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Molecular properties

* Spectroscopy

4004 =" Coriani et al.

* NMR, EPR, IR, Raman, Rotational spectra, MCD, ...
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Types of (time-independent) molecular
properties

* State-specific properties
* Equilibrium structure
* Vibrational frequencies
* Dipole moment and polarizability
* NMR shielding
* Magnetizability

Focus of this lecture

* Transition properties
 Electronic excitation energies
* One- and two-photon transition strengths
* Radiative lifetimes
* lonization potentials and electron affinities

* Based on energy differences
* Reaction energies
e Stability of conformers/isomers
* Atomization energies
* Dissociation energies



Part 1
Derivative theory



Contents

*Properties as expectation values

*Properties as energy derivatives
* Numerical and analytical derivatives

*Hellman-Feynman theorem

*Derivative theory
e Variational and non-variational wave functions
 Lagrangian formalism
*(2n+1) and (2n+2) rules

* Examples for first- and second-order properties via
Lagrangian approach
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Calculation of molecular properties

Quantum mechanics suggest:
Calculate properties as

expectation value to a corresponding
Hermitian operator O!
W O|¥)
(v | U)
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Molecular properties as expectation value

* Example: dipole moment
* Calculation via expectation value of respective operator

p=> (—erq)+ Y ZaRa
o / A \

electronic part nuclear part

ﬁ' — ﬁ’el T ﬁ’nuc

* For quantum-chemical calculation: el. part relevant

<\Ij ‘ ﬁ’el ‘ \Ij> WF normalized

* Expectation value:
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Molecular properties as energy derivatives

Alternative view: Property as a response of a system to a
(small) perturbation

— to be calculated as energy derivative with respect
to a perturbation parameter to which to property is
associated

—> sufficiently weak perturbation: Taylor expansion
around x=0
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Molecule in electric field

* Response of the system to a perturbation

b > E(€)

>
electric field &

Energy of the molecule changes and is a function of the electric
field
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Example: Perturbation by electric field

* Expansion with respect to eIectrlc fleld as perturbation

lllllllllll

B(e) = Ble =0) - e B el .

field-free energy field — dependent terms
expansion coefficients characteristic of the molecule and its quantum
states =2 molecular properties.

* Taylor expansion around the field-free case

........ e N
dFE : 1 .(d2E
FEle)=FE(e=0)+4+:i— e+ -’ €.
- de ——o! 2 dede |_._,
T ¥ = N\ =0,
e COMPAarisoN:  .coccevvsmmrraeiieinnans, _
: dE .
= - — : dipole moment
: de e=0
__4F larizabilit
o = dede| _, polarizability
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Expectation value vs. derivative

* We have now seen two ways to calculate the dipole

moment:

expectation value

4 N
p= | a|w)
\_ Y,

VS.

energy derivative

e o N
Ll,:

d
_ = e=0
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Expectation value vs. derivative

* Equivalence? - Hellmann-Feynman theorem!

4 )
dr <\Ij ‘ dH ’ \I;> WF normalized:
dx (U o) =1
§ J
with I:] — [:_]O — [),g: such that
mo:j‘ifies Vie
(" )
dFE
(U | U =
— =V aly
\_ _J

— Dipole moment as energy derivative

- Equivalence to perturbation theory expression
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Proof of Hellmann-Feynman theorem for
exact wave function

only exact WF that solves
Schrédinger equation

* Derivative of energy-expectation value:

>
dE d dH dW
- d$<\I!|H|\IJ> <\IJ|—|\I/> <<dx‘H|\Ij>+CC)
E!‘I’>
\ J
1\
E ((d | \If> +cc>
\ Y J
d
B (W)
\ )
|
- — ~\ 0 WF normalized
dE dH
> [ B Uy
X 19
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Implications of Hellmann-Feynman theorem

* Only derivatives of Hamiltonian with respect to the
perturbation needed (integrals)

* No derivatives of wave function needed

Generally true?
What about approximate wave functions?
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Example: Hartree-Fock wave function

Infinitesimal perturbation

ow
Upyrp = Yyp + 0Vyr = Uyp + 8HF o
Q
HF variation:
FEur — Fur + 0Eurp Normalized WF

= Eur + (0Unp | H | Unp) + (Unp | H | 6Ugp)

OVyE | -~ o 1 OVHF
U H
(T3 1| o) + (e | ] 2575 ) 0

\ J
|

HF variational condition: -0
OEpr =0

No derivative contributions in HF wave function
- Hellman-Feynman theorem valid (in the basis-set limit)



Example: Hartree-Fock wave function

* Why Hellman-Feynman theorem not necessarily
outside the basis-set limit for HF wave function?

