Something you didn't know: all molecules are the same!

Introduction	Computational methods	Conclusions
Outling		
Outline		

- Stability of matter.
- Scaled energy/bond length relation, asymptotic behaviour.
- Numerical tests 1: behaviour with nuclear charge.
- Numerical tests 2: homologous series.
- Conclusions.

Acknowledgments

- Natalie Gilka (Copenhagen Mathematics, then Melbourne and Aarhus), Jan Philip Solovej (Copenhagen Mathematics).
- Started during PRT study leave from University of Warwick, 2008-9 (Copenhagen Chemistry).
- DAAD (NG) and Wolfson Foundation/Royal Society/EU/ARC (PRT) for funding.
- Original paper: NG, JPS, PRT, *Int J Quantum Chem*, **111**, 3324 (2011).

• Lieb asked:

• Lieb asked:

Why don't the electrons fall into the nuclei?

• Lieb asked:

Why don't the electrons fall into the nuclei? (Schrödinger, 1926).

Lieb asked:

- Why don't the electrons fall into the nuclei? (Schrödinger, 1926).
- **2** Is matter stable as N and $\sum Z_A$ both $\rightarrow \infty$?

Lieb asked:

- Why don't the electrons fall into the nuclei? (Schrödinger, 1926).
- Is matter stable as N and ∑Z_A both → ∞?
 Good deal more complicated...(Related to additive separability/size-extensivity).

• Lieb asked:

- Why don't the electrons fall into the nuclei? (Schrödinger, 1926).
- Is matter stable as N and ∑Z_A both → ∞? Good deal more complicated...(Related to additive separability/size-extensivity).
 Stability of matter of the second kind.

• First answered by Dyson and Lenard in 1967 (following Onsager [classical particles] in 1939): affirmative provided the fermion Pauli Principle is imposed.

- First answered by Dyson and Lenard in 1967 (following Onsager [classical particles] in 1939): affirmative provided the fermion Pauli Principle is imposed.
- Matter would not collapse without PP, but correct scaling with Z and N would not follow.
- Bosonic matter would follow a $-N^{7/5}$ law.

• "Dyson-Lenard proof one of the most difficult up to that time in the math phys literature" (Lieb).

- "Dyson-Lenard proof one of the most difficult up to that time in the math phys literature" (Lieb).
- Simplified by Lieb and Thirring in 1975 using properties of Thomas-Fermi theory.
- Other issues arising from incorporation of relativity and of magnetic fields. Does not incorporate gravity (which of course *can* cause collapse).

Behaviour of the exact energy

• Consider a diatomic, described within the conventional nonrelativistic Born-Oppenheimer approximation.

Behaviour of the exact energy

- Consider a diatomic, described within the conventional nonrelativistic Born-Oppenheimer approximation.
- Polyatomic case can be "collapsed" to the diatomic limit.

$$H = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} + \sum_{i>j} r_{ij}^{-1} - \sum_{i,A} Z_{A} r_{iA}^{-1} + \sum_{A>B} Z_{A} Z_{B} R_{AB}^{-1}$$

$$\rightarrow -\frac{1}{2} \sum_{i} \nabla_{i}^{2} + \sum_{i>j} r_{ij}^{-1} - \sum_{i,A} Z_{A} r_{iA}^{-1} + Z_{A} Z_{B} R_{AB}^{-1}$$

but not further! (Must keep nuclear repulsion term.)

Behaviour of the exact energy

- Let the nuclear charges be Z_1e and Z_2e and let $Z = Z_1 + Z_2$. Total energy is E.
- Separated atom energies are E_1 and E_2 .
- Define the scaled internuclear distance $\rho = Z^{\frac{1}{3}}R$.
- Then (Lieb, Simon) as Z→∞, for finite ρ, all diatomic potential curves have the same leading term,

$$\mathscr{E}(\rho) = Z^{-\frac{7}{3}}(E(\rho) - E_1 - E_2).$$

Short r. large Z

Behaviour of the exact energy

- Let the nuclear charges be Z_1e and Z_2e and let $Z = Z_1 + Z_2$. Total energy is E.
- Separated atom energies are E_1 and E_2 .
- Define the scaled internuclear distance $\rho = Z^{\frac{1}{3}}R$.
- Then (Lieb, Simon) as Z→∞, for finite ρ, all diatomic potential curves have the same leading term,

$$\mathscr{E}(\rho) = Z^{-\frac{7}{3}}(E(\rho) - E_1 - E_2).$$

• Leading term is in fact the Thomas-Fermi (TF) energy.

