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QM/QM Hybrid Methods

Partitioning is possible at different levels:
@ energy partitioning
wavefunction partitioning
density-matrix partitioning

°
°
@ Green’s function partitioning
@ density partitioning

°



Energy-Based Partitioning
and Many-Body Expansions



Simple QM/QM Hybrid Methods

.\7 interaction: QM2

system E: QM2

@ ONIOM (Morokuma): a generalization of subtractive QM/MM
EQV/M = EQR, + (B - EYT)
interaction defined as

QM2 QM2 QM2 QM2
EXie= E(A+E) I

@ generalizations for many layers (QM1/QM2/MM/continuum) and electrostatic
embedding

@ properties require corresponding definitions



Fragmentation Methods

Molecular Fractionation with Conjugated Caps (MFCC)
@ developed for proteins; partition into oligopeptides
@ use model for neighboring fragments as caps
@ sum up energies for capped fragments, subtract “concaps”
@ no electrostatic embedding; better with larger caps

D.W. Zhang, J.Z.H. Zhang, J. Chem. Phys. 119 (2003), 3599.



Increment Methods

General idea:
@ largest part of E, is due to energies of (isolated) subsystems
@ interaction energy: mainly due to pair interactions
@ general energy expression:

Eon = Z Er + Z Ejey + Z Ercjok +.

1<J 1<J<K
Erey = EIJ_EI Ey

Eijoxk = Eygk—E —E;—Eg
—(Eiy —E; — Ej) — (Eix — Er — Eg) — (Ejx — Ej — Ek)

@ nth-order increment method: exact for n subsystems



Increment Methods
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Fragment Molecular Orbital Method (1)

8e

ge 8e

FMO-1
@ fragmentation without separation of bond electron pairs
@ fragment calculations under full electrostatic embedding
@ no capping applied

K. Kitaura et al., Chem. Phys. Lett. 313 (1999), 701.



Fragment Molecular Orbital Method (1)

& e

generate localized MOs use these LMOs as basis
for capped fragment for "true" fragments

FMO-1

@ fragment orbitals are expressed through localized orbitals
obtained from reference compound (capped fragment)

@ minimal basis is applied = bond electron pairs have no freedom
to change compared to reference compound



Fragment Molecular Orbital Method (2)

etc.

FMO-2
@ 2nd order increment method

@ monomers and dimers are obtained with full electrostatic
embedding potential, based on localized orbitals

= FMO-2 implicitly contains higher-order terms



Density Partitioning



Some Flavors of DFT

@ orbital-free DFT: formulated directly in terms of p(r)
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Some Flavors of DFT

@ orbital-free DFT: formulated directly in terms of p(r)

@ Kohn—Sham DFT: non-interacting v-representability assumed,
p(r) = |oi(r)]?

(called vy-representability in the following)

@ subsystem DFT:

vs-representability assumed for every p;:
pi(r) =Y |6y (r)

(but not necessarily for the total density = different search space than in KS-DFT)



Some Flavors of DFT

Frozen-Density Embedding:

p(r) = pi(r) + p5x);  pu(r) =D |6 (0))

1

@ “sDFT without optimization of p, (I‘)” (no “freeze-and-thaw”)



Some Flavors of DFT

Frozen-Density Embedding:

p(r) = pi(r) + p5x);  pu(r) =D |6 (0))

1

@ “sDFT without optimization of 02 (I‘)” (no “freeze-and-thaw”)
@ no orbital representation needed for p,, can be taken from:

e simple superpositions of atomic/fragment densities

J. Neugebauer, M.J. Louwerse, E.J. Baerends, T.A. Wesolowski, J. Chem. Phys. 122 (2005) 094115.
o statistically averaged densities

J.W. Kaminski, S. Gusarov, T.A. Wesolowski, A. Kovalenko, J. Phys. Chem. A 114 (2010), 6082.
e experiment

