

Symmetry and Quantum-chemical Calculations

Peter R. Taylor

Vice-dean for Information Technology and Professor of Chemistry Health Science Platform Tianjin University Tianjin, China

pete@tju.edu.cn

September 17, 2019

ESQC19, Torre Normanna, September, 2019

Announcement

• Bollocks to Brexit!

ESQC19, Torre Normanna, September, 2019

- Brief review of some relevant elementary mathematics.
- Symmetry and the Hamiltonian.
- Point group symmetry: D_{2h} and its subgroups.
- General point groups.
- Permutational symmetries.
- Some literature.

- A set \mathscr{G} with elements G, H... and an operator to *combine* them as $G \circ H$. If for all G, H...
 - $G \circ H \in \mathscr{G}$ (closure)
 - $(G \circ H) \circ J = G \circ (H \circ J)$ (associativity)
 - Element E such that $E \circ G = G \circ E = G$ (identity)
 - $G \circ G^{-1} = G^{-1} \circ G = E$ (inverse)

then \mathscr{G} is a group.

- If also all $G \circ H = H \circ G$ (commutativity) the group is Abelian.
- The *order* of the group g is the number of distinct elements G (could be infinite).

- Transformations of a fixed nuclear framework (*point groups*). • is successive transformations.
- Permutations of N objects: the symmetric group $\mathscr{S}(N)$. \circ is successive permutations.
- The integers under addition. Must include positive and negative integers: identity element is 0. Not a group under multiplication (no inverse).
- Cyclic groups generating element x with x^g = E and *G* = {E,x,x²,x³,...,x^{g-1}}. Any cyclic group is Abelian, and if g is prime any group of order g is cyclic.

Multiplication tables

• Not cyclic, not Abelian.

Symmetry

• E,A,B form a *subgroup*: $\mathscr{H} \subseteq \mathscr{G}$. As do E,C, etc.

Abelian Group

		Α		
Ε	E A B C	Α	В	С
Α	Α	Ε	С	В
В	В	С	Ε	Α
С	С	В	Α	Ε

	Ε	Α	В	С
$ \begin{array}{c} \Gamma_1 \\ \Gamma_2 \\ \Gamma_3 \\ \Gamma_4 \end{array} $	1	1	1	1
Γ_2	1	1	-1	-1
Γ_3	1	-1	1	-1
Γ_4	1	-1	-1	1

Representations, Characters

	Ε			
Γ_1	1	1	1 -1 1 -1	1
Γ_2	1	1	-1	-1
Γ_3	1	-1	1	-1
Γ_4	1	-1	-1	1

- $\sum_{G} \Gamma_i(G) \Gamma_j(G) = g \delta_{ij}$. Orthogonality
- Each Γ_i is a representation of the group: if GH = J, Γ_i(G)Γ_i(H) = Γ_i(J).
- Group characters, typically denoted $\chi^{\alpha}(G)$ for $\Gamma_{\alpha}(G)$.
- Group representations is a more complicated subject than just characters — non-Abelian groups, matrix representations.

Outline Group Theory Hamiltonian D_{2h} ; projection General case Spin, antisymmetry Literature

Symmetry and the Hamiltonian

- Exact solution: $\hat{H}\Psi = E\Psi$.
- Consider an operator \hat{P} such that $\hat{P}\hat{H} = \hat{H}\hat{P}$. Then

$$\hat{H}\hat{P}\Psi = \hat{P}\hat{H}\Psi$$
$$= \hat{P}E\Psi$$
$$= E\hat{P}\Psi$$

- Hence $\hat{P}\Psi$ is an eigenfunction of \hat{H} with the same eigenvalue E as Ψ .
- We call \hat{P} a symmetry of the Hamiltonian and when $\hat{P}^{-1}\hat{H}\hat{P} = \hat{H}$ we say the Hamiltonian is a *totally symmetric* operator.

• The full (non-Born-Oppenheimer!) Hamiltonian

$$\hat{H}_{\text{mol}} = -\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2} - \sum_{A=1}^{K} \frac{1}{2M_{A}} \nabla_{A}^{2} + \sum_{i>j} r_{ij}^{-1} - \sum_{i,A} Z_{A} r_{iA}^{-1} + \sum_{A>B} Z_{A} Z_{B} r_{AB}^{-1}.$$

- Comprises nuclear and electronic Laplacians (isotropic) and interparticle distances (scalars). Very symmetric!
- Arbitrary rotations, reflections, inversion.

- Spin-independent, so spin operators commute with it.
- Invariant to permutation of identical particles.