*Incomplete basis = variation is being performed within

a subspace

* Proof only valid if derivative and variation within the

Same Spdce

subspace of
variation

full space

/

OVyp
ox
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Example: Hartree-Fock wave function

* Hellmann-Feynman theorem valid for Hartree-Fock
wave function in the basis-set limit due to variational
nature of theory

* Qutside the basis-set limit: Does perturbation change

metric? 8, = (x |x,/>
— <¢p ‘ ¢q> — C,upCUqS,LW g M\

2 differentiate

(¢, Cuq) .
0= Z ( /g;: S/W + Cupc’/
nv

Hellmann-Feynman theorem valid i =0
=2 If basis functions do not depend on perturbation = no change of the
metric 2 Hellmann-Feynman theorem valid
electric field (for dipole moment)
X nuclear coordinates (for geometric perturbations) 23




Derivative theory

- Useful concept: we can calculate
properties as energy derivatives
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Examples of derivatives and their connection
to properties

Response to
 Geometrical perturbations
Forces and force constants
 External electric fields
Permanent and induced moments, vibrational intensities
* Nuclear quadrupole moments
Nuclear field gradients, quadrupole-coupling constants
* Magnetic fields
magnetizabilities
* Magnetic fields and nuclear magnetic moments
NMR and ESR parameters
* Magnetic and electric fields
Magnetic circular dichroism, optical rotation
* Molecular rotation
Spin-rotation constants and molecular g values
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Derivative Observable
% dipole moment; in a similar manner also multipole
K3
moments, electric field gradients, etc.
d’E S
deades polarizability
d*F -
Tudepdes (first) hyperpolarizability
ccilf forces on nuclei; stationary points on potential energy
3
surfaces, equilibrium and transition state structures
2
b harmonic force constants; harmonic vibrational frequencies
dmidxj
3
_d'E__ cubic force constants; vibrational corrections to distances
dz;dx;dy,
and rotational constants
d‘E . . .
dz;dv; dzpdz, quartic force constants; anharmonic corrections to
vibrational frequencies
2
_A°F dipole derivatives; infrared intensities within the harmonic
dl‘idé“a
approximation
d*F . . . .
dr:deadeg polarizability derivative; Raman intensities
d’E s
dB.dB; magnetazibility
d’E . o . .
dmc B, nuclear magnetic shielding tensor; relative NMR shifts
2
__d°E indirect spin-spin coupling constant
d*E . . . .
dBadJ; rotational g-tensor; rotational spectra in magnetic field
d’E . . . .
dlc,dB, nuclear spin-rotation tensor; fine structure in rotational
spectra
dE . . . .
dmi; spin density; hyperfine interaction constants
d’E .
dS,dB., electronic g-tensor

J. Gauss, Modern Methods and Algorithms in Quantum Chemistry, 3, 541, (2000)

and many more
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Potential-energy surfaces & geometrical
derivatives

* In Born-Oppenheimer approximation, the potential-energy
surface (PES) is a function of the molecular geometry

* Taylor expansion around a reference geometr
dE 1 d°F
E(z)=E —| (z-— S | (@—xo) .
(2) = E(2o) + — B (2 —20) +5 —— B (T —20)" + - o
molecular gradient molecular hessian
—> forces - vib. frequencies

 Needed to locate and characterize critical points
Minima = (meta-)stable geometries
Saddle points = transition states

* Relation to IR = vibrational frequencies, spectroscopic

constants, intensities

27
Fig: https://www.mathworks.com/help/matlab/ref/surfc.html



NMR parameters

Expansion of energy with respect to magnetic moments
m and magnetic field B

(due to interaction with vector potential, see also part 2
on magnetic properties)

dE dE 1 d’F 1 d°FE d’E
E(m,B) = FEq+ — — B+ - B? + = 2 Bm + ...
(m, B) = Eo+ gom+ g B+ 3 dlde T S dmam " T aBam- " T
related to related to NMR shielding
magnetizabilites (coupling between B and m)

v
related to spin-spin coupling

28



How to calculate the energy derivatives?

In principle two ways:
Numerical vs. analytical derivatives

29



Numerical differentiation

* Numerical differentiation (symmetric form)

dE|  E(rg+ Azx) — E(xo — Ax)

dz 2Ax

Io

looks rather simple..., “no” new code needed
Why bother doing anything but this?

Important questions:
 What does it cost?
e How accurate is it?

30



Cost of numerical differentiation: Gradient

dE'| E(xo+ Az) — E(zo — Ax)
dz |, N 2Ax

Gradient, geometry
/optimization
* Example: differentiation wrt nuclear coordinates
* Number of atoms N, "
3 per direction (x,y,z)
* 2 per derivative

6 X N_,n calculations
(more for better approximations)

- Scales with number of atoms
- Will become prohibitive for larger molecules

31



Cost of analytical differentiation: Gradient

* For Hartree Fock, most time-consuming step is
derivative of the two-electron integrals with respect to
nuclear coordinates (see also later)

* Number of integrals (o | vp) ~M* | ~3N,.. M4?

* Number nuclear coordinates ~ 3 N,y _

O{uo | vp) _ (o oL o | vp)+ (i do
@XA 8XA aXA

J
7é O Onlyif BF U centered @ A

* Number of derivative integrals is 4 BF (centered @A) x

3 coordinates x M*=12 M*
Important: HF analytic gradient does NOT scale with number of

32
atoms!

| vp) +




Cost comparison for HF gradient

Numerical differentiation Analytical differentiation

6 X N oy X M? 12 x M*(plus some extra)

* Scales with number of atoms Does not scale with number of
atoms

Possible to go to larger molecules when analytical derivatives
are available.

33



Accuracy of numerical differentiation

dE'| E(xo+ Azr) — E(zg — Ax)
dz |, N 2Ax

* Accuracy is dependent on step-size Ax
*n the limit of Ax — 0, we would get the exact results

* Hence one would in principle want to choose Ax as
small as possible

* However, this in practice not a good idea...