N. Ricardi, M. Ernst, P. Macchi, T.A. Wesolowski, Acta Cryst. A 76 (2020), 571.



Some Flavors of DFT

Frozen-Density Embedding:

p(r) = pi(r) + p5x);  pu(r) =D |6 (0))

1

@ “sDFT without optimization of 02 (I‘)” (no “freeze-and-thaw”)
@ no orbital representation needed for p,, can be taken from:

e simple superpositions of atomic/fragment densities

J. Neugebauer, M.J. Louwerse, E.J. Baerends, T.A. Wesolowski, J. Chem. Phys. 122 (2005) 094115.
o statistically averaged densities

J.W. Kaminski, S. Gusarov, T.A. Wesolowski, A. Kovalenko, J. Phys. Chem. A 114 (2010), 6082.
e experiment

N. Ricardi, M. Ernst, P. Macchi, T.A. Wesolowski, Acta Cryst. A 76 (2020), 571.

@ but: not well suited/not intended for total-energy calculations

@ can only lead to exact solution if p(r) > pi*d(r) Vr



Subsystem DFT

@ KS energy expression with partitioning p(r) = >, pi(r)

Elp] = Tp] + Vext[p] + J[p] + Exc[p]

@ if p is given as sum of subsystem densities:

Vexilp) = Vexlpt +p2+ .. ]
Jpl = Jpr+p2+...]

Exc[p] = Exlpr+p2+..]

@ problem for calculations of KS energy: T;[p] = T[{¢;™'}]

G. Senatore, K. R. Subbaswamy, Phys. Rev. B 34 (1986), 5754;
P. Cortona, Phys. Rev. B 44 (1991), 8454;
T.A. Wesolowski, J. Weber, Chem. Phys. Lett. 248 (1996), 71.



Subsystem DFT

@ write T, formally exactly as

Tl = Y Tlod + |Tlol - ZNM]

or Tl = STl + T, ()]
1




Subsystem DFT

@ write T, formally exactly as

Tlpl = Y Tlod + | 7ol - ZNM]

or Tl = Y Tlo + 1, {ps}]
I

@ exact 7Md:

T {p}] = min Y (di] = Vi/2|¢)

{¢pi}—=p P

2 ({¢f}1}izp, R v%/z|¢,-,>)



Subsystem DFT

@ write T, formally exactly as

Ts[p) = ZTS[PI]+ Iilp _ZTS[/)I}]

1 1
or  Tlpl = Y Tlod+ 1 {ps}]
1
@ exact 7Md:
7%, {p1}] =  min n (il = Vi /2ldn)
! {gi}=p ]
> ({¢{glg 20l = v%/2|¢,-,>>

@ introduce density—dependent approximation

T3, {ps}Y] = T} p, {ps}] = Tilol = Y_ Tilpi]
1



Subsystem DFT

@ write T, formally exactly as

Ts[p] = ZTS[PI]+ Tslp _ZTS[/)I}]
1 1
or  Tlpl = Y Tlod+ 1 {ps}]
1
@ exact 7Md:
77, {p}] = min " (&l = Vi /2165)
! {gi}=p ]

n

- Z <{¢In}lg ¢11| v12/2|¢u>>

@ introduce density-dependent approximation,

T psYl = T Ups) = Tilor + p2 + .. = D Tlp]
1



One-Particle Equations in Subsystem DFT

@ energy functional:

E[{ps}] = Vexlpl +J[p] + Exc[p] + Z Tslpi] + T;lad[{pl}]’
I

@ choose no. of electrons per subsystem (n,)
@ construct Lagrangian

L{ps}] = E[{ps}] - ZMI </d rpi(r) — ”1)

and minimize w.r.t. pg
= Euler—Lagrange equations:

0Tslpx] | 0T [{ps}]
dpk (1) dpk(r)

0= Vext(r) + VCoul [P] (I’) + Vxe [10} (l') +



Frozen-Density Embedding
@ assume all subsystem densities are v -representable

= subsystem orbitals can be obtained from

1 sul
<_2v2 + Veftb[pv p[(](l')> Pix = €ixDig,

= if we choose

0T [{ps}]

Vet [p: pi] (r) = verr[p] (r) + Soc(r)
the systems of non-interacting particles fulfill

5TS[PK]
[, r)+ —pg =0
Vett 19> PK](T) Sp (1) UK

= these are the sought-for densities

T.A. Wesolowski, A. Warshel, J. Phys. Chem. 97 (1993), 8050.