Born-Oppenheimer Hamiltonian

• After B-O approximation

$$\hat{H} \equiv \hat{H}_{elec} = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} + \sum_{i>j} r_{ij}^{-1} - \sum_{i,A} Z_{A} r_{iA}^{-1} + \sum_{A>B} Z_{A} Z_{B} R_{AB}^{-1}.$$

- Spin-independent, so spin operators still commute with it.
- Still invariant to permutation of identical particles.
- *But* only invariant to operations that leave the nuclear framework unchanged (point groups).

D_{2h} and subgroups

- Abelian.
- For any $G \in \mathscr{G}$, $G^2 = E$.
- Easily represented in computer implementations (bit strings and logical operations).
- Focus here on $C_{2\nu}$ as an example.

	E	σ_{yz}	σ_{xz}	C_2^z
A_1	1	1	1	1
A_1 B_2	1	-1	1	-1
B_1	1	1	-1	-1
A_2	1	-1	-1	1

- This is not arbitrary/crazy/pointless ordering of symmetry elements and representations!
- *Mulliken convention*. Planar C_{2v} molecule sits in *xz*-plane. Labels based on this ordering.

 This ordering of symmetry elements was originally the form to be used with the MOLECULE integral program of Almlöf: inherited by CFOUR, Dalton, Molcas, Molpro...

OH sp3 hybrid bonds

ESQC19, Torre Normanna, September, 2019

• Orbital occupancies:

O 1s a_1 OH bonds a_1+b_2 lone pairs a_1+b_1

- Can we do better than hand-waving to get the symmetry-adapted occupation $1a_1^2 a_1^2 a_1^2 1b_2^2 1b_1^2$?
- Yes! (Otherwise I wouldn't have asked...)

• For an arbitrary function f, the operation

$$\mathscr{P}^{\alpha}f \stackrel{def}{=} g^{-1}\sum_{G}\chi^{\alpha}(G) Gf$$

is either zero, or a function F^{α} that transforms as a *basis* function for representation α .

- \mathscr{P}^{α} is a projection operator.
- This means that

$$HF^{\alpha} = H\mathscr{P}^{\alpha}f = \chi^{\alpha}(H)F^{\alpha}.$$

• For example

$$\mathscr{P}^{B_2}(OH_1) = \frac{1}{2} \left(OH_1 - OH_2 \right).$$

Projection operators

• We can run this in reverse. We have

$$b_{2} = \mathscr{P}^{B_{2}}(OH_{1}) = \frac{1}{2}(OH_{1} - OH_{2})$$

$$a_{1} = \mathscr{P}^{A_{1}}(OH_{1}) = \frac{1}{2}(OH_{1} + OH_{2})$$

so $OH_1 = a_1 + b_2$ and $OH_2 = a_1 - b_2$. The "pure" representations A_1 , B_2 , etc., are *irreducible representations*.

- Combinations like $a_1 + b_2$ are *reducible*. 0
- This assumes additional significance for non-Abelian groups.

Operator symmetries

- Hartree-Fock or Kohn-Sham Fock operator: totally symmetric (so eigenfunctions — molecular orbitals — are symmetry-adapted).
- Not necessarily true for other operators: μ in $C_{2\nu}$ is $A_1 + B_1 + B_2$: only the first can appear in an expectation value.
- Non-totally symmetric operators can appear in transition matrix elements, response properties, etc.

You cannot "turn off" symmetry!

- If the system has symmetry, it will appear.
- You cannot just say "the symmetry is C_1 ": you have to enforce it!
- E.g., distort the molecule to lower the symmetry (the molecular gradient is totally symmetric, so geometry optimizations will not break symmetry without additional input).
- Make H₂O input geometry linear, a geometry optimization will leave it linear.

- For D_{2h} and its subgroups our representations were all numbers (in fact ± 1).
 - Not surprising: Abelian groups and only "scalars" commute.
 - These irreducible representations are "one-dimensional".
 - Non-commuting quantities: irreducible representation *matrices* of higher dimension.
 - E.g., for our group of order 6, isomorphic to $C_{3\nu}$, D_3 , and $\mathscr{S}(3)$.
 - Use NH₃: N on z-axis, H₁ and N lie in xz-plane.

Group of order 6

	E	A	B	С	D	F
	E	C_3	C_{3}^{2}	σ_v^a	σ_v^b	σ_v^c
A_1	1	1	1	1	1	1
A_2	1	1	1	-1	-1	-1
$(E)_{11}$	1	$-\frac{1}{2}$	$-\frac{1}{2}$	1	$-\frac{1}{2}$	$-\frac{1}{2}$
$(E)_{21}$	0	$\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{2}$	0	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$
$(E)_{12}$	0	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	0	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$
$(E)_{22}$	1	$-\frac{1}{2}$	$-\frac{1}{2}$	-1	$\frac{1}{2}$	$\frac{1}{2}$

• Two sets of matrices for irreducible representations α and β :

$$\sum_{G} D^{\alpha}_{ij}(G)^* D^{\beta}_{kl}(G) = g n^{-1}_{\alpha} \delta_{\alpha\beta} \delta_{ik} \delta_{jl}.$$

Great Orthogonality Theorem. n_{α} is dimension of representation α .

