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Introduction

“[A] reliable quantum mechanical description . . . of more than a few
atoms was practically impossible for a very long time. . . . The solution

to this challenge . . . has emerged from the realization that a
description of the properties of complex systems does not require the
representation of all parts of the system at the same level of detail.”

A. Warshel, Nobel Lecture, December 8, 2013.



Why Care About Environment Effects?

Example: Menshutkin reaction, NH3 + CH3Cl→ [NH3CH3]+ + Cl−

(in kJ/mol) ∆‡G ∆RG

Gas Phase 193.9 2.5
Water (CPCM) 105.3 −47.7
Water (WRMS/GFN2-xTB/sDFT) 107.1 −69.8
Water (MD/CGenFF/sDFT) 105.7 −68.0
Water (Exp.)a > 101.7 -

Details: M. Bensberg, P.L. Türtscher, J.P. Unsleber, M. Reiher, J. Neugebauer, J. Chem. Theory Comput. 18 (2022), 723.
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Natural Light-Harvesting Complexes
Structure of LH2 of Rhodopseudomonas acidophila

main pigments: Bchl a

9 pairs of {α, β}-Bchl a in B850 unit, 9 Bchl a in B800 unit
9 carotenoid pigments (rhodopin glucoside)
9 α- and β-apoproteins

G. McDermott et. al, Nature 374 (1995), 517.
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Absorption Spectra of the B850 Unit
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G.D. Scholes, G.R. Fleming, J. Phys. Chem. B 104 (2000), 1854
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Why Embedding/Subsystem Approaches?

Some answers:

standard QC calculations on system+environment may be very costly
(or even unfeasible)

huge amount of CPU time would be spent on a presumably small effect
of the environment

conformational sampling shall be avoided if possible (or made cheaper)

for analysis, we want to separate solute and solvent properties/effects



Conformational Sampling

Classical Phase-Space Sampling

if we treat the nuclei classically, we can sample a property A over all
points ~X in phase space

〈A〉 =

∫
A(~X)P(~X)d~X

where the probability for finding the system at point ~X is

P(~X) =
e−E(~X)/[kBT]

Z

with partition function Z

Z =

∫
e−E(~X)/[kBT]d~X



Conformational Sampling

Evaluating the Phase-Space Integral

1) Monte Carlo/Importance Sampling: Numerical integration with points
~Xk generated according to their (Boltzmann) importance

〈A〉 =
1

NK

Nk∑
k=1

A(~Xk)

2) use ergodic hypothesis (equivalence of ensemble and time averages) and compute

〈A〉 = lim
t→∞

1
t
·
∫ t0+t

t0
A(τ)dτ.

Other common approaches for conformational sampling:

Boltzmann-average over all relevant local minimum conformations

weighted random minimum structures (systematic microsolvation)



Subsystem vs. Embedding Approaches

embedding (“focussed”) approach:
high accuracy for active part, lower accuracy for environment and interaction

subsystem (fragmentation) approach:
high accuracy within fragments, lower accuracy for fragment interaction
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How to approach the problem?

fragment A fragment Bmonomer A monomer B

Starting point 1: Isolated subsystems

treat interaction as perturbation

Starting point 2: Total system

partition quantum mechanical descriptor into subsystem contributions
(e.g., wave function, density, density matrix, Green’s function)

derive optimization conditions for subsystems



Interacting Subsystems: Some initial thoughts

monomer A monomer B

isolated monomers can be described by individual Hamiltonians:

ĤAΨA = EAΨA

ĤBΨB = EBΨB

assuming zero interaction, the total wavefunction can be factorized,

(ĤA + ĤB)ΨA ·ΨB = (EA + EB)ΨA ·ΨB

true dimer Hamiltonian including interaction:

Ĥ(A+B) = ĤA + ĤB + ĤA↔B



Interacting Subsystems: Some initial thoughts

monomer A monomer B

if interaction is weak: use perturbation theory

E(1) = 〈ΨAΨB|ĤA↔B|ΨAΨB〉

form of the interaction Hamiltonian:

ĤA↔B = −
NA∑

I∈A

nB∑
i∈B

ZI

|RI − ri|
−

NB∑
I∈B

nA∑
i∈A

ZI

|RI − ri|
+

nA∑
i∈A

nB∑
j∈B

1
|ri − rj|

+

NA∑
I∈A

NB∑
J∈B

ZIZJ

|RI − RJ |

conceptual problem: electrons are indistinguishable particles . . .
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Interacting Subsystems: Some initial thoughts

wave function for N independent subsystems:

Ψtot(r11 , r21 , . . . , rnN ) = Ψ1(r11 . . .) ·Ψ2(r12 . . .) . . . ·ΨN(r1N . . . rnN )

non-interacting subsystems: product ansatz

antisymmetrisation necessary (but no effect for non-overlapping wavefunctions)

maybe: configuration interaction
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Ψtot(r11 , r21 , . . . , rnN ) =
∑
{KI}

c{KI}ÂΨK1(r11 . . .) ·ΨK2(r12 . . .) . . . ·ΨKN (r1N . . . rnN )
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Long-Range Interactions: Results from PT

“Polarization approximation”: Antisymmetrization ignored!

first order: electrostatic interaction (unperturbed monomers)

E(1) = E(1)
elstat = 〈Ψ0,AΨ0,B|ĤA↔B|Ψ0,AΨ0,B〉

=

∫
ρA(r)vnuc,B(r)dr +

∫
ρB(r)vnuc,A(r)dr

+

∫
ρA(r)ρB(r′)
|r− r′|

drdr′ +
NA∑

I∈A

NB∑
J∈B

ZIZJ

|RI − RJ|

possible starting point for further approximations:

multipole expansion of ρA(r) and/or ρB(r)
point-charge representation of total charge density (fitted to ESP)
(“distributed monopoles”; higher-order expansion possible)



Long-Range Interactions: Results from PT
second order: E(2) = E(2)

ind,A + E(2)
ind,B + E(2)

disp,

E(2)
ind,A =

∑
K

〈Ψ0,AΨ0,B|ĤA↔B|ΨK,AΨ0,B〉〈ΨK,AΨ0,B|ĤA↔B|Ψ0,AΨ0,B〉
EA,K − EA,0

E(2)
ind,B =

∑
K

〈Ψ0,AΨ0,B|ĤA↔B|Ψ0,AΨK,B〉〈Ψ0,AΨK,B|ĤA↔B|Ψ0,AΨ0,B〉
EB,K − EB,0

E(2)
disp =

∑
KL

〈Ψ0,AΨ0,B|ĤA↔B|ΨK,AΨL,B〉〈ΨK,AΨL,B|ĤA↔B|Ψ0,AΨ0,B〉
EA,K + EB,L − EA,0 − EB,0

induction terms:
interaction of transition density (from Ψ∗0,AΨK,A) with ground-state
density (from Ψ∗0,BΨ0,B)
distance dependence (lowest order): R−4 for ion–molecule and R−6 for dipolar molecule–molecule interactions

dispersion terms:
interaction of two transition densities (from Ψ∗0,AΨK,A and Ψ∗0,BΨL,B)
⇒ distance dependence (lowest order): R−6
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Short-Range Interactions

Phenomenologically:

exchange-repulsion (exchange + Pauli repulsion), ∝ exp[−ηR]

“charge-transfer” (sometimes included in induction)

charge penetration (effect of non-converging multipole expansions)

additional terms arise if correlation is considered (SAPT)



Short-Range Interactions

Exchange Interaction:

use antisymmetrized zeroth-order wavefunction:

ΨAB
0 ≈ ÂABΨA

0 ΨB
0 = NAB

∑
P̂

(−1)pP̂ΨA
0 ΨB

0

(NAB : normalization factor; sum runs over all permutations P̂ of electrons between different monomers with parity p)

first-order energy correction:

E(1) = N2
AB

〈
ΨA

0 ΨB
0

∣∣∣∣∣∣ĤA↔B

∣∣∣∣∣∣NAB

∑
P̂

(−1)pP̂ΨA
0 ΨB

0

〉

exchange contribution arises from:〈
ΨA

0 ΨB
0

∣∣∣∣∣∣ĤA↔B

∣∣∣∣∣∣NAB

∑
P̂6=Î

(−1)pP̂ΨA
0 ΨB

0

〉

I. Kaplan, Intermolecular Interactions, John Wiley & Sons, Chichester, 2006.



Exchange–Repulsion

Example: Two hydrogen atoms (A and B), normalized 1sα orbitals ψa, ψb

for 〈ψA|ψB〉 = S with |S| > 0: use antisymmetrized product

Ψ̃(1, 2) = ψa(1)ψb(2)− ψb(1)ψa(2)

〈Ψ̃|Ψ̃〉 = 〈ψa(1)ψb(2)− ψb(1)ψa(2)|ψa(1)ψb(2)− ψb(1)ψa(2)〉 = 2− 2S2

Ψ(1, 2) = (2− 2S2)−1/2|ψa(1)ψb(2)− ψb(1)ψa(2)〉

1st order interaction energy:

〈Ψ|ĤA↔B|Ψ〉 = (1− S2)−1 [〈ψa(1)ψb(2)|ĤA↔B|ψa(1)ψb(2)〉
−〈ψa(1)ψb(2)|ĤA↔B|ψb(1)ψa(2)〉

]
result for simple product would be:

E(1)
elstat = 〈ψa(1)ψb(2)|ĤA↔B|ψa(1)ψb(2)〉

difference: exchange–repulsion energy, Eer

A. Stone, The Theory of Intermolecular Forces, Oxford University Press, 2013, Chapter 6



Exchange–Repulsion
exchange–repulsion energy

Eer = − 1
(1− S2)

〈ψa(1)ψb(2)|ĤA↔B|ψb(1)ψa(2)〉

+
S2

(1− S2)
〈ψa(1)ψb(2)|ĤA↔B|ψa(1)ψb(2)〉

second term: correction to electrostatic energy

first term: effect of antisymmetrization; with

ĤA↔B =
1

r12
− 1

RB1
− 1

RA2
+

1
RAB

we get for the first term (note that (1/RAB) terms cancel out)

−
〈
ψa(1)ψb(2)

∣∣∣∣ 1
r12
− 1

RB1
− 1

RA2

∣∣∣∣ψb(1)ψa(2)

〉
=

〈
ψa(1)ψb(2)

∣∣∣∣ 1
RB1

+
1

RA2

∣∣∣∣ψb(1)ψa(2)

〉
− (ψaψb|ψbψa)

= 〈ψb|ψa〉 ·
〈
ψa(1)

∣∣∣∣ 1
RB1

+
1

RA1

∣∣∣∣ψb(1)

〉
− (ψaψb|ψbψa)

A. Stone, The Theory of Intermolecular Forces, Oxford University Press, 2013, Chapter 6



Exchange–Repulsion

from first term (continued):

= S
〈
ψa(1)

∣∣∣∣ 1
RB1

+
1

RA1

∣∣∣∣ψb(1)

〉
− (ψaψb|ψbψa)

⇒ contains repulsion (due to monomer overlap) and exchange (attractive)

overall effect of Eer is repulsive (for same spin!)

distance dependence ∝ exp[−ηR]
see, e.g., H.J. Boehm, R. Ahlrichs, J. Chem. Phys. 77, 2028 (1982).

vanishes for S = 0

⇒ many exchange-repulsion models are based on overlap

A. Stone, The Theory of Intermolecular Forces, Oxford University Press, 2013, Chapter 6



QM/MM Partitioning



Starting Point for Approximations

partition Hamiltonian into active system (A) and environment (E)

ĤA+E = ĤA + ĤE + ĤA↔E

treat A, E, and/or A↔ E with different approximations

maybe several active systems, maybe more layers, . . .