Embedding Potential

@ define “environmental” density for system I [complementary to p;(r)]:

P () = pi(r)

J £l

@ one-particle equations for FDE calculation become

(—;Vz + veit[p1] () + Vemb 1, P?"V](l')> oi, = €0,

(Kohn—Sham equations with constrained electron density, KSCED)

@ embedding potential

vems o 7100 = S VA0 + Y vealp(r)

JJAI TJ#I

0T [{ps}]

F{xepl(r) = vielpr] ()} + Sp(r)

T.A. Wesolowski, A. Warshel, J. Phys. Chem. 97 (1993), 8050; T.A. Wesolowski, J. Weber, Chem. Phys. Lett. 248 (1996), 71.



Embedding Potential

@ define “environmental” density for system I [complementary to p;(r)]:

A () = pi(r)

J £l

@ one-particle equations for FDE calculation become

(—;Vz + veir[p1] () + Vemb 1, P?"V](l')> oi, = €,0;,

(Kohn—Sham equations with constrained electron density, KSCED)

@ embedding potential

vemslpr 7100 = V0 + Y vealp(r)

T T
+vid (o1, pl(r) + vi*py, p] (x)

T.A. Wesolowski, A. Warshel, J. Phys. Chem. 97 (1993), 8050; T.A. Wesolowski, J. Weber, Chem. Phys. Lett. 248 (1996), 71.



Solution of the KSCED equations

Approximations that have to be selected:

@ non-additive kinetic energy functional 77

(and corresponding potential)
@ XC functional:

e either regard E,.[p] as one energy contribution,

Exc[p] ~ Exc[pl + P2 + .. ]

@ or approximate components of Ex.[p],

Exc[p] = ZEXC prl + E;“cid[{pl}]
~ ZEXC )

(facilitates use of different XC approximations for different subsystems and/or the non-additive part)

Allows pragmatic use of hybrid XC functionals in intra-subsystem parts only



Non-additive kinetic-energy functionals

Common decomposable approximations:
@ general structure: T [{p;}, p| = Tslp] — >, Tslpi]
@ Thomas—Fermi approximation

Tylp] = Trelp] = Cr / P (r)dr

L.A. Thomas, Proc. Camb. Phil. Soc. 23 (1927) 542; E. Fermi, Z. Physik 48 (1928) 73.
exact for homogeneous electron gas (“LDA” for kinetic energy)

@ von Weizsacker approximation

2
1ol ~ Tl = g [ 5 ar

C.F. von Weizsacker, Z. Physik 96 (1935) 431.
exact for one-orbital systems



Subsystem DFT at Work
Step 1

active system

‘mm»—o—o

environment

-~ OO

@ calculate pacive With frozen environment
@ iterate over all subsystems



Subsystem DFT at Work
Step 2

active system

oo @) oo oo
environment

@ -De

@ calculate pacive With frozen environment
@ iterate over all subsystems



Subsystem DFT at Work
Step 3

active system

oe oo @D oo
environment

e @

@ calculate pacive With frozen environment
@ iterate over all subsystems



Subsystem DFT at Work
Step 4

active system

wo-owo-owo-o‘

environment

SLOPW® -

@ calculate pacive With frozen environment
@ iterate over all subsystems



Dipole Moment of (HCN)y

Average dipole moment as a function of chain length
BP86/TZP
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C.R. Jacob, JN, WIREs Comput. Mol. Sci. 4 (2014), 325.