34



Accuracy of numerical differentiation

This is already
Example: Energy converged to 10710 E, < rather optimistic..

. . . —10 Anyways: machine
—> Error in gradient: 2-10 precision ~10°15
According to 2-point formula 2\
104 106
10 10
10'8 10-2

* Ax too small: Round-off errors!
* Even more problems with higher derivatives

35



Accuracy of numerical differentiation

* Ax too large: Contamination from higher derivatives!

dE 1 d°FE

1 2 ) ;
E(x) = E(xo) + T . ($—$0)+§ s . (z — o) +§ d73 . (€ —x0)” + ...
For x=x,+Ax Ax
dE 1 d°F 1 d°F
E(zo + Az) = E(zo) + —— . (Az) + 5 —— . (Az) 3 da? |, (Az)® +
For x=xy-Ax
dE 1 d°FE 1 d&°F
E(zg — Az) = E(xo) + I . (—Az) + > d2 . (—Az)® + 31 43 . (—Az)® +
E(xg+ Azx) — E(xg — Az) dE 1 d°FE Ax? 4
— T - 4 i c.
2Ax dz |, 6 dz? |,

— contamination,
grows with Ax
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Accuracy of numerical differentiation

dE N E(xo+ Azx) — E(zg — Ax) - O(A?)
dx 2Ax /

L0

_ small step size
roundlng errors, convergence, etc.0

oF tight convergence
error: O

ANG; larger step size

OF
numerical differentiation n times O
Axm

37



Accuracy of numerical differentiation

Possible to use higher-order polynomial for the to
approximate the derivative but then even more
calculations derivative needed:

(n points =2 (n-1)t order polynomial)

For example, rather than the 2-point formula
the 4, 6, etc... formula can be used:

2pt: b — f(x) _2xf(_37)
oSSl - f-20)

, 45 f(z) = f(=2)] =9/ (2z) — f(=22)] + [f(3z) — f(=32)]
bpt: b= 60z

38



Accuracy of numerical differentiation

* Or more generally:

f(k):i(\@jt (a"(;—gf))k:k (/-g—/-co)+1 (azf(k))k k (k—ko)*+...

a . _/ T o o/ $2

b

* Solve for coefficients PR

39



Accuracy of numerical differentiation

Remaining issues:

*More calculations needed for fits to higher-
order polynomials

*Still unclear what a good step size is. This
needs calibration (more calculations).

40



Analytical derivatives

*In principle exact

* Require explicit expressions and their implementation
(traditionally new implementation per new method
with some re-use)

e Often less computational cost (as compared to
numerical differentiation)

* Differences whether or not methods are variational
(constrained /unconstrained) or non-variational

41



Numerical vs analytical differentiation

numerical analytical
accuracy limited high
efficiency low high
freq. dependence no yes
imaginary pert. only with complex yes
wave function
implementation easy demanding

- Analytic differentiation preferred if available

42



In t

ne following we will deal with analytical derivatives
the ,tricks” to use in order to get the derivatives

ano
wit

n as low computational cost as possible
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Explicit and implicit dependence on
perturbation

* Energy expression, dependence on the perturbation
* Wave function parameters ¢ (MO coefficients, amplitudes)

E(x) = (¥(c(z)) | H l(ﬂf) | W(c()))

implicit dependence  explicit dependence implicit dependence

* In general case need to consider both implicit as well as explicit
dependence on perturbation when differentiating, i.e.

dE(x) OE  OFE dc |
— | Y€ Schange of WF wrt

|
dx ox dc Ox 9T pertubation x = wave
l - function response

explicit dependence implicit dependence

44



Variational wave function

* When WF is determined in unconstrained variation
then (as per definition!)

(8E!_

%_
.

* |t follows: dE(z) OF }9@ %
de  Ox L

=0
* This means the response of the wave-function

parameters % does not need to be calculated to obtain

the gradient

\

0

45



Examples for variational wave functions

* Hartree-Fock (HF) energy in an unconstrained
exponential parametrization

| ) = exp(—+k) | 0), &'=-r

* Full CI (FCI) wave function as an expectation value

UECN) = " er|®r)

I

EFCI _ <\IJFCI | H ’ \I,FCI> aEFCI
<\IJFCI’\I;FCI> 60

=0

46



Constrained variation and non-variational
wave functions

* If wave function is constructed via constrained variation
or in a non-variational manner, in principle response of
wave-function parameters needs to be calculated

dE(x) OF OF Oc

dx Or  Oc Ox
N @

doesn‘t vanish needs hence to be calculated!

* Possible...., will need a set of equations per
perturbation

47



Example: HF gradient

* HF energy
1 1
:ZDHVhNV+§ ZDMVDO'P (</’LO-|Vp>_§</’LO-’pV>>
pHv prop

iE(z) _OF , OE oc
der  Ox Oc Ox

(po [vp)  10(uo | pv)
u;p Do ( Ox 2 Oz

= {hw + Doy (00 v6) — 50 | pu>)}

op

e Differentiate

dEHF
de Z DW

U

* would need to solve for perturbed wave-function
parameters > coupled-perturbed HF (CPHF) equations



Perturbed MO parameters

* CPHF equations from differentiating Brillouin condition

if 0 or Roothaan-Hall equations
dﬂj ar

e Parametrization CPHF coefficients

c%w
Z CplU

*Linear equations for U,
r DT
Ui+ 3 Y ab | ) = (b i) | ) AU =D

_ _fcgzc) + ;8% + = ZZ am | ij) — (am | ji) — (aj | mi))anj

can be solved |terat|vely.
cost: N,y X MA5 (integral transformation) - expensive!ll 29



Perturbed MO parameters

*Do we actually need to calculate the
perturbed wave-function parameters?