But how exactly? At which stage shall we introduce approximations?
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QM/MM Hybrid Methods

system A: QM

interaction: MM

system E: MM

additive QM/MM (more flexibility regarding interaction model):

Eadd
tot = EQM

A + EMM
E + EMM

A↔E

subtractive QM/MM (easier to generalize to QM/QM methods):

Esub
tot = EMM

(A+E) + (EQM
A − EMM

A )

identical if

EMM
(A+E) = EMM

A + EMM
E + EMM

A↔E ⇔ EMM
A↔E = EMM

(A+E) − EMM
A − EMM

E



QM/MM: Partitioning the Energy

Three energy contributions:

(1) active-system energy
EQM

A = 〈ΨA|ĤA|ΨA〉

(note: ĤA is the isolated-system Hamiltonian for system A)

(2) environment energy

EMM
E = Ebonded(RE) + Enonbonded(RE)

where typically

Ebonded(RE) = Estretch(RE) + Ebend(RE) + Etorsion(RE)

Enonbonded(RE) = Eelectrostatic(RE) + EvdW(RE)

EvdW accounts for dispersion and exchange-repulsion



QM/MM: Partitioning the Energy

Prototypical MM energy expressions:

Estretch(RE) =

bonds∑
b

kb(db − db,0)2

Ebend(RE) =

angles∑
a

ka(θa − θa,0)2

Etorsion(RE) =

dihedrals∑
d

kd[1 + cos(nφ+ δ)]2

Eelectrostatic(RE) =

nb pairs∑
a<b

QaQb

Rab

EvdW(RE) =

nb pairs∑
a<b

εab

[(
σab

rab

)12

−
(
σab

rab

)6
]



QM/MM: Partitioning the Energy

Three energy contributions (cont’d):

(3) QM↔MM interaction: Apply MM energy expression

EMM
A↔E = Ebonded,A↔E + EvdW,A↔E + Eelectrostatic,A↔E

Notes:

availability of suitable FF parameters for QM atoms can be problematic

bonds across the QM-MM boundary require link-atom formalism



QM/MM Interaction

QM

MM

Mechanical Embedding: Wavefunction of QM part unchanged

Hamiltonian/Electronic Embedding: QM part polarized by environment

Polarizable Embedding: Mutual polarization of QM and MM part

Note: This usually only applies to electrostatics, but could be generalized
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QM/MM Interaction

Mechanical Embedding:

Eelectrostatic,A↔E evaluated with MM charges for QM atoms

⇒ No polarization of QM wavefunction

⇒ Only indirect effects (change in equilibrium structure)

⇒ Changes in QM charge distribution not reflected in interaction term
(e.g., along reaction coordinates)



QM/MM Interaction

Hamiltonian Embedding:

electrostatic interaction Hamiltonian:

Ĥelstat,A↔E = −
el.∑
i

MM atoms∑
a

qa

|ri − Ra|
+

nuc.∑
I

MM atoms∑
a

ZIqa

|RI − Ra|

=

el.∑
i

velstat
emb (ri) +

nuc.∑
I

MM atoms∑
a

ZIqa

|RI − Ra|

⇒ obtain ΨA from

Ĥ′AΨA =

(
ĤA +

el.∑
i

velstat
emb (ri)

)
ΨA = E′AΨA

⇒ polarizes ΨA, changes all energy terms in EQM
A = 〈ΨA|ĤA|ΨA〉



QM/MM Interaction

Hamiltonian Embedding:

electrostatic interaction energy:

Eelstat,A↔E =

〈
ΨA

∣∣∣∣∣
el.∑
i

velstat
emb (ri)

∣∣∣∣∣ΨA

〉
+

nuc.∑
I

MM atoms∑
a

ZIqa

|RI − Ra|

total QM/MM energy:

EQM/MM
tot = EQM

A + EMM
E + EvdW,A↔E

+

〈
ΨA

∣∣∣∣∣
el.∑
i

velstat
emb (ri)

∣∣∣∣∣ΨA

〉
+

nuc.∑
I

MM atoms∑
a

ZIqa

|RI − Ra|

= E′A + EMM
E + EvdW,A↔E +

nuc.∑
I

MM atoms∑
a

ZIqa

|RI − Ra|

(assuming no bonding interactions across the QM/MM boundary)



QM/MM Interaction

Polarizable Embedding:
Introduce flexible MM charge model, polarized by QM charge distribution

Induced point dipoles:

assign polarizabilities to all MM atoms (or general expansion points)

determine induced dipoles as:

µind
a = αa · ~F(Ra)

electric field at MM atom a originates from MM point charges, other
induced dipoles, and QM charge distribution

Alternatives:

fluctuating charges

drude oscillators (charge-on-spring models)



An Example: The DRF Model

Discrete Reaction Field Operator

ĤQM/MM =
∑

i

vDRF(ri)

vDRF(r) =

MM atoms∑
a

qa

|r− Ra|
+

MM atoms∑
a

µind
a ·

(r− Ra)

|r− Ra|

3

induced dipoles are computed self-consistently from

µind
a = αa

[
FQM, nuc(Ra) + FQM, el(Ra) + FMM charges(Ra) + FMM ind. dip(Ra)

]
T.D. Poulsen, P.R. Ogilby, K.V. Mikkelsen, J. Chem. Phys. 2002, 116, 3730;

L. Jensen, P.Th. van Duijnen, J.G. Snijders, J. Chem. Phys. 2003, 118, 514.



Other Polarizable Embedding Schemes

PE model (Kongsted and co-workers)

QM/MMpol (Mennucci and co-workers)

EFP (Gordon, Slipchenko and co-workers)

. . .

Parameters for charges/polarizabilities

either calculated for solvent molecules/env. fragments
(e.g., CHELPG charges, LOPROP polarizabilities)

or fitted, e.g., to experimental polarizabilities



Reminder: Interacting Subsystems

monomer A monomer B

if interaction is weak: use perturbation theory

E(1) = 〈ΨAΨB|ĤA↔B|ΨAΨB〉

form of the interaction Hamiltonian:

ĤA↔B = −
NA∑

I∈A

nB∑
i∈B

ZI

|RI − ri|
−

NB∑
I∈B

nA∑
i∈A

ZI

|RI − ri|
+

nA∑
i∈A

nB∑
j∈B

1
|ri − rj|

+

NA∑
I∈A

NB∑
J∈B

ZIZJ

|RI − RJ |

How to get rid of ΨB?
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QM/MM Partitioning

How to get rid of ΨB?

Taylor expansion of 1/(ra − rb) around r0

1
|ra − rb|

=

∞∑
|k|

(−1)|k|

k!

(
∇k

ra

1
|ra − r0|

)
(rb − r0)k

with multi-index k = (kx, ky, kz) and interaction tensor

T(k)(r) = ∇k
r

1
|r− r0|

and

∇k
r =

(
∂

∂rx

)kx
(
∂

∂ry

)ky
(
∂

∂rz

)kz

J.M.H. Olsen, J. Kongsted, Adv. Quantum Chem. 61, 107 (2011).



QM/MM Partitioning

How to get rid of ΨB? Consider electron–electron interaction:

E(1)
el,el =

nA∑
a∈A

nB∑
b∈B

〈
ΨAΨB

∣∣∣∣ 1
|ra − rb|

∣∣∣∣ΨAΨB

〉

=

∞∑
|k|

(−1)|k|

k!

〈
ΨA

∣∣∣∣∣
nA∑

a∈A

∇k
ra

1
|ra − r0|

∣∣∣∣∣ΨA

〉
·

〈
ΨB

∣∣∣∣∣
nB∑

b∈B

(rb − r0)k

∣∣∣∣∣ΨB

〉

=

∞∑
|k|

(−1)|k|

k!

