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Stability of matter

Lieb asked:

1 Why don’t the electrons fall into the nuclei?
(Schrödinger, 1926).

2 Is matter stable as N and ∑ZA both → ∞?
Good deal more complicated. . . (Related to additive
separability/size-extensivity).
Stability of matter of the second kind.
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Stability of the second kind

First answered by Dyson and Lenard in 1967 (following
Onsager [classical particles] in 1939): affirmative provided the
fermion Pauli Principle is imposed.

Matter would not collapse without PP, but correct scaling
with Z and N would not follow.

Bosonic matter would follow a −N7/5 law.
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Stability of the second kind

“Dyson-Lenard proof one of the most difficult up to that time
in the math phys literature” (Lieb).

Simplified by Lieb and Thirring in 1975 using properties of
Thomas-Fermi theory.

Other issues arising from incorporation of relativity and of
magnetic fields. Does not incorporate gravity (which of course
can cause collapse).
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Behaviour of the exact energy

Consider a diatomic, described within the conventional
nonrelativistic Born-Oppenheimer approximation.

Polyatomic case can be “collapsed” to the diatomic limit.

H = −1
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AB

but not further! (Must keep nuclear repulsion term.)
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Behaviour of the exact energy

Let the nuclear charges be Z1e and Z2e and let Z = Z1 +Z2.
Total energy is E.

Separated atom energies are E1 and E2.

Define the scaled internuclear distance ρ = Z
1
3 R.

Then (Lieb, Simon) as Z→ ∞, for finite ρ, all diatomic
potential curves have the same leading term,

E(ρ) = Z−
7
3 (E(ρ)−E1−E2).

Leading term is in fact the Thomas-Fermi (TF) energy.
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Thomas-Fermi energy

Simple statistical model:

ETF =ENR+C
∫

[n(r)]5/3 dr+
∫

n(r)VNA(r)dr+
1
2

∫ ∫ n(r)n(r′)
|r− r′|

drdr′

n(r) is the electron density, VNA is the nuclear attraction, and
ENR is the nuclear repulsion energy.
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Behaviour of the Hartree-Fock energy

Exactly the same as the exact energy!

Simply put, both the exact and Hartree-Fock energies have
the same leading term — which is the TF energy — as
Z→ ∞, for finite ρ.

This includes ρ = 0.

Also shown for a model with a relativistic kinetic energy
operator and for next-higher terms in the energy expansion.
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A common misunderstanding. . .

It’s obvious: it’s a trivial observation. As ρ gets smaller (i.e.,
R gets smaller) and/or Z gets larger the energy is completely
dominated by the nuclear repulsion.

Not so!

Consider for simplicity a homonuclear diatomic. Then
Z1Z2/R = 1/4ρ (certainly the same for all such diatomics).

Define now Eelec = E−Z1Z2/R and

Eelec = Z−
7
3 (Eelec−E1−E2).

Identical behaviour for different diatomics means identical
Eelec, not just that the latter is overwhelmed by the nuclear
repulsion.
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Not trivial, then, but good for what?

Any known analytical behaviour is useful to calibrate and
improve our methods.

E.g., improving basis sets, or designing functionals in DFT.

(Accepted, some analytical behaviour is useless, like
asymptotic decay of density/orbitals in atoms.)
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Not trivial, then, but good for what?

Is this Eelec behaviour “useful”?

How large must Z be for a given ρ to see this limiting
behaviour?

Alternatively, how small must ρ be for chemical values of Z?

Mathematics is no help here. So (Copenhagen Maths
Department coffee-room moment. . . ), why not test it
computationally?
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Computational tests

Can use Hartree-Fock since behaviour is the same as the exact
energy.

Not difficult to approach HF limit with modern basis sets.

Must be prepared to approach/describe united-atom (UA)
limit.

Choose a variety of diatomics covering a range of Z (for
simplicity, homonuclear diatomics with 1Σ+

g ground states),
study R values inwards towards UA limit.
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Computational methods

Can’t do much ab initio that’s simpler than Hartree-Fock!

Use correlation-consistent basis sets: cc-pCVQZ but only up
to l+2 for the given atoms. (E.g., no g functions for N.)

Large even-tempered spd or spdf set at bond midpoint. At
small R a lot of linear dependence — canonical
orthonormalization. No problems envisaged with BSSE this
far up repulsive wall.

Follow the lowest 1Σ+
g curve throughout (no idea if this

remains the ground state for all R→ 0, of course).

H2, He2, N2, Ne2, Ar2.
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Computational methods

Some potential wave function issues. HF UA for H2 lowest
1Σ+

g state is He 1s2 ground state, but this is not true for UAs
of the other diatomics.

Use CASSCF with minimal active space needed for smooth
transition to UA lowest “closed shell” (can be mixed like N2
goes to Si (1D+ 1S)).

In practice see wave functions dominated by a single
configuration in to short R, then rapid transition to UA single
configuration. (He2 transition to Be not observed at distances
used.)

All calculations performed with Dalton.
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Diatomic curves (a.u.)
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Distance comparisons (a0)

H2 He2 N2 Ne2 Ar2
ρ R R R R R

5.001 2.075
1.765 1.4011
1.5 1.191 0.945 0.622 0.553 0.454
1.0 0.794 0.630 0.415 0.368 0.303
0.5 0.397 0.315 0.207 0.184 0.151
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Observations

Not unexpectedly, H2 is exceptional.

He2 behaves somewhat oddly at very short distances (possibly
anticipating the transition to UA).

The other three show essentially the same behaviour, basically
to within mEh, at all ρ values studied.

Convergence to large Z behaviour appears exceptionally rapid,
and is observed at relatively large ρ or R values.
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Further tests

The molecules examined are quite different in character:
either strongly bonded, or not at all (in HF — very TF-like).

Bound molecules that are “plausible” TF candidates?

Alkali-metal dimers. Noble gas-like cores inside a weak
bonding pair.

HF calculations on Li2, Na2, K2, Rb2. No bond functions, no
CASSCF, as ultra-small R values not considered.
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Alkali-metal dimers (a.u.)
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Distance comparisons (a0)

Li2 Na2 K2 Rb2
ρ R R R R

9.0 4.953 1.768 0.526 0.125
7.0 3.852 1.375 0.409 0.097
5.0 2.752 0.982 0.292 0.070
3.0 1.651 0.589 0.175 0.042
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Observations

Again concordant to mEh level, at relatively large ρ values
(almost to Re in Li2!).

Some divergence at ρ values between 2 and 3.

Actual binding energies are rather small and badly
underestimated by HF, which is partly responsible for
similarity of curves for larger ρ: Eelec itself is becoming small.
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Conclusions

Convergence to large Z behaviour is very rapid.

Large Z behaviour observed at remarkably large ρ values.

Note that the mathematics does not exclude that possibility:
simply not proven (yet?).

Eelec looks like a quantity that could be used to decide
whether certain parametrized methods are realistic or not
(proposed in first paper).

Not really. In the intervening years: DFT, correlated methods,
heteronuclear diatomics, open-shell systems —
all show the same behaviour.
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