*Solution: enforce stationarity of energy
expression with respect to perturbation-
dependent parameters ¢

- method of Lagrange multipliers!

50



Method of Lagrange multipliers

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, VOL. XXI, 939-940 (1982)

Simple Derivation of the Potential Energy Gradient for an Arbitrary
Electronic Wave Function

TRYGVE ULF HELGAKER
Department of Chemistry, University of Oslo, Blindern, Oslo 3, Norway

An analytical expression for the potential energy gradient was first given by BratoZ [1] in 1958 for the
closed-shell Hartree-Fock case. Over the last few years analytically calculated gradients [2-13] have been
extensively used for studying molecular potential energy surfaces, and much credit for this development
goes to Pulay [14,15]. The purpose of this letter is to present a very simple derivation of the expression for
the gradient for an arbitrary electronic wave function.

Consider an arbitrary wave function ¥(p;) which is uniquely determined by the » parameters {p;}. The
expectation value of the energy E has been minimized with respect to the first m parameters subject to
the constraints

Ci(pr.pa,- - . Pn) =0, )
ie.,
OF aC,
Y S k=0, i=12,....m, )
opi op;

where [, are Lagrangian multipliers. Examples of such constraints are the orthonormality of the molecular
orbitals for HF functions and the normalization of expansion coefficients for CI functions. We wish to derive
an expression for dE/dX, where X is a parameter determining the molecular electronic Hamiltonian H.
We note that, since dCy/dX = 0,

dE dE dc, d, OEB, oCy Op;

=4k "( rr = ”+z(kz——"—p)

dx dx T Cdx " \dx| S opox S op; oX,
d ack)apl
==+ T | =+ 3
(‘;} ,Z (ap, heapdox @

For each of the optimized parameters the contribution to the sum vanishes due to Eq. (2), whereas for each
constant parameter the contribution vanishes due to dp;/dX = 0. Thus Eq. (3) reduces to a summation
over parameters that are neither constant nor optimized. These parameters {u;} may conveniently be termed

unstabie:
dE _[d OF du; | ( 2Cy bu,)
i B ! 4
ax <dﬂ Tomox T T o ox “)

From this expression it is easily seen that all stable functions, in the terminology of Hall [16], obey the
Hellmann-Feynman theorem. Conversely, any unstable parameter may give rise to an additional wave
function force. Important examples of the latter are orbital coordinates fixed on the atomic nuclei and orbital
coefficients in a conventional C1 function.

< First paper on this (within quantum-
chemical context)

cited 12 times (according to google scholar)
Trygve’s first single-author paper (pre-PhD)

Better known:

A numerically stable procedure for calculating Mgller—
Plesset energy derivatives, derived using the theory of
Lagrangians, T. Helgaker, P. Jgrgensen, and N. C. Handy,
Theor. Chim. Acta 76, 227-245 (1989) 124 citations
Coupled cluster energy derivatives. Analytic Hessian for
the closed-shell coupled cluster singles and doubles
wave function: Theory and applications, H. Koch, H. J.
Aa. Jensen, P. Jgrgensen, T. Helgaker, G. E. Scuseria, and
H. F. Schaefer Ill, J. Chem. Phys. 92, 4924-4940 (1990)
281 citations
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Method of Lagrange multipliers

* Set up energy functional (Lagrangian L) with side condition f
* Side condition written such that
f@,e(@) =0

* If those side conditions are fulfilled, Lagrangian is equal to the
energy itself: L=FE

* Lagrangian: [L — FE 1+ )\f
| side condition

Lagrange multiplier

-Enforcestationaritya_L :!O and a_L :IO

P dc 0)\\

notice: L, not E! Gives back side condition f
52



Method of Lagrange multipliers

* Stationarity

oL _9E  Of _
k6’(1_80' Oc

0

\

J

L=E+Af)

< determines A

oc

Note: perturbation-independent (as compared to —

faL )
\8)\ J

Gives back side condition

* Note: derivativewrtc =2 A
derivative wrt A =2 ¢

ox

& determines ¢

53



Method of Lagrange multipliers

* Hence for the gradient:

dL(x) OL C
de  Ox E%??;?%i%é?Z;

- We managed to avoid having to solve for response of wave
function parameters to perturbation!

dL(z) 0L _OE
de  Ox Oz  Ox

\. J

In addition as compared
to expression for
variational methods.
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Method of Lagrange multipliers

* Constrained variation: side condition corresponds to
constraints that need to be fulfilled. Example:
orthogonality constraint of the orbitals for Hartree-
Fock™

* Non-variational wave functions: side condition
corresponds to the conditional equations that are
needed to get the wave function parameters (solved
anyways)

*note that HF can be formulated in unconstrained manner using orbital rotation

55



Lagrangian expressions: Hartree Fock

* Hartree-Fock Lagrangian:

LH¥ :[Z Dy + % Y DuuDoy ((W | vp) — %Wf | pV>> ]

prvo prop

> EHF
‘ [— QZGZ'J' (Z CZ@'S/LVCVJ' — 5@])J

DMV = 2ZCZiCVi L““/

— orthogonality constraint (¢ | ¢j> = 03
— Lagrange multipliers (one per constraint)

8LHF
oc

=0 - - Hartree-Fock equations

56



Hartree Fock gradient

* HF gradient:

dEHF  QLHF [~ Ohy, (o | vp)  10(uo | pv)
= :%;DW—M _ZD““D“P( or 2 Ox )

dx ozx > Uy op .

