wu and Yang נ. Chem. Phys. 118 (2003), 2498.
- ...

van Leeuwen-Baerends Reconstruction

- KS-equation

$$
\begin{aligned}
\epsilon_{i} \phi_{i}(\mathbf{r}) & =\left[-\frac{\nabla^{2}}{2}+v_{s}(\mathbf{r})\right] \phi_{i}(\mathbf{r}) \\
\sum_{i} \epsilon_{i} \phi_{i}^{*}(\mathbf{r}) \phi_{i}(\mathbf{r}) & =\sum_{i} \phi_{i}^{*}(\mathbf{r})\left[-\frac{\nabla^{2}}{2}\right] \phi_{i}(\mathbf{r})+v_{s}(\mathbf{r}) \sum_{i} \phi_{i}^{*}(\mathbf{r}) \phi_{i}(\mathbf{r}) \\
v_{s}(\mathbf{r}) \rho(\mathbf{r}) & =\sum_{i} \phi_{i}^{*}(\mathbf{r})\left[\frac{\nabla^{2}}{2}\right] \phi_{i}(\mathbf{r})+\sum_{i} \epsilon_{i} \phi_{i}^{*}(\mathbf{r}) \phi_{i}(\mathbf{r}) \\
v_{s}(\mathbf{r}) & =\frac{1}{\rho(\mathbf{r})} \sum_{i}\left\{\phi_{i}^{*}(\mathbf{r})\left[\frac{\nabla^{2}}{2}\right] \phi_{i}(\mathbf{r})+\epsilon_{i} \phi_{i}^{*}(\mathbf{r}) \phi_{i}(\mathbf{r})\right\}
\end{aligned}
$$

R. van Leeuwen, E.J. Baerends, Phys. Rev. A 49 (1994), 2421.

van Leeuwen-Baerends Reconstruction

- iterative scheme, iteration $(k+1)$,

$$
\begin{aligned}
v_{s}^{(k+1)}(\mathbf{r}) & =\frac{1}{\rho^{\operatorname{target}}(\mathbf{r})} \sum_{i}\left\{\phi_{i}^{(k) *}(\mathbf{r})\left[\frac{\nabla^{2}}{2}\right] \phi_{i}^{(k)}(\mathbf{r})+\epsilon_{i}^{(k)} \phi_{i}^{(k) *}(\mathbf{r}) \phi_{i}^{(k)}(\mathbf{r})\right\} \\
& =\frac{\rho^{k}(\mathbf{r})}{\rho^{\operatorname{target}}(\mathbf{r})} \cdot v_{s}^{(k)}
\end{aligned}
$$

R. van Leeuwen, E.J. Baerends, Phys. Rev. A 49 (1994), 2421.

Excitation Energies with Reconstructed Potentials

 Aminopyridine ... methanol
D. Artiukhin, C.R. Jacob, JN, J. Chem. Phys. 142 (2015), 234101.

- $\pi \rightarrow \pi^{*}$ excitation of aminopyridine $\cdots \mathrm{MeOH}$ (PW91/TZP)

Excitation Energies with Reconstructed Potentials

 Aminopyridine... methanol
D. Artiukhin, C.R. Jacob, JN, J. Chem. Phys. 142 (2015), 234101.

- $\pi \rightarrow \pi^{*}$ excitation of aminopyridine \cdots MeOH (PW91/TZP)
- reconstruction using Wu-Yang algorithm, ALDA kernel

"Exact" Projection-Based Embedding

$T_{s}^{\text {nad }}$ for Orthogonal Subsystem Orbitals

- assume two-partitioning $(A+B)$; determine supersystem KS orbitals
- define

$$
\rho_{A}(\mathbf{r})=\sum_{j=1}^{n_{A}}\left|\phi_{j}^{\text {super }}(\mathbf{r})\right|^{2} \quad \text { and } \quad \rho_{B}(\mathbf{r})=\sum_{k=n_{A}+1}^{n_{A}+n_{B}}\left|\phi_{k}^{\text {super }}(\mathbf{r})\right|^{2}=\rho_{\mathrm{env}}(\mathbf{r})
$$