〈
ΨA

∣∣∣∣∣
nA∑

a∈A

T(k)(ra)

∣∣∣∣∣ΨA

〉
Q(k)

B,el

(Q(k)
B,el: electronic part of multipole moment of fragment B)

⇒ Effective separation of coordinates from fragments A and B
J.M.H. Olsen, J. Kongsted, Adv. Quantum Chem. 61, 107 (2011).



QM/MM Partitioning
use such an expansion for every |ra − rb|−1 and |ra − RB|−1,

E(1) = 〈ΨAΨB|ĤA↔B|ΨAΨB〉

=

∞∑
|k|

(−1)|k|

k!
(F(k)

A,nuc + 〈ΨA|F̂(k)
A,el|ΨA〉)Q(k)

B

with

F(k)
A,nuc =

NA∑
I∈A

ZIT(k)(RI)

F̂(k)
A,el =

NA∑
i∈A

T(k)(ri)

and multipole moments of system B,

Q(k)
B =

NB∑
J∈B

ZJ(RJ − R0)k −
∫
ρB(r′)(r′ − R0)kdr′

J.M.H. Olsen, J. Kongsted, Adv. Quantum Chem. 61, 107 (2011).



QM/MM Partitioning

Further aspects of the PE model:

induction terms can be treated similarly, incl. polarization of the
environment

embedding operator can be derived within DFT by minimizing energy
w.r.t. density

self-consistent solution including induced dipoles in the environment
(very similar to DRF model)

straightforward extension to response theory

J.M.H. Olsen, J. Kongsted, Adv. Quantum Chem. 61, 107 (2011).



QM/MM Interaction

Hamiltonian Embedding:

effects of Pauli repulsion: often not included in Ĥ′A

⇒ MM atoms can act as electron traps (overpolarization, electron spill-out, or electron leaking)

one solution strategy: replace Coulombic potential (−1/r) by

va(r) = −
rn

a,cov − rn

rn+1
a,cov − rn+1

A. Laio, J. VandeVondele, U. Rothlisberger, J. Chem. Phys. 2002, 116, 6941.

but: some models use explicit repulsive contributions



QM-derived Embedding Potentials

The Effective Fragment Potential (EFP) method

effective-fragment orbitals are obtained from DFT/HF (+ localization)

interaction Hamiltonian:

ĤA↔E = V̂elstat + V̂pol + V̂ex−rep

V̂ex−rep denotes the exchange-repulsion interaction,

V̂ex−rep =
∑

i

∑
j

βje−αj(ri−Rj)
2

(local potential; Rj is coordinate vector of an LMO centroid; αj and βj are parameters)

C.I. Viquez Rojas, L.V. Slipchenko, J. Chem. Theory Comput. 2020, 16, 6408.



QM-derived Embedding Potentials

Electrostatic potential in EFP:

based on a distributed multipolar analysis of fragment charge
distributions

expansion points k:

each nuclear center
each bond midpoint

multipoles up to octopoles

V̂elstat
k (r) = qkT(rk)−

x,y,z∑
a

µk
aTa(rk) +

1
3

x,y,z∑
a,b

Θk
a,bTa,b(rk)−

1
15

x,y,z∑
a,b

Ωk
a,b,cTa,b,c(rk)

general definition of full interaction tensor: T(k)(rk) = ∇k 1
|r−rk|

here: T(rk) = 1/|r− rk|, Ta: element of T(1)(rk) = ∇ 1
|r−rk| etc.

M. Gordon et al., J. Phys. Chem. A 2001, 105, 293.

C.I. Viquez Rojas, L.V. Slipchenko, J. Chem. Theory Comput. 2020, 16, 6408.



QM-derived Embedding Potentials

Polarization in EFP:

based on distributed polarizabilities on LMO centroids

⇒ localized “orbital” polarizabilities from finite field calculations

M. Gordon et al., J. Phys. Chem. A 2001, 105, 293.

C.I. Viquez Rojas, L.V. Slipchenko, J. Chem. Theory Comput. 2020, 16, 6408.