Thomas-Fermi energy

• Simple statistical model:

$$E_{TF} = E_{NR} + C \int [n(r)]^{5/3} dr + \int n(r) V_{NA}(r) dr + \frac{1}{2} \int \int \frac{n(r)n(r')}{|r-r'|} dr dr'$$

n(r) is the electron density, V_{NA} is the nuclear attraction, and E_{NR} is the nuclear repulsion energy.

Behaviour of the Hartree-Fock energy

Behaviour of the Hartree-Fock energy

- Exactly the same as the exact energy!
- Simply put, both the exact and Hartree-Fock energies have the same leading term — which is the TF energy — as Z→∞, for finite ρ.
- This includes $\rho = 0$.
- Also shown for a model with a relativistic kinetic energy operator and for next-higher terms in the energy expansion.

A common misunderstanding...

• It's obvious: it's a trivial observation. As ρ gets smaller (i.e., R gets smaller) and/or Z gets larger the energy is completely dominated by the nuclear repulsion.

A common misunderstanding...

- It's obvious: it's a trivial observation. As ρ gets smaller (i.e., R gets smaller) and/or Z gets larger the energy is completely dominated by the nuclear repulsion.
- Not so!

A common misunderstanding...

- It's obvious: it's a trivial observation. As ρ gets smaller (i.e., *R* gets smaller) and/or *Z* gets larger the energy is completely dominated by the nuclear repulsion.
- Not so!
- Consider for simplicity a homonuclear diatomic. Then $Z_1Z_2/R = 1/4\rho$ (certainly the same for all such diatomics).
- Define now $E_{\text{elec}} = E Z_1 Z_2 / R$ and $\mathscr{E}_{\text{elec}} = Z^{-\frac{7}{3}} (E_{\text{elec}} E_1 E_2).$
- Identical behaviour for different diatomics means identical
 - \mathscr{E}_{elec} , not just that the latter is overwhelmed by the nuclear repulsion.

- Any known analytical behaviour is useful to calibrate and improve our methods.
- E.g., improving basis sets, or designing functionals in DFT.
- (Accepted, some analytical behaviour is useless, like asymptotic decay of density/orbitals in atoms.)

- Is this \mathscr{E}_{elec} behaviour "useful"?
- How large must Z be for a given ρ to see this limiting behaviour?
- Alternatively, how small must ρ be for chemical values of Z?

- Is this \mathscr{E}_{elec} behaviour "useful"?
- How large must Z be for a given ρ to see this limiting behaviour?
- Alternatively, how small must ρ be for chemical values of Z?
- Mathematics is no help here.

- Is this \mathscr{E}_{elec} behaviour "useful"?
- How large must Z be for a given ρ to see this limiting behaviour?
- Alternatively, how small must ρ be for chemical values of Z?
- Mathematics is no help here. So (Copenhagen Maths Department coffee-room moment...),

- Is this \mathscr{E}_{elec} behaviour "useful"?
- How large must Z be for a given ρ to see this limiting behaviour?
- Alternatively, how small must ρ be for chemical values of Z?
- Mathematics is no help here. So (Copenhagen Maths Department coffee-room moment...), why not test it computationally?

Computational tests

- Can use Hartree-Fock since behaviour is the same as the exact energy.
- Not difficult to approach HF limit with modern basis sets.
- Must be prepared to approach/describe united-atom (UA) limit.
- Choose a variety of diatomics covering a range of Z (for simplicity, homonuclear diatomics with ${}^{1}\Sigma_{g}^{+}$ ground states), study R values inwards towards UA limit.

Short r. large Z

Computational methods

- Can't do much *ab initio* that's simpler than Hartree-Fock!
- Use correlation-consistent basis sets: cc-pCVQZ but only up to *l*+2 for the given atoms. (E.g., no *g* functions for N.)
- Large even-tempered *spd* or *spdf* set at bond midpoint. At small *R* a lot of linear dependence canonical orthonormalization. No problems envisaged with BSSE this far up repulsive wall.
- Follow the lowest ${}^{1}\Sigma_{g}^{+}$ curve throughout (no idea if this remains the ground state for all $R \rightarrow 0$, of course).
 - H_2 , He_2 , N_2 , Ne_2 , Ar_2 .