» Energy-weighted density matrix

W—QE c i€iCui

* Essentially only integral derivatives requwed!

* No derivatives of the density matrices

57



Reminder Coupled Cluster

CC wave function
T=T+To+ --+1y
Ty =) tala; Ty
CC equations
Amplitude equations

CC energy

ﬁ\PCC> _ e’f | \I/HF>}

- abat AT~ A .
= g tijalaba/jai amplitudes

abij

t

~ .
(U, | e T He! | T =0

<\IJHF ’ e—Tf{eT ‘ \IJHF> _ ECC

\_

\

J

58



Lagrangian expressions: Coupled Cluster

e Coupled-Cluster Lagrangian (non-variationall!)

L*C =| (WHF | exp (=T)H exp (T)) | OHF) [—~£<
>—<
+Z)\ U, | exp (=T)H exp (T) | THF)

S

> Amplitude equations (determine the CC amplitudes)

— Lagrange multipliers (one per constraint)

* Often written as
[ LYY =(U™ | (14 A)exp (—T)H exp (T) | @HF>]

with deexcitation operator (¥ | A = Z Ap (W,

59



Lagrangian expressions: Coupled Cluster

* Full CC Lagrangian and required side conditions (from t-
amplitudes and MO-coefficients = orbital relaxation)

LCC :<\IJHF | (1 4+ A) exp (—T)ﬁexp (T) | \IIHF> E + amplitude

equations

+ Z Zar,;fm' + Z Ipq(qu — 5pq) < orbital relaxation part
ai | rqg |

Brillouin condition orthogonality
(HF minimal condition) condition of MOs
wf parameters 1: CC amplitudes t, wf parameters 2: MO coefficients c

= Total of 3 types of Lagrange multipliers A, Z,;, I,,,

60



Lagrangian expressions: Coupled Cluster

or in terms of density matrices (general form)

Zququ + Z Lpgrs(pq || 7s) + leqqu

l pqrs

Generalized 1-el density matrix
(contains Z_; contribution)

density matrices (contain t, and 4, amplitudes)
Dy = (UM | (1+ A)e T {ala e’ | ©1F)
Cpgrs = (U | (14 A)e~T{alalaa, e | O1F)

61



Lagrangian expressions: Coupled Cluster

* Derivatives with respect to the wave-function parameters

@LCC
— () A equations (determine 4,
atp — Needed to set up (unrelaxed) CC density
aLCC
5 = ( Z-vector equations (determine Z;, I,,,)
C
- Perturbation-independent equations
OL“C
— () gives back CC equations

O\,

62



Lagrangian expressions: Coupled Cluster

Z ququ + Z Lpgrs(pq || 75) Z IpgSpq
pq

pqaqrs

* Gradient

dECC 8LCC
dl’ ZDPQ + Z qurs pq || TS ‘|‘ Zl qSZq

pgrs

Notation: only the integrals (but not MO coefficients are
differentiated!

- « ] Ohuy Ouo || vp
flgqu%{ ’ +ZDS@F (1 H >}

/w || vp)
pq || TS Z Cup Uq CurCps
pvop

. . 0S.
Spq ::jg:(j o Cug

KPP Ay
uv

For implementation expressed in AO basis
63



Flowchart CC gradients

Solve CC and A equations (~“N°, NS, ...)

L

Build CC density matrices (~N®, N3, ...)

L £

Transformation of densities to AO basis (~N>)

 §

r

Contract with integrals derivatives (N4, no storage)

\.

J

Computation independent of N

- for geometrical gradients: independent of number of atoms
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A note on orbital relaxation

 For the CC (or MP, Cl, ...) wave function:
[ U = U(c,t

MO coefficients amplitudes (or Cl coefficients, ...)

(= W(e(). t@)) o (¥ = w(c(0), o(x)]

MOs may react to the Perturbation only switched on for

perturbation correlation treatment
NO orbital relaxation

* Choice whether to include orbital relaxation, i.e., terms
that stem from the HF wave-function parameters
(Brillouin & orthogonality condition)

65



A note on orbital relaxation

* Relevance of inclusion depends on type of perturbation

: . dS,, : L
* Perturbation changes the metric =22 # 0 = inclusion important
X
* In particular for geometric perturbations a must (correct gradient)

* Perturbation does not change the metric = free choice
* Electric field

* For frequency-dependent perturbations, consideration of orbital
relaxation leads to additional unphysical poles (from HF) = not

recommended Doy
J Wpole = (E(".‘I‘(' — EU) /h

o(m)

wexc

®
Wol || Wol | W) |
C(w):ZK} PP, 5~ ol
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Take-home messages lecture 1
* Properties can be calculated as energy derivatives
* Analytic differentiation is preferred (accuracy + cost)