Continuum Solvation Models



Continuum Solvation Models

Overall Goal: Solvation Free Energies

∆Gsolv = ∆Gcavity + ∆GDispersion/vdW + ∆Gelstat

Consider two-step process:

(1) cavity formation

(2) interaction (“polarization”) between molecule and solvent



Continuum Solvation Models

Overall Goal: Solvation Free Energies

∆Gsolv = ∆Gcavity + ∆GDispersion/vdW + ∆Gelstat

cavity formation and dispersion terms:
often assumed proportional to “solute surface”

only electrostatic term enters the QM Hamiltonian

solvent: homogeneous medium with dielectric constant εout

electrostatic potential ϕ(r): from Poissson’s equation,

∇ · [ε(r)∇ϕ(r)] = −4πρ(r)

note: ε(r) = εin = 1 within QM region, εout outside
J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999;
J.M. Herbert, WIREs Comput. Mol. Sci. 2021, 11, e1519;
F. Jensen, Introduction to Compututational Chemistry, 2nd ed., Wiley, 2007, Section 14.7.



Continuum Solvation Models

reaction potential: ϕreac(r) = ϕ(r)− ϕmol(r), with

ϕmol(r) =

∫
ρmol(r′)
|r− r′|

dr′

(electrostatic potential generated by molecular charge density)

electrostatic solvation energy:

∆Gelstat =
1
2

∫
ϕreac(r)ρmol(r)dr

analytic solutions available for

charge monopole in a spherical cavity (Born model)
point dipole in a spherical cavity (Onsager model)
general multipoles in a spherical cavity (Kirkwood model)
. . . and in ellipsoidal cavities (Kirkwood–Westheimer model)



Polarizable Continuum Models

3D polarization problem is turned into a surface charge problem

reaction potential can be expressed exactly as

ϕreac(r) =

∫
surface

σ(s)
|r− s|

ds

surface charge σ(s): defined through jump condition for E-field,

εout(~ns · ~∇)ϕ(s)|out = εin(~ns · ~∇)ϕ(s)|in

(~ns: outward-pointing unit vector normal to cavity surface at s)

in practice: surface charge is discretized (tesserae),

ϕreac(r) ≈
∑

k

σ(sk)Ak

|r− sk|
=
∑

k

qk

|r− sk|

(Ak : tesserae area; qk = σ(sk)Ak : apparent surface charge)



Conductor-Like Screening Model (COSMO)

dielectric constant is set to ε =∞

most important consequence:

ϕ(r) = ϕreac(r) + ϕmol(r) = 0

at boundary between molecule and dielectric environment

this condition fixes the values of the surface charges

the same condition is obtained by minimizing the electrostatic energy
of the molecule–surface charge system w.r.t. the surface charges

ideal, unscreened charges are finally scaled by

f (ε) =
ε− 1
ε+ k

(k = 0.5 in original work by Klamt, later versions often use k = 0)

A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 2 (1993), 799;



Conductor-Like Screening Model (COSMO)

electrostatic part of solvation energy in COSMO

Eel,COSMO =
1
2

∑
µ

∑
ν

qµAµνqν +
∑

A

∑
µ

qµBAµZA +
∑
µ

qµCµ

qµ = apparent surface charges (ASCs), from minimization of Eel,COSMO,

A~q = −(B~Z + ~C)

with

Aµν =

{
|~rµ −~rν |−1 for µ 6= ν

1.07
√

4π
Sµ

for µ = ν

BAµ = |~rµ −~rA|−1

Cµ = vCoul[ρ](~rµ)

A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 2 (1993), 799;

C.C. Pye, T. Ziegler, Theor. Chem. Acc. 101 (1999), 396



Polarizable Continuum Models

A B

δ

R *

(R∗ = RA + Rsolv
vdW)

Further important aspects:

shape of molecular cavity

outlying charge corrections

extensions for dispersion, exchange–repulsion
J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999;
J.M. Herbert, WIREs Comput. Mol. Sci. 2021, 11, e1519.