- kinetic energy:

$$
\begin{aligned}
T_{s}\left[\left\{\phi_{i}^{\text {super }}\right\}\right] & =\sum_{i=1}^{n}\left\langle\phi_{i}^{\text {super }}\right|-\nabla^{2} / 2\left|\phi_{i}^{\text {super }}\right\rangle \\
& =\sum_{j=1}^{n_{A}}\left\langle\phi_{j}^{\text {super }}\right|-\nabla^{2} / 2\left|\phi_{j}^{\text {super }}\right\rangle+\sum_{k=n_{A}+1}^{n_{A}+n_{B}}\left\langle\phi_{k}^{\text {super }}\right|-\nabla^{2} / 2\left|\phi_{k}^{\text {super }}\right\rangle \\
& =T_{s}^{A}+T_{s}^{B}
\end{aligned}
$$

\Rightarrow apparently, no non-additive kinetic-energy approximation needed!

$T_{s}^{\text {nad }}$ for Orthogonal Subsystem Orbitals

- but: even in case of orthogonal $\phi_{i}^{\text {super }}$ and exact ρ_{A}, ρ_{B}, in general

$$
\begin{aligned}
& \sum_{j=1}^{n_{A}}\left\langle\phi_{j}^{\text {super }}\right|-\nabla^{2} / 2\left|\phi_{j}^{\text {super }}\right\rangle+\sum_{k=n_{A}+1}^{n_{A}+n_{B}}\left\langle\phi_{k}^{\text {super }}\right|-\nabla^{2} / 2\left|\phi_{k}^{\text {super }}\right\rangle \\
& \quad \geq \min _{\left\{\phi_{i_{A}}\right\} \rightarrow \rho_{A}} \sum_{i}^{n_{A}}\left\langle\phi_{i_{A}}\right|-\nabla^{2} / 2\left|\phi_{i_{A}}\right\rangle+\min _{\left\{\phi_{i_{B}}\right\} \rightarrow \rho_{B}} \sum_{i}^{n_{B}}\left\langle\phi_{i_{B}}\right|-\nabla^{2} / 2\left|\phi_{i_{B}}\right\rangle
\end{aligned}
$$

$T_{s}^{\text {nad }}$ for Orthogonal Subsystem Orbitals

- but: even in case of orthogonal $\phi_{i}^{\text {super }}$ and exact ρ_{A}, ρ_{B}, in general

$$
\begin{aligned}
& \sum_{j=1}^{n_{A}}\left\langle\phi_{j}^{\text {super }}\right|-\nabla^{2} / 2\left|\phi_{j}^{\text {super }}\right\rangle+\sum_{k=n_{A}+1}^{n_{A}+n_{B}}\left\langle\phi_{k}^{\text {super }}\right|-\nabla^{2} / 2\left|\phi_{k}^{\text {super }}\right\rangle \\
& \quad \geq \min _{\left\{\phi_{i_{A}}\right\} \rightarrow \rho_{A}} \sum_{i}^{n_{A}}\left\langle\phi_{i_{A}}\right|-\nabla^{2} / 2\left|\phi_{i_{A}}\right\rangle+\min _{\left\{\phi_{i_{B}}\right\} \rightarrow \rho_{B}} \sum_{i}^{n_{B}}\left\langle\phi_{i_{B}}\right|-\nabla^{2} / 2\left|\phi_{i_{B}}\right\rangle
\end{aligned}
$$

- reason: not both subsets of $\left\{\phi_{i}^{\text {super }}\right\}$ are, in general, ground-state of some effective potential
- still: subsets of $\left\{\phi_{i}^{\text {super }}\right\}$ can be obtained from projected KS problem without $v_{t}^{\text {nad }}$

Externally Orthogonal Subsystem Orbitals

In sDFT, orbitals of different subsystems are not necessarily orthogonal:

$$
\left\langle\phi_{i_{l}} \mid \phi_{j_{l}}\right\rangle=\delta_{i j}, \quad \text { but } \quad\left\langle\phi_{i_{l}} \mid \phi_{j_{J}}\right\rangle \quad \text { can be } \quad \neq 0
$$

How can we determine orthogonal embedded subsystem orbitals?
Three (related) strategies:

- projection-based embedding
F.R. Manby, M. Stella, J.D. Goodpaster, T.F. Miller III, J. Chem. Theory Comput. 2012, 8, 2564.
- external orthogonality through extra Lagrangian multipliers
Y.G. Khait, M.R. Hoffmann, Ann. Rep. Comput. Chem. 2012, 8, 53-70;
P.K. Tamukong, Y.G. Khait, M.R. Hoffmann, J. Phys. Chem. A 2014, 118, 9182.
- Huzinaga equation (transferred to KS-DFT)
S. Huzinaga and A.A. Cantu, J. Chem. Phys. 1971, 55, 5543;
B. Hégely, P.R. Nagy, G.G. Ferency, M. Kállay, J. Chem. Phys. 2016, 145, 064107.

Exact Embedding through Projection

Basic Idea:

- 1st step: KS-DFT calculation on $(A+B)$
- 2nd step: localization of KS orbitals $\Rightarrow\left\{\phi_{i}^{A}\right\},\left\{\phi_{i}^{B}\right\}$
- then: construct Fock operator for electrons in subsystem A,
$\hat{f}^{A}=-\frac{\nabla^{2}}{2}+v_{\text {nuc }}^{A}(\vec{r})+v_{\text {nuc }}^{B}(\vec{r})+v_{\operatorname{Coul}}\left[\rho_{A}+\rho_{B}\right](\vec{r})+v_{\mathrm{xc}}\left[\rho_{A}+\rho_{B}\right](\vec{r})+\mu \hat{P}^{B}$
with projection operator \hat{P}^{B},

$$
\hat{P}^{B}=\sum_{i \in B}\left|\phi_{i}^{B}\right\rangle\left\langle\phi_{i}^{B}\right|
$$

- for $\lim _{\mu \rightarrow \infty}$: eigenfunctions of \hat{f}^{A} are orthogonal to $\left\{\phi_{i}^{B}\right\}$

Externally Orthogonal Subsystem Orbitals

Enforce external orthogonality through extra constraints

- consider sDFT energy as functional of two orbital sets,

$$
E^{\mathrm{SDFT}}=E^{\mathrm{SDFT}}\left[\left\{\phi_{i}^{A}\right\},\left\{\phi_{i}^{B}\right\}\right]
$$

- introduce orthonormality constraints through Lagrangian multipliers,

$$
E^{\mathrm{sFT}} \rightarrow L^{\mathrm{sDFT}}=E^{\mathrm{sFFT}}-\sum_{I=A, B} \sum_{\substack{i \in I \\ j \in I}} \lambda_{i j}^{I}\left(\left\langle\phi_{i l} \mid \phi_{j l}\right\rangle-\delta_{i j}\right)-\sum_{\substack{i \in A \\ j \in B}} \lambda_{i j}^{A B}\left\langle\phi_{i_{A}} \mid \phi_{j_{B}}\right\rangle-\sum_{\substack{i \in B \\ j \in A}} \lambda_{i j}^{B A}\left\langle\phi_{i_{B}} \mid \phi_{j_{A}}\right\rangle
$$

- optimization w.r.t. ϕ_{i}^{A} yields (for ϕ_{i}^{B} fixed),

$$
\left(-\frac{\nabla^{2}}{2}+v_{\mathrm{eff}}^{\mathrm{KS}}[\rho](\mathbf{r})\right) \phi_{i}^{A}(\mathbf{r})=\epsilon_{i}^{A} \phi_{i}^{A}(\mathbf{r})+\sum_{j \in B} \lambda_{i j}^{A B} \phi_{j}^{B}(\mathbf{r})
$$

- multiply with $\left\langle\phi_{k}^{B}\right|$; make use of external orthogonality already,

$$
\left\langle\phi_{k}^{B}\right| \hat{f}^{\mathrm{KS}}\left|\phi_{i}^{A}\right\rangle=\lambda_{i k}^{A B}
$$