* Perturbations that change the metric can cause more
work (validity of Hellman-Feynman theorem)

* Method of Lagrange multipliers is useful to get
(efficient) expressions for the derivatives also for non-
variational methods

e Usefulness of inclusion of orbital relaxation depends
on property
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Reminder: method of Lagrange multipliers

* Set up energy functional (Lagrangian L) with side condition f
* Side condition written such that
f@,e(@) =0

* If those side conditions are fulfilled, Lagrangian is equal to the
energy itself: L=FE

* Lagrangian: [L — FE 1+ )\f
| side condition

Lagrange multiplier

-Enforcestationaritya_L :!O and a_L :IO

P dc 0)\\

notice: L, not E! Gives back side condition f
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Reminder: method of Lagrange multipliers

* Hence for the gradient:

dL(x) OL C
de  Ox E%??;?%i%é?Z;

- We managed to avoid having to solve for response of wave
function parameters to perturbation!

dL(z) 0L _OE
de  Ox Oz  Ox

\. J

In addition as compared
to expression for

Only contributions from explicit dependence variational methods.

(perturbed integrals) needed .



(2n+1) rule for wave-function parameters

* One can show that the n-th derivative of the wave-
function parameters is sufficient for the calculation up
to the (2n+1)-th derivative of the energy!

[ C(n) > E(2n+1) ] no response of the wave

function parameters
o / required
n=0 >  1Stderivative of energy

n=1 - 2" and 3™ derivative of the energy

n=2 > 4™ and 5% derivative of the energy

 Holds for variational wave functions

e Holds for constrained variation and non-variational methods
when Lagrangian is used
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(2n+2) rule for Lagrange multipliers

 Similarly, one can show that the n-th derivative of the
Lagrange multipliers is sufficient for the calculation up
to the (2n+2)-th derivative of the energy!

[ )\(n) = E(2n+2)]

n=0 -  1tand 2"d derivative of energy
n=1 -  3"and 4t derivative of the energy
n=2 > 5% and 6% derivative of the energy

First contribution appears for third derivative of the energy!
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Second derivatives

* For the second derivative, according to the (2n+1) and
(2n+2) rules, the first derivative of the wave-function
parameters c¥ is required, no derivatives with respect
to the Lagrange multipliers A9

(RE 9L 9L e 9L de 9L de de
dady - 9xdy  Oxdcdy  Oydcdx  Ic? Ox ﬁyJ

* Equations for the perturbed wave-function parameters
via differentiation of their conditional equations wrt to
the perturbation.
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Second derivatives

* Depending on the perturbation it can be advantageous
to differentiate the first derivative leading to the so-
called asymmetric expression

" d’E d 0L 9*L  0°L dc = O°L OA

kal:z:aly - dy Ox  Oxdy  Oxdcdy = Oxd\ Ay |

* No derivative of c wrt to perturbation x needed.
* Instead, derivative of A wrt to y needed.

* Order of differentiation: Example NMR shieldings:

* Perturbation 1: Nuclear magnetic moment, N_,,*3
components

* Perturbation 2: Magnetic field, 3 components, two sets .



Harmonic frequencies

* Typical example: harmonic vibrational frequencies

* Taylor expansion of the BO potential around
equilibrium geometry & cut after harmonic
approximation

e A I
€q 2 8X18X] cq 7 ) J J

ij
elements H;; of Hessian
1 3Natom

~ eq—|— Z H;;Az;Ax;
* |nsert into nuclear Hamiltonian Huyye = Tpue + |/ BO

3]Vau‘com

A 1
Hnuc — _5 Z

(

3Natom

couplings

1 02 1
Z-&’XZ




Harmonic frequencies

* Introduce mass-weighted coordinates z; = v M;Ax;

3Natorn 2 3Natorn .
ﬁnuc — _1 8~2 + 1 Z HZ] LT
2 Z, ox; 2 R /M; M,
Kij .
* Diagonalize K matrix to construct new coordinates

from the eigenvectors L KL = L)\

~ o~

* Build normal coordinates @, =" L;z;

J
3Natom 3Natom 3Natom

nuc— = Z 8@2 1 Z )\ZQzQ — Z HHO Separable

- - harmonic oscillator

no couplings
e vibrational frequencies wW; = A/ A;  normal-coordinate analysis
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Expression for HF second derivatives

2 7 HF HF 2p 2 1 62
E" d 0L ZDuua WJF%ZDWDM (3 (o |vp) 10 <u0|pV>)

dedy  dy Ox Ox0y o 0x0y 2  0x0y
08,
; Z Wi vy 0xOy
0D, 8hW (o \ vp) 10{uo | pv)
N
Z oW, 05,
oy Ox
: pv
with
oD v 60*2- " (9cm- v 86,/1' x Oe i
(‘9;; 2;{3—26’”—’_6#@' 83}} “ —QZ{ €sz‘|'C i€i x}—l—%:cm 8; Cyj-

(2n+1) = Derivative of MO coefficients needed - CPHF equations
Shown here: asymmetric expression
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Flowchart HF second derivatives

f

SCF calculation

~

a4 ! N
Transform integrals
J
¥ \
Solve CPHF equations, get [/
J
0 . 0
C D
Obtain E”  and e
Ox Ox
¥

— N\ N\ C X7

Calculate second-order property
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Expression for CC second derivatives

. t . ) d2E_82L+82L@+82L@+82_L%%
Symme rc expreSSIOn' dedy — O0x0y O0x0c@y OyOcdx  Oc? Ox Oy

00+ N (1) o exp(r))
HOI(1+ )lexp(~T) 5 exp(T), G20) +
+OI(1+ Dfexp(-T) 5 exp(T), G1110) +
+01(1+ 8)lexp(~T)H exp(T), Gl 2l0).