QM/MM vs. Continuum Approaches: Conclusions

QM/MM:

can model specific interactions

electrostatics can be systematically improved

self-consistent polarization possible with polarizable force fields

repulsive short-range correction needed to avoid overpolarization

Continuum Models:

implicitly include conformational sampling⇒ much cheaper

are comparable to the polarizable part of QM/MM models

no specific interactions

Best-of-both-worlds? Cluster–Continuum hybrid models
J.R. Pliego Jr., J.M. Riveros, WIREs Comput. Mol. Sci. 10 e1440 (2020).



QM/QM Hybrid Methods:
An Introduction



Methods for Environmental Effects

continuum models QM/MM methods pure QM methods

Wish list for an “ideal” environmental model:

should be efficient (comparable to isolated molecule)
should be able to model specific effects (atomistic structure)
should be transferable (parameter-free)
(But what about QM-derived MM models?)

should focus on the embedded system

⇒ QM/QM embedding methods
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Methods for Environmental Effects

continuum models QM/MM methods pure QM methods

Wish list for an “ideal” environmental model:
should be efficient (comparable to isolated molecule)
should be able to model specific effects (atomistic structure)
should be transferable (parameter-free)
(But what about QM-derived MM models?)

should focus on the embedded system
⇒ QM/QM embedding methods



QM/QM Hybrid Methods

Partitioning is possible at different levels:

energy partitioning

wavefunction partitioning

density-matrix partitioning

Green’s function partitioning

density partitioning



Simple QM/QM Hybrid Methods

system A: QM1

interaction: QM2

system E: QM2

ONIOM: a generalization of subtractive QM/MM

EQM/QM
tot = EQM2

(A+E) + (EQM1
A − EQM2

A )

interaction defined as

EQM2
A↔E = EQM2

(A+E) − EQM2
A − EQM2

E

generalizations for many layers (QM1/QM2/MM/continuum) and electrostatic
embedding

properties require corresponding definitions



Fragmentation Methods

Molecular Fractionation with Conjugated Caps (MFCC)
developed for proteins; partition into oligopeptides
use model for neighboring fragments as caps
sum up results for all capped fragments, subtract concaps
no electrostatic embedding; better with larger caps

D.W. Zhang, J.Z.H. Zhang, J. Chem. Phys. 119 (2003), 3599.



Increment Methods

General idea:
largest part of Etot is due to energies of (isolated) subsystems
interaction energy: mainly due to pair interactions
general energy expression:

Etot =
∑

I

EI +
∑
I<J

EI↔J +
∑

I<J<K

EI↔J↔K + . . .

EI↔J = EIJ − EI − EJ

EI↔J↔K = EIJK − EI − EJ − EK

−(EIJ − EI − EJ)− (EIK − EI − EK)− (EJK − EJ − EK)

nth-order increment method: exact for n subsystems



Increment Methods



Increment Methods



Fragment Molecular Orbital Method (1)

8 e

8 e

8 e

10 e

FMO-1
fragmentation without separation of bond electron pairs
fragment calculations under full electrostatic embedding
no capping applied

K. Kitaura et al., Chem. Phys. Lett. 313 (1999), 701.



Fragment Molecular Orbital Method (1)

generate localized MOs
for capped fragment

use these LMOs as basis
for "true" fragments

FMO-1
fragment orbitals are expressed through localized orbitals
obtained from reference compound (capped fragment)
minimal basis is applied⇒ bond electron pairs have no freedom
to change compared to reference compound



Fragment Molecular Orbital Method (2)

FMO-2
2nd order increment method
monomers and dimers are obtained with full electrostatic
embedding potential, based on localized orbitals

⇒ FMO-2 implicitly contains higher-order terms



More about QM/QM tomorrow . . .