Are Subsystem Properties Meaningful?

Dipole moment of the central guanine in a trimer
Structure: R. Sedlak et al., J. Chem. Theory Comput. 9 (2013), 3364.

(PW91/PW91k/TZP; black: isolated; purple: sDFT; green: Bader analysis of KS-DFT)

|Mcentral| / Debye angle to ﬁiso /o

iso 7.48
sDFT 5.99 4.2
Bader 5.95 5.1

T. Dresselhaus, JN, Theor. Chem. Acc. 134 (2015), 97.



From DFT/DFT to
WF/DFT embedding



DFT-in-DFT Hybrid Methods

Subsystem DFT

@ fragmentation scheme,
KS-DFT for subsystems, OF-DFT for interaction

EPM[po] = EX[p)] + EX[0)] + EXLL, o1, 2]

FD E (without orbital representation of peny)

@ QM/QM embedding scheme, KS-DFT/OF-DFT

EP[po] = E¥[pi] + E%[pa] + Ef)lp1. p2]



Wavefunction-in-DFT Hybrid Methods

Can this idea be transferred to WF-in-DFT embedding?

@ within DFT, vemy(r) is formally exact
(contains all non-electrostatic contributions)

@ simple idea:
include (x,|vems(r)|x.) into one-electron part of WF calculation

= gives access to “embedded WF” and properties



Wavefunction-in-DFT Hybrid Methods

@ WF/DFT energy functional:
EVFIPFT Wy, pg] = (WalHa[Wa)+ER° [ps] +EQLD) (oA, o]

(pa: density obtained from W)

@ minimization w.r.t. ¥, yields (p; fixed):
H\ U, = (ﬁIA + > Vewloa, PB}(B)) Wy = EaVy
i=1
where
Ve P45 pB] () = Ve (1) + veou[ps] (1) + vie[p) (1) = vxe[pal (£) + v*![pa, 5] (r)

= same form as in sDFT! (but often evaluated with approximate p4, pp)

N. Govind, Y.A. Wang, A.J.R. da Silva, E.A. Carter, Chem. Phys. Lett. 295 (1998), 129.



Wavefunction-in-DFT Embedding

Z " pa(r
emb A [)Z(r) '
) . r) = - d
Vi o1, pa] (1) §A7: r— Ry + [ —r| r

_ 0Exe 0]
p=pi+p2 ()/)(l‘)

0Exc [/)]
dp(r)

8T [p]
pep Op(r)

_ o7, [p}

pP=p1tp2 op(r) p=p1




Wavefunction-in-DFT Embedding

changes in every
constant macroiteration

changes in every changes in every
microiteration microiteration



Wavefunction-in-DFT Embedding

changes in every
constant macroiteration

0Exc [p]
dp(r)

0T4[p]
dp(r)

_ o7, [p}

pP=p1tp2 op(r) p=p1

p=pi+p2

changes in every changes in every
microiteration microiteration

Note: Self-consistent embedding for excited states leads to
non-orthogonal active-system states!



“Exact” Density-Based Embedding



Covalent Bonds through Exact Embedding Potentials

Approximations for v/ break down for covalent bonds

system 1

system 2

@ What do we know about the exact v (r) ?

@ Can we reconstruct the exact embedding potential for
subsystems 1, 2 that reproduces pguper(r) = p1(r) + pa(r)?
(“exact” here excludes errors introduced by finite basis sets, errors introduced in the calculation of psuper (usually

through Ex.), and numerical errors in the construction of the potential, e.g., due to finite grid size)



Functional Derivative of 70

@ problems arise due to

(here: system K = active system)

6T§ad[{pl}] o 6TS[/)] . 6TS[101}
Spk(r)  dpk(r) ; dpk(r)
with p(r) = 3, pi(r)
@ first term:
6Tslpl [ 0Tlpl  dp(r)
opk(r) /6p(r’) 5p1<(r)dr
_ 5Ts[p] / r_ 6T5[p]
= o) T = S