Skipping here the contributions from orbital relaxation
(2n+1) rule = first derivatives of t amplitudes
(2n+2) rule = no derivative of A amplitudes
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Expression for CC second derivatives

- . . dPPE _ doL &L 9Ifdc) LA
*asymmetric expression: o = o5 = a5, axaia—y I« e0xDy |

.
lllll

d’E 0°H
dody (O[(1 4+ A) exp(=T) 920 exp(7T)|0)
OH dTl’
HOIL + lexp(=T) 0 exp(D) T 1J0) +
AN OH
5 exp(=T) 5 exp (7)),

llllllll

Skipping here the contributions from orbital relaxation
full differentiation of the gradient expression :

- perturbed CC equations wrt x

- perturbed A equations wrt y

80



Harmonic constants w, of BH, CO, N,, HF, F,

incm?
CCSD(T) 42 CCSD(T) 14 CCSD(T) 9 CCSD(T) 10
cc-pCVDZ cc-pCVTZ cc-pCVQ7Z cc-pCV527Z
- -
-250 250 -250 250 -250 250 -250 250
CCSD CCSD CCSD CCSD
cc-pCVDZ 34 cc-pCVTZ 64 cc-pCVQ7Z 71 cc-pCV52 72
=250 250 =250 250 =250 250 =250 250
MP2 MP2 MP2 MP2
cc-pCVDZ 68 cc-pCVTZ 81 cc-pCVQZ 73 cc-pCV52 71
e e et I B e e —
-250 250 -250 250 -250 250 -250 250
SCF SCF SCF SCF
cc-pCVDZ 269 cc-pCVTZ 288 cc-pCVQZ 287 cc-pCV52 287
e e e e
-250 250 -250 250 -250 250 -250 250
81

from T. Helgaker lecture notes on derivatives



Summary

* Properties as derivatives
* Numerical vs. analytical derivatives

 Lagrangian techniques for constrained variation and
non-variational wave functions
* Avoid calculation of response of wave function parameters if
possible

* Expressions for gradients and second derivatives

83



Part 2
Magnetic properties
and molecules in magnetic fields



Contents

*Introduction into electromagnetic fields

*Derivation of Hamiltonian with electromagnetic
fields

*Magnetizabilities

*Gauge-origin dependence in quantum-chemical
calculations

*Further magnetic properties
*Strong magnetic fields
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Fields, Forces, and Potentials

* Particles can be charged
* Charged particles interact

Coulomb force
(Sl units)

charges z; and z,

<

-

FCoul _ 1 2142
\_ 47’(’60 rs _)

vacuum permittivity

* Charge generates electric field

* Second charge interacts with electric field (feels force in
the electric field generated by z,)

r

F

=== r
o 47'('8()7“3_)

<9

1 <1

~
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Nabla-operator (vector)

Qx
Gradient (on scalar) = vector Vf= &

Divergence (on vector) 2 scalar VA =

Curl V x A=

Curl of gradient

Divergence of curl

A quick reminder...

0
o
v= |2
o
0z of
0
o}
0z

9A,  0A,
0 0z
a/ﬂ _ 0A,
8%y . a%x
ox oy

V x Vf=

V- (VxA)=0
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Fields, Forces, and Potentials

 Coulomb force is conservative!

* Electrostatic potential generates the electric field
1 2129 1 21
F = E p—
- dmeg r3 L - 4meg ng
Coulomb force [ b= zg ] eleEctricf feld
F 2
[—vvﬂ T[—W) J
Coulomb potential Electrostatic potential
1 2129 For charge 1 2z
V= Ameg T distribution _p(7) ¢ =

|q>(r) L/dsr/ p(r’) } dmeg 7

 4meg | — 7]
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Fields, Forces, and Potentials

* Fields are associated with forces

* In quantum-mechanics we work with potentials rather
than forces (see Hamiltonian...)

* For conservative forces, the potential is related to the
force simplyvia [ — _\/V/

—> Easy to work with potentials
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Moving charges and magnetic fields

* A moving charge furthermore experiences a Lorentz-
force

[ ELorentz _ Z(Q > ﬁ)]

— T

deflection perpendicularto B magnetic field

* Additional non-conservative force!

force is dependent on velocity!

* Forces on matter through £ and B
— Coulomb- and Lorentz forces

often referred

[ Etot — Z(E+Q X E) ] to as Lorentz
/ N

force

7
electric part magnetic part

Straightforward to be used within Newton‘s formulation of classical mechanics! 90



Moving charges and magnetic fields

*In the case of a non-conservative force, the relationship
with the potential is not as simple...