Externally Orthogonal Subsystem Orbitals

- from this it follows that,

$$
\begin{aligned}
\hat{f}^{\mathrm{KS}}\left|\phi_{i}^{A}\right\rangle & =\epsilon_{i}^{A}\left|\phi_{i}^{A}\right\rangle+\sum_{j \in B}\left|\phi_{j}^{B}\right\rangle\left\langle\phi_{j}^{B}\right| \hat{f}^{\mathrm{KS}}\left|\phi_{i}^{A}\right\rangle \\
\Rightarrow \underbrace{\left(1-\sum_{j \in B}\left|\phi_{j}^{B}\right\rangle\left\langle\phi_{j}^{B}\right|\right) \hat{f}^{\mathrm{KS}}}\left|\phi_{i}^{A}\right\rangle & =\left(1-\hat{P}^{B}\right) \hat{f}^{\mathrm{KS}}\left|\phi_{i}^{A}\right\rangle=\epsilon_{i}^{A}\left|\phi_{i}^{A}\right\rangle
\end{aligned}
$$

- note: \hat{f}^{\prime} is not Hermitian
- under external orthogonality: $\left(1-\hat{P}^{B}\right)\left|\phi_{i}^{A}\right\rangle=\left|\phi_{i}^{A}\right\rangle$

$$
\Rightarrow \underbrace{\left(1-\hat{P}^{B}\right) \hat{f}^{\mathrm{KS}}\left(1-\hat{P}^{B}\right)}_{\hat{f}^{\prime \prime}}\left|\phi_{i}^{A}\right\rangle=\epsilon_{i}^{A}\left|\phi_{i}^{A}\right\rangle
$$

note: $\hat{f}^{\prime \prime}$ is Hermitian!
Y.G. Khait, M.R. Hoffmann, Ann. Rep. Comput. Chem. 8 (2012), 53-70;
P.K. Tamukong, Y.G. Khait, M.R. Hoffmann, J. Phys. Chem. A 118 (2014), 9182.

Comparing Density-Based Embedding Schemes

PBE/def2-QZVP; a) sum-of-isolated densities; b) PBE-type $T_{s}^{\text {nad }}$; c) potential reconstruction d) projection

Density-Matrix

Embedding Theory

Decomposing Total-System States

Consider active system A and bath B :

- states of combined system can be expanded as,

$$
\begin{aligned}
\left|\Psi_{A+B}\right\rangle & =\sum_{i}^{n_{\text {stats }}^{A}} \sum_{j}^{n_{\text {stats }}} c_{i j}\left|A_{i}\right\rangle\left|B_{j}\right\rangle=\sum_{i}^{n_{\text {sates }}^{A}}\left|A_{i}\right\rangle\left(\sum_{j}^{n_{\text {sates }}^{B}} c_{i j}\left|B_{j}\right\rangle\right) \\
& =\sum_{i}^{n_{\text {stes }}^{A}}\left|A_{i}\right\rangle\left|\tilde{B}_{i}\right\rangle
\end{aligned}
$$

with "relative states" $\left|\tilde{B}_{i}\right\rangle$ (not orthonormal in general)
J. Audretsch, Entangled Systems — New Directions in Quantum Physics, Wiley-VCH, Weinheim, 2007, pp. 149-151;
G. Knizia, G.K.-L. Chan, J. Chem. Theory Comput. 9 (2013), 1428.

Decomposing Total-System States

Schmidt Decomposition Theorem:

- any pure state $\left|\Psi_{A+B}\right\rangle$ can be written in terms of (orthonormal) Schmidt states $\left|a_{i}\right\rangle,\left|b_{i}\right\rangle$

$$
\left|\Psi_{A+B}\right\rangle=\sum_{k}^{n_{\min }} \sqrt{p_{i}}\left|a_{i}\right\rangle\left|b_{i}\right\rangle
$$

(where $\sqrt{p_{i}}$ is a real, non-negative number with $\sum_{i} p_{i}=1$, and $n_{\min }=\min \left(n_{\text {states }}^{A}, n_{\text {states }}^{B}\right)$