@ second term:




Functional Derivative of 70

= we need to calculate

0T OTulpsper]  OTi[px]

nad
Vi [pK7 psuper] (l‘) 5,0[((1') 5psuper(r) 5[)1((1')

@ or, in other words, we need to find

>,

() = 5

for two different densities (p = psuper and p = pk)



Euler—Lagrange Equation: Kohn—Sham Formalism
@ Euler—Lagrange Equation:

Ty [p]
n= =+ Vs|Prarget | (T
6p(r) P= Prarget [ e t]( )
= “Kinetic-energy potential:”
~ OT[p] _
Vz[ptarget} (I') = 6[)(1‘) —— =K — Vs [ptarget] (I')

@ . is just a constant shift in the potential wil be ignored here)

= If we know the potential v[pure] (r) that results in a set of orbitals
{#:"**'} such that

S = pragn(r),
i

then we also have access t0 v, [prarget (T)

S. Liu, PW. Ayers, Phys. Rev. A 70 (2004), 022501.



Why Use “Exact” Embedding at All?

= we can obtain the exact v** as

V?ad [Pas Psuper] (T) = Vs[pa] (T) — vy [psuper] (1) + A1
(two subsystems assumed for simplicity; v is given for subsystem A)
Exact embedding is expensive:
@ either, we first have to solve a KS-DFT calculation for the total system

@ or, we have to do (several) reconstructions of total-system potentials



Why Use “Exact” Embedding at All?

= we can obtain the exact v** as

V?ad [Pas Psuper] (T) = Vs[pa] (T) — vy [psuper] (1) + A1
(two subsystems assumed for simplicity; v/ is given for subsystem A)

Exact embedding is expensive:

@ either, we first have to solve a KS-DFT calculation for the total system

@ or, we have to do (several) reconstructions of total-system potentials
Possible benefits:

@ “exact” potential may serve as basis for approximations

@ “exact” potential may be transferred to more expensive WF/DFT

@ ground-state calculation is not the bottleneck (e.g., response)

S. Fux, C.R. Jacob, J. Neugebauer, L. Visscher, M. Reiher, J. Chem. Phys. 132 (2010), 164101;
J.D. Goodpaster, N. Ananth, F.R. Manby, T.F. Miller Ill, J. Chem. Phys. 133 (2010), 084103;
D. Schnieders, J. Neugebauer, J. Chem. Phys. 149 (2018), 054103.



Potential Reconstruction

Densities in search of Hamiltonians:
@ we need to find v,[p](r) that yields a specific p = p'reet
= “inverse Kohn—Sham problem”
= has been solved several times in the context of v, development:

Wang and Parr prys. Rev. 447 (1993), R1591.

van Leeuwen and Baerends rrys. Rev. 449 (1994), 2421.
Zhao, Morrison and Parr prys. Rev. A50 (1994), 2138.
Wu and Yang J. chem. prys. 118 (2003), 2498.



van Leeuwen—Baerends Reconstruction

@ KS-equation

aoit) = [~ )] o
Saornt) = Soie -5 ] ¢,~<r>+vs<r>2@,-*<r>®,-<r>
wople) = Fite) [T s )+ Y e (o
) = 5 {arm [T e >+e,~¢;*<r>¢,»<r>}

i

R. van Leeuwen, E.J. Baerends, Phys. Rev. A 49 (1994), 2421.



van Leeuwen—Baerends Reconstruction

@ iterative scheme, iteration (k + 1),

2
W) = S L0 [T o+ el el |

ACING
ptargel (I‘) Vs

R. van Leeuwen, E.J. Baerends, Phys. Rev. A 49 (1994), 2421.




Excitation Energies with Reconstructed Potentials
Aminopyridine- - - methanol

ks

4.30

4.25

EleV

»—x supermolecule/PW91
o——o FDE(0)/PW91/PW91k
o — o FDE(full)/PW91/PW91k

4.20 »—a FDE(0)/PWIL/TF .
'_é L »- — a FDE(full)/PW9L/TF 1
& 4.1! e
L L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L
02 00 02 04 06 08 10 12 14 16 18 2C

displacement/A

D. Artiukhin, C.R. Jacob, JN, J. Chem. Phys. 142 (2015), 234101.

@ 7w — 7 excitation of aminopyridine- - - MeOH (PW91/TZP)