• Can show, e.g.,

$$\sum_{\alpha} n_{\alpha}^2 = g.$$

• Hence two groups of order 6: $1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2$ (cyclic group, Abelian) and $1^2 + 1^2 + 2^2$.

• Simplify things a bit by using characters: *trace* of the representation matrices.

Outline Group Theory Hamiltonian D_{2h} ; projection General case Spin, antisymmetry Literature

Group of order 6: characters

- Still some redundancy here: some elements have the same character.
- These are in the same *class*.

Group of order 6: classes

 Common to show behaviour of Cartesian directions and rotations around axes.

Group of order 6: classes

• Reduction of a representation $\chi = \sum_{\alpha} c_{\alpha} \chi^{\alpha}$ using

$$c_{\alpha} = g^{-1} \sum_{G} \chi(G)^* \chi^{\alpha}(G),$$

or easier

$$c_{\alpha} = g^{-1} \sum_{K} N_{K} \chi(G_{K})^{*} \chi^{\alpha}(G_{K}),$$

where the sum is over *classes*, N_K number of elements in class K, and G_K is an operator from that class.

Group of order 6: classes

Given

$$c_{\alpha} = g^{-1} \sum_{K} N_{K} \chi(G_{K})^{*} \chi^{\alpha}(G_{K}),$$

easy to show $E \otimes E$ with $\chi = 4, 1, 0$ is $A_1 + A_2 + E$.

Projection operators

$$\mathscr{P}^{\alpha} = g^{-1} n_{\alpha} \sum_{G} \chi^{\alpha}(G)^* G$$

when symmetry-adapted functions are desired.

Group of order 6: projection

Given

$$\mathscr{P}^{\alpha} = g^{-1} n_{\alpha} \sum_{G} \chi^{\alpha}(G)^* G$$

we can e.g., obtain symmetry-adapted functions from s_1 , s_2 , s_3 on H's in NH₃.

ESQC19, Torre Normanna, September, 2019

Outline Group Theory Hamiltonian D_{2h} ; projection General case Spin, antisymmetry Literature

Group of order 6: projection

• We obtain

$$\mathcal{P}^{A_1} s_1 = \frac{1}{3} (s_1 + s_2 + s_3)$$

$$\mathcal{P}^{A_2} s_1 = 0$$

$$\mathcal{P}^E s_1 = \frac{1}{6} (2s_1 - s_2 - s_3)$$

$$\mathcal{P}^E s_2 = \frac{1}{6} (2s_2 - s_1 - s_3)$$

Group of order 6: projection

• We obtained

Symmetry

$$\mathcal{P}^{A_1} s_1 = \frac{1}{3} (s_1 + s_2 + s_3)$$

$$\mathcal{P}^{A_2} s_1 = 0$$

$$\mathcal{P}^E s_1 = \frac{1}{6} (2s_1 - s_2 - s_3)$$

$$\mathcal{P}^E s_2 = \frac{1}{6} (2s_2 - s_1 - s_3)$$

These two *E* basis functions are not orthogonal.
 Orthogonalization gives a function proportional to s₂ - s₃ for the "partner" function.

Group of order 6: projection

- Instead of character projectors we can construct projectors using full matrix irreducible representations.
- These immediately give partner functions without orthogonalization and have many other advantages.
- Downside: must have tables of full matrix representations. (See cited references at end).
- Beyond scope of today's lecture.

- Spin-independent Hamiltonian: spin is a good quantum number.
- *Spin-adapted* methods: construct spin eigenfunctions. (Let me count the ways...)
- Spin-projected Slater determinants, symmetric group methods, "unitary group" methods, bonded functions...
- For treatment of spin-dependent operators as perturbations, can work in a basis of spin eigenfunctions (e.g., singlet/triplet spin-orbit coupling).
- Full treatment with spin-dependent Hamiltonians: relativistic methods ("double groups", "ray representations").

- Set of $n \times n$ nonsingular matrices **A** with real entries. $|A| \neq 0$.
- Binary operation: matrix multiplication. This gives the general linear group $GL(n, \mathbb{R})$.
- Matrix multiplication is not commutative. Explore this with a set of basis matrices E^{pq} with the property

$$E_{ij}^{pq} = \delta_{pi}\delta_{qj},$$

and write **A** as

$$\mathbf{A} = \sum_{pq} A_{pq} \mathbf{E}^{pq}.$$

This is like expanding a function in some basis.
So what about matrix multiplication? Look at the basis matrices...