- reduced density matrices of subsystems A and B are then given as

$$
\begin{aligned}
\rho_{A} & =\operatorname{Tr}_{B}\left[\left|\Psi_{A+B}\right\rangle\left\langle\Psi_{A+B}\right|\right]=\sum_{k, l}^{n_{\min }} \sqrt{p_{k}} \sqrt{p_{l}}\left|a_{k}\right\rangle\left\langle a_{l}\right|\left(\operatorname{Tr}_{B}\left[\left|b_{k}\right\rangle\left\langle b_{l}\right|\right]\right) \\
& =\sum_{k}^{n_{\min }} p_{k}\left|a_{k}\right\rangle\left\langle a_{k}\right| \\
\rho_{B} & =\sum_{k}^{n_{\min }} p_{k}\left|b_{k}\right\rangle\left\langle b_{k}\right|
\end{aligned}
$$

Decomposing Total-System States

Schmidt Decomposition by SVD

- singular value decomposition of matrix $\boldsymbol{c}=\boldsymbol{U} \boldsymbol{\lambda} \boldsymbol{V}^{\dagger}$

$$
\begin{aligned}
\left|\Psi_{A+B}\right\rangle & =\sum_{i}^{n_{j}^{A}} \sum_{j}^{n_{\text {sates }} s_{\text {sates }}^{k}} c_{i j}\left|A_{i}\right\rangle\left|B_{j}\right\rangle=\sum_{i}^{n_{j}^{\prime}} \sum_{j}^{n_{\text {sates }}^{n} n_{\text {sates }}^{B}} \sum_{k}^{n_{\text {min }}} U_{i k} \lambda_{k} V_{k j}^{\dagger}\left|A_{i}\right\rangle\left|B_{j}\right\rangle \\
& =\sum_{k}^{n_{\text {min }}} \lambda_{k}\left|a_{k}\right\rangle\left|b_{k}\right\rangle
\end{aligned}
$$

\Rightarrow even if $h_{\text {states }}^{B} \gg n_{\text {states }}^{A}$, exact embedding of A is possible with $n_{\text {states }}^{A}$ bath states

- but: constructing bath states requires knowledge of full $\left|\Psi_{A+B}\right\rangle$

Idea of DMET

- construct bath states from simple approximation $|\Phi\rangle$ to $\left|\Psi_{A+B}\right\rangle$
- use these bath states to obtain high-level approximation from embedded problem

Density-Matrix Embedding Theory

- match one-particle density matrices, i.e., minimize

$$
\Delta=\sum_{A} \sum_{r s \in A}\left\|\langle\Phi| \hat{a}_{r}^{\dagger} \hat{a}_{s}|\Phi\rangle-\left\langle\Psi_{A}\right| \hat{a}_{r}^{\dagger} \hat{a}_{s}\left|\Psi_{A}\right\rangle\right\|^{2}
$$

- this is achieved by modifying the Fock operator,

$$
\hat{f} \rightarrow \hat{f}+\sum_{A} \hat{\mu}_{A} \quad \text { with } \quad \hat{\mu}_{A}=\sum_{r s \in A} \mu_{r s}^{A} \hat{a}_{r}^{\dagger} \hat{a}_{S}
$$

in the calculation of the mean-field wavefunction $|\Phi\rangle$ (i.e., Δ is minimized w.r.t. all $\mu_{r s}^{A}$)

- related method with overlapping fragments: bootstrap embedding
M. Welborn, T. Tsuchimochi, T. Van Voorhis, J. Chem. Phys. 145 (2016), 074102.

Conclusion

QM/QM methods

- there are several QM/QM methods available now which are (formally) exact under certain conditions
- but: using "exact" embedding directly does not lead to gain in efficiency
- however, it can be the starting point for new approximations or new (approximate) fields of application

Conclusion

QM/QM methods

- there are several QM/QM methods available now which are (formally) exact under certain conditions
- but: using "exact" embedding directly does not lead to gain in efficiency
- however, it can be the starting point for new approximations or new (approximate) fields of application
QM/(QM,MM) methods?
- "Polarizable Density Embedding":
combines elements from FDE, polarizable force fields, and Huzinaga-type embedding
J.M.H. Olsen, C. Steinmann, K. Ruud, J. Kongsted, J. Phys. Chem. A 2015, 119, 5344.

[^0]: G. Senatore, K. R. Subbaswamy, Phys. Rev. B 34 (1986), 5754;
 P. Cortona, Phys. Rev. B 44 (1991), 8454;
 T.A. Wesolowski, J. Weber, Chem. Phys. Lett. 248 (1996), 71.