Excitation Energies with Reconstructed Potentials
Aminopyridine- - - methanol

ks

4.30

4.25

EleV

»—x supermolecule/PW91
o—— FDE(0)/PW91/PW91k
o — o FDE(full)/PW91/PW91k
»—a FDE(0)/PW9L/TF by
- — a FDE(full)/PW9L/TF

+— —+ Reconstruction/PW9NED.001]

4.20
& 4.15 e
L L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L
02 00 02 04 06 08 10 12 14 16 18 2C

displacement/A

D. Artiukhin, C.R. Jacob, JN, J. Chem. Phys. 142 (2015), 234101.

@ 7w — 7 excitation of aminopyridine- - - MeOH (PW91/TZP)
@ reconstruction using Wu—Yang algorithm, ALDA kernel



“Exact” Projection-Based
Embedding



74 for Orthogonal Subsystem Orbitals

@ assume two-partitioning (A 4+ B); determine supersystem KS orbitals

@ define
nA na+np
= 1P and  pp(r) = D (GO = penv(r)
Jj=1 k=ns+1
@ Kkinetic energy:
TS[{QS?uper}] _ Z <¢super | v2/2| ¢§uper>
i=1
na na—+ng
_ Z <¢super| v2/2| ¢§uper> Z <¢9uper| v2/2| ¢§uper>
Jj=1 k=na+1

= T} 4717

= apparently, no non-additive kinetic-energy approximation needed!



74 for Orthogonal Subsystem Orbitals

super
i

@ but: even in case of orthogonal ¢; " and exact pa, pg, in general

na na+ng
S (TG D (=92 )
j=1 k=ns+1
na np

D (Gul=V2/2lgu) + min D (6 |-V?/2| 6u)

i

> min
{dis}—=pa



74 for Orthogonal Subsystem Orbitals

super

@ but: even in case of orthogonal ¢, and exact p4, pg, in general

na na+ng
Z <¢super ! vz/z‘ (bsuper Z <¢super vz/z‘ ¢super>
j=1 k=ns+1

na np

1 . p— 2 . 1 . p— 2 .
= {d’ig’lgm z,: <¢M | v /2| ¢M> - {¢'$IEPB zz: <¢IB ‘ v /2| ¢IB>

super

@ reason: not both subsets of {¢;
some effective potential

} are, in general, ground-state of

@ still: subsets of {¢;"""} can be obtained from projected KS problem
without yrad



Externally Orthogonal Subsystem Orbitals

In sDFT, orbitals of different subsystems are not necessarily orthogonal:

(D) = 85, but (¢;]¢;,) canbe #0

How can we determine orthogonal embedded subsystem orbitals?
Three (related) strategies:

@ projection-based embedding
F.R. Manby, M. Stella, J.D. Goodpaster, T.F. Miller Ill, J. Chem. Theory Comput. 2012, 8, 2564.

@ external orthogonality through extra Lagrangian multipliers
Y.G. Khait, M.R. Hoffmann, Ann. Rep. Comput. Chem. 2012, 8, 53-70;
P.K. Tamukong, Y.G. Khait, M.R. Hoffmann, J. Phys. Chem. A 2014, 118, 9182.