• Multiplication of basis matrices:

$$[\mathbf{E}^{pq}, \mathbf{E}^{rs}]_{ij} = \sum_{k} E^{pq}_{ik} E^{rs}_{kj} - \sum_{k} E^{rs}_{ik} E^{pq}_{kj}.$$

• This gives

$$\sum_{k} E_{ik}^{pq} E_{kj}^{rs} - \sum_{k} E_{ik}^{rs} E_{kj}^{pq} = \sum_{k} \delta_{pi} \delta_{qk} \delta_{rk} \delta_{sj} - \sum_{k} \delta_{ri} \delta_{sk} \delta_{pk} \delta_{qj}$$
$$= \delta_{qr} \delta_{pi} \delta_{sj} - \delta_{ps} \delta_{ri} \delta_{qj}$$
$$= \delta_{qr} E_{ij}^{ps} - \delta_{ps} E_{ij}^{rq},$$

General linear group

• In matrix form

$$[\mathbf{E}^{pq},\mathbf{E}^{rs}]=\delta_{qr}\mathbf{E}^{ps}-\delta_{ps}\mathbf{E}^{rq}.$$

or

$$\mathbf{E}^{pq}\mathbf{E}^{rs} - \delta_{qr}\mathbf{E}^{ps} = \mathbf{E}^{rs}\mathbf{E}^{pq} - \delta_{ps}\mathbf{E}^{rq}.$$

• Look familiar...?

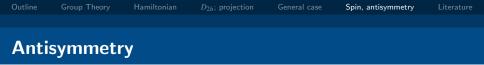
 $[E_{PQ}, E_{RS}] = \delta_{QR} E_{PS} - \delta_{PS} E_{RQ}.$

ESQC19, Torre Normanna, September, 2019

General linear group

- This relationship between second quantization and the general linear group is arguably the most fundamental one between group theory and quantum mechanics.
- Everything useful about these generators of $GL(n,\mathbb{R})$ can be taken over and exploited.
- Usually referred to as the *unitary group approach*, although strictly speaking the generators of the latter would be skew-symmetric combinations $E_{PO} - E_{OP}$.

- A configuration like 1e¹2e¹ in C_{3ν} gives rise to singlet and triplet states from coupling two spins, and E⊗E gives A₁+A₂+E from spatial symmetry, so we get ¹A₁, ¹A₂, ¹E, ³A₁, ³A₂, ³E.
- But for e^2 this is not consistent with antisymmetry of the wave function.
- Routinely teach this with p^2 and enumerate all the possible M_S and M_L combinations ("microstates") and after some guesswork we obtain ${}^{3}P, {}^{1}D, {}^{1}S$.
- How do we do this for e^2 in $C_{3\nu}$? Not using microstates!



• Antisymmetry results from using symmetric group projectors, specifically, apply a projector for the antisymmetric one-dimensional irreducible representation of the permutation group.

Do this once and for all. Get

$$\chi^{S=1;\alpha}(G) = \frac{1}{2} \left([\chi^{\alpha}(G)]^2 - \chi^{\alpha}(G^2) \right)$$
$$\chi^{S=0;\alpha}(G) = \frac{1}{2} \left([\chi^{\alpha}(G)]^2 + \chi^{\alpha}(G^2) \right)$$

for triplet and singlet respectively.

• E.g.,
$$e^2$$
 in $C_{3\nu}$ gives ${}^{3}A_2, {}^{1}A_1, {}^{1}E$

- Works for triply degenerate cases like t_2^2 (and for p^2 ...).
- Three electrons and triple-or-more degeneracy

$$\chi^{S=3/2;\alpha}(G) = \frac{1}{6} \left([\chi^{\alpha}(G)]^3 - 3\chi^{\alpha}(G^2)\chi^{\alpha}(G) + 2\chi^{\alpha}(G^3) \right)$$

$$\chi^{S=1/2;\alpha}(G) = \frac{1}{3} \left([\chi^{\alpha}(G)]^3 - \chi^{\alpha}(G^3) \right)$$

for quartet and doublet respectively. • E.g., t_{1u}^3 in O_h gives rise to ${}^4A_{1u}$, 2E_u , ${}^2T_{1u}$, and ${}^2T_{2u}$. • Don't guess! Recipe for disaster...

- S. L. Altmann and P. Herzig, Point-group Theory Tables, Oxford University Press, 1994. http://phaidra.univie.ac.at/o:104731
 - D. M. Bishop, M. Hamermesh (both Dover). P. W. Atkins and R. Friedman (molecular). J. J. Rotman, J. A. Green (both mathematics).
 - Wigner, Condon and Shortley, Zare (angular momentum).
 - (Modest cough)
 P. R. Taylor, "Molecular Symmetry and Computational Quantum Chemistry", Wiley (to be published).