Computational methods

- Some potential wave function issues. HF UA for H₂ lowest ${}^{1}\Sigma_{g}^{+}$ state is He $1s^{2}$ ground state, but this is not true for UAs of the other diatomics.
- Use CASSCF with minimal active space needed for smooth transition to UA lowest "closed shell" (can be mixed like N₂ goes to Si $(^{1}D + ^{1}S)$).
- In practice see wave functions dominated by a single configuration in to short *R*, then rapid transition to UA single configuration. (He₂ transition to Be not observed at distances used.)

Short r. large Z

All calculations performed with Dalton.

Diatomic curves (a.u.)

Distance comparisons (a_0)

	H_2	He_2	N_2	Ne_2	Ar_2
ρ	R	R	R	R	R
5.001			2.075		
1.765	1.4011				
1.5	1.191	0.945	0.622	0.553	0.454
1.0	0.794	0.630	0.415	0.368	0.303
0.5	0.397	0.315	0.207	0.184	0.151

Diatomic curves (a.u.)

Observations

- Not unexpectedly, H_2 is exceptional.
- He₂ behaves somewhat oddly at very short distances (possibly anticipating the transition to UA).
- The other three show essentially the same behaviour, basically to within m $E_{\rm h}$, at all ρ values studied.
- Convergence to large Z behaviour appears exceptionally rapid, and is observed at relatively large ρ or R values.

Further tests

- The molecules examined are quite different in character: either strongly bonded, or not at all (in HF — very TF-like).
- Bound molecules that are "plausible" TF candidates?

Further tests

- The molecules examined are quite different in character: either strongly bonded, or not at all (in HF — very TF-like).
- Bound molecules that are "plausible" TF candidates?
- Alkali-metal dimers. Noble gas-like cores inside a weak bonding pair.
- HF calculations on Li₂, Na₂, K₂, Rb₂. No bond functions, no CASSCF, as ultra-small *R* values not considered.

Alkali-metal dimers (a.u.)

Distance comparisons (a_0)

	Li_2	Na_2	K_2	Rb_2
ρ	R	R	R	R
9.0	4.953	1.768	0.526	0.125
7.0	3.852	1.375	0.409	0.097
5.0	2.752	0.982	0.292	0.070
3.0	1.651	0.589	0.175	0.042

Alkali-metal dimers (a.u.)

Observations

- Again concordant to mE_h level, at relatively large ρ values (almost to R_e in Li₂!).
- Some divergence at ρ values between 2 and 3.
- Actual binding energies are rather small and badly underestimated by HF, which is partly responsible for similarity of curves for larger ρ: *c*_{elec} itself is becoming small.

Conclusions

		Computational methods		Conclusions
Conclusions				

• Convergence to large Z behaviour is very rapid.

		Computational methods	Conclusions
Conclusion	S		

- Convergence to large Z behaviour is very rapid.
- Large Z behaviour observed at remarkably large ho values.

- Convergence to large Z behaviour is very rapid.
- Large Z behaviour observed at remarkably large ho values.
- Note that the mathematics does not *exclude* that possibility: simply not proven (yet?).

- Convergence to large Z behaviour is very rapid.
- Large Z behaviour observed at remarkably large ρ values.
- Note that the mathematics does not *exclude* that possibility: simply not proven (yet?).
- \mathscr{E}_{elec} looks like a quantity that could be used to decide whether certain parametrized methods are realistic or not (proposed in first paper).

- - Convergence to large Z behaviour is very rapid.
 - Large Z behaviour observed at remarkably large ho values.
 - Note that the mathematics does not *exclude* that possibility: simply not proven (yet?).
 - \mathscr{E}_{elec} looks like a quantity that could be used to decide whether certain parametrized methods are realistic or not (proposed in first paper).
 - Not really. In the intervening years: DFT, correlated methods, heteronuclear diatomics, open-shell systems —

Short r. large Z

all show the same behaviour.