@ Huzinaga equation (transferred to KS-DFT)

S. Huzinaga and A.A. Cantu, J. Chem. Phys. 1971, 55, 5543;
B. Hégely, P.R. Nagy, G.G. Ferency, M. Kéllay, J. Chem. Phys. 2016, 145, 064107.



Exact Embedding through Projection

Basic Idea:
@ 1st step: KS-DFT calculation on (A + B)
@ 2nd step: localization of KS orbitals = {¢?}, {¢f}
@ then: construct Fock operator for electrons in subsystem A,

R & L " = 7 F
A= —+ Vaue(F) + VB (F) + veoulpa + o8] (F) + vxelpa + pp)(F) + uP?

with projection operator P5,

PP =" 18 (¢f]

i€B

@ for lim,_,~: eigenfunctions of f4 are orthogonal to {¢#}

F.R. Manby, M. Stella, J.D. Goodpaster, T.F. Miller Ill, J. Chem. Theory Comput. 8 (2012), 2564.



Externally Orthogonal Subsystem Orbitals

Enforce external orthogonality through extra constraints

@ consider sDFT energy as functional of two orbital sets,
EFT = EOFT[{68} {4F)]
@ introduce orthonormality constraints through Lagrangian multipliers,

EPT 5 LT = BT NN N () — 05) — D XN il dis) — DA (Bl

I=A,B i€l i€A i€B
Jjel JEB JEA

@ optimization w.r.t. ¢ yields (for ¢? fixed),

(-5 +80I0) ot = ot + S aPette

JEB
@ multiply with (¢?|; make use of external orthogonality already,

Gl EPYY

Y.G. Khait, M.R. Hoffmann, Ann. Rep. Comput. Chem. 8 (2012), 53-70;
P.K. Tamukong, Y.G. Khait, M.R. Hoffmann, J. Phys. Chem. A118 (2014), 9182.



Externally Orthogonal Subsystem Orbitals

@ from this it follows that,

Ity = elef) + > 1oP) (@P1FS|47)

= <1—Z¢,->< ) )

JEB

(1 PYFRS|g) = et gty

f/
@ note: /' is not Hermitian
@ under external orthogonality: (1 — PB)|¢?) = |¢)
= (L=P") 7 (1= P7) o)) = €}|of)

J?//

note: /' is Hermitian!

Y.G. Khait, M.R. Hoffmann, Ann. Rep. Comput. Chem. 8 (2012), 53-70;
P.K. Tamukong, Y.G. Khait, M.R. Hoffmann, J. Phys. Chem. A 118 (2014), 9182.



Comparing Density-Based Embedding Schemes

0.0152 0.015%
0.010 0.010
£ o0.005 g 0.005,
i} i
2z 0.000 Z 0.000
§ —0.005 § —0.005
[a] [a]
-0.010 ~0.010|
-0.015 -0.015
=4 -2 0 2 4 6 8 10 —4 8 10
z-Axis z-Axis
0.015% 00152
0.010 1 0.010
2 0.005 4 2 o0.005
& &
2 0.000 0 + 2 0.000
§ —0.005] 1 § —0.005
(=] =]
-0.010 1 -0.010
-0.015 -0.015
=4 -2 0 2 4 6 8 10 =4 -2 0 2 4 6 8 10
2-Axis 2-AXis

PBE/def2-QZVP; a) sum-of-isolated densities; b) PBE-type T;"“d; c) potential reconstruction d) projection

J.P. Unsleber, T. Dresselhaus, K. Klahr, D. Schnieders, M. Béckers, D. Barton, JN, J. Comput. Chem. 39 (2018), 788.
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Decomposing Total-System States

Consider active system A and environment B:

@ states of combined system can be expanded as,

B
Mtates slales slales Pstates stales

[Wats) ZZCU|A |B)) ZlA YD cilB) ZIA |B;)

J

with “relative states” |B;) (not orthonormal in general)
Schmidt Decomposition Theorem:

@ any pure state |4, 5) can be written in terms of (orthonormal) Schmidt
states |a;), |b;)

Nmin

[Uarp) = Z \/17i|ai> |b:)
k

_ 2B
(where /p; is a real, non-negative number with 3=, p; = 1, and npi, = mm(nmws, Nitates)

J. Audretsch, Entangled Systems — New Directions in Quantum Physics, Wiley-VCH, Weinheim, 2007, pp. 149-151;
M. Schlosshauer, Decoherence and the Quantum-to-Classical Transition, Springer, Berlin, 2007, p. 104.



Decomposing Total-System States

Schmidt Decomposition by SVD
@ singular value decomposition of matrix ¢ = UAV'

i
\l ates’states M'min

@lales slalss
|Wats) = ch,,m )|B;) ZZZUIW ViIA)B)

"min

= > Melaw)|bi)

= even if nf > nl..s, exact embedding of A is possible with n4,., bath states

@ but: constructing bath states requires knowledge of full [¥445)

Idea of DMET
@ construct bath states from simple approximation |®) to |¥a45)
@ use bath states to obtain high-level approximation from embedded problem

H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press, Oxford, 2006, pp. 75-76

G. Knizia, G‘.K.»L. Chan, J. Chem. Theory Comput. 2013, 9, 1428;
S. Wouters, C.A. Jiménez-Hoyos, Q. Sun, G.K.-L. Chan, J. Chem. Theory Comput. 2016, 12, 2706.



DMET in Practice

(1) perform HF calculation on full system (A + B)
= yields N,.. occupied orbitals {¢;}

(2) perform orbital rotation among {¢;}; specifically:
e calculate
Si =Y _(ilp)(pl))
pEA

(overlap matrix of orbitals projected onto the L, "sites” |p) of fragment A)
e eigenvectors of S define a rotation matrix; there are Ny.. — La
eigenvectors with zero eigenvalue
= environment orbitals {4} without overlap with A
= the remaining L, “entangled” orbitals {¢$"'} do have overlap with A

(3) project {¢¢"} onto environment “sites” = yields L, “bath orbitals” [b)

{Ip)} = {Z |r><r|¢?m>}

reB

G. Knizia, G.K.-L. Chan, J. Chem. Theory Comput. 9 (2013), 1428.



DMET in Practice

= many-body wavefunction: CAS-Cl wavefunction with (half-filled) active
space of {|p)} (L sites of fragment A) and {|b)} (L bath orbitals)

(4) project total Hamiltonian A into active space, Hz,,, = PHP, and find
high-accuracy approx. to H4 4 = E, U, (e.g., FCI)

(5) adjust one-particle density matrix D to match that of ¥, as close as
possible on fragment A. Do that for all fragments and iterate.

Note: This adjustment minimizes
A=00|[(®lafa|®) — (Walafa, | W)
A rs€eA
by changing the Fock operator
f _>f + ZA ﬂA with ﬂA = erGA :ul;‘s&;«r&s

in the calculation of the mean-field wavefunction |®)
(i.e., A is minimized w.r.t. all p2)
G. Knizia, G.K.-L. Chan, J. Chem. Theory Comput. 9 (2013), 1428.



Conclusion

QM/QM methods

@ there are several QM/QM methods available now which are (formally)
exact under certain conditions

@ but: using “exact” embedding directly does not lead to gain in efficiency

@ however, it can be the starting point for new approximations or new
(approximate) fields of application



Conclusion

QM/QM methods

@ there are several QM/QM methods available now which are (formally)
exact under certain conditions

@ but: using “exact” embedding directly does not lead to gain in efficiency

@ however, it can be the starting point for new approximations or new
(approximate) fields of application

QM/(QM,MM) methods?

@ “Polarizable Density Embedding”:
combines elements from FDE, polarizable force fields, and
Huzinaga-type embedding

J.M.H. Olsen, C. Steinmann, K. Ruud, J. Kongsted, J. Phys. Chem. A 2015, 119, 5344.
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