F#-VV

* How can we then get access to the potentials?
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Maxwell Equations

 Maxwell equations provide basis for electrodynamics
connect E and B as well as charge density p and current j

1
| VE = —p VB =0
7 EN
N
/\charges create electric field no magnetic monopol
0B 1 OF
VXFE=—— VXB:—()' —
[ - ot T H 'l | 02 875
time-dependent magnetic field currents_, ggnerate
generates electric field magnetic field

Lorentz invariant
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Potentials of electromagnetic fields

* Lorentz force not conservative = cannot be traced back to a
simple scalar potential!
* Limiting cases:
*E20,B=0 £ =-Vo
*Bz0,E=0 B=Vx A (fulfills 2.MEQ: VB =0)

A is the so-called vector potential which is
associated with the magnetic field. We
define it such that it gives back B
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Potentials of electromagnetic fields

* Lorentz force not conservative = cannot be traced back to a
simple scalar potentiall
* Limiting cases:
*E20,B=0 E =-Vo
*Bz0,E=0 B=V x A (fulfills 2.MEQ: VB =0)
*E20, B£0 wusing 3. MEQ: V X E = —QB

9 ot—
VxE=——(VXxA
rearrange rhs ( e 8t£ 8 _)

VxE:Vx(—%)
ot

0A can be added since
E=——4+VFf VXxVf=0

hence no impact

on 3. MEQ
=xn
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Potentials of electromagnetic fields

observables

E. B

2 x 3 =6 components

unique!
E=-Vob— %—%
B=VxA NOT unique!

not observable

e, A

1+3 =4 components

This means: Many choices of vector and electrostatic
potential lead to same observable electric and magnetic

fields!
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Choice of gauge

* Different choices of A and ¢ can generate same E and B

* Case 1: E=-V®, B=0
can add a constant to ¢ (because gradient is taken)
* Case 2: E=0, B=VxA

can add gradient of a scalar functionto A
. : 0A
General case: E=-ve-2 B_vxA

ot’ = =
Allowed A'=A+Vf ,
trans- nochangeinB: B(A) = B(A")
, (I) P 0 but change in E, compensate by
formations B a choice of arbitrary scalar function
f =2 choice of gauge!
-
L E(®,A) = B, A')
B(A) = B(4')

electric and magnetic fields unchanged!
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Choice of gauge

unique!

0A
E=-Vd—- —
_ v ot
B=VxA

Gauge transformations:

Usually we requir

the vector

observables

E.B

not observable

e, A

O
¢ =P - —

ot
A =A+VYf

potential to obey:

VA=0

,Coulomb gauge”

NOT unique!

Using @‘ and A’ instead of &
and A will describe the same

fields E and B

V2f =0

implies also
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Choice of gauge-origin

* Example: Static homogenous magnetic field
(independent of time and position)

[ﬁzconst.] [EZVXA]
N L
a=lBxn
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Choice of gauge-origin

* Example: B in z-direction

0 [Azl(ﬁxz)] T
B=10 2 ' A=—-| B.x
B. 2\ 0

101



Choice of gauge-origin

* Example: Static homogenous magnetic field
(independent of time and position)

[ﬁzconst.] [EZVXA]
N L
a=lBxn

(B x (r—Rp))
"1
—§B><RO

\.

*Equivalent: A’ =

I’ANJI}—\

2 Tﬁm
éLé

A =

/

= —%(E X Ro)r

* Any choice of R, is valid as it yields the same magnetic_
field!
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Recipe to get the Hamiltonian for magnetic
Interactions

—_—

Newton formulation of classical mechanics
(with Lorentz force, non-conservative!)

!

Lagrange formulation of classical mechanics

!

Hamilton formulation of classical mechanics

equivalent
formulations!

S—

guantization

v
Hamiltonian with magnetic interactions
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Lagrangian mechanics

q(ty) generalized

coordinates q

alt,)

Q: Which path is taken for a particle

moving from g(t;) — q(t,)?

Hamilton principle: (least action) path minimizes

action integral t2
S— [ Lig.d.t)d
t

meaning S = 0 1 Lagrange function L

l variation

Euler-Lagrange equations
(Lagrange equations of motion)

d@L_@_L_O
dt \ 0q oq )

Note: Treat @ and q as independent variables.

Note: For conservative force: L(q,q,t) = T(q,q,t) — V(q)
(does not hold for Lorentz force!) 104




Hamilton mechanics

oL

Definition of conjugated canonical momentum p = 5
q

I

Hamilton function via Legendre transformation

basis for quantization

[

_oH __ oH
Q—apa p g

Hamilton eqgs. of motion
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Equivalence of the 3 formulations of classical
mechanics

Particle with coordinate x=q in 1-dim. potential V(x)

Newton
F=mx
ov.
_% —

ma

Lagrange
L=T-V
1
L = —ma?

277133
a

Hamilton
oL ,
= — = Mmx
p a4
H(q,p) =pq— L
.9
= ma? — % V(z)
2
_ b
= o + V(x)
__0H _ oV
p\ dq ox
mx
oV
0= —% — M
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Lagrangian in an electromagnetic field

Task: Set up Hamilton function! Needs Lagrange function L

- Not known for non-conservative force!

- But Newtonian egs. of motion known!

|

Setup L in terms of ® and A such that resulting Lagrange eqgs. of
motion are equivalent

Lorentz force Etot _ Z(E 4 v X E)
Newton’s equation with Lorentz force and potentials
. 0A
mr:z(—vq)—@—; +zv x (V x A))

Lagrange function that leads to Newton‘s equation

2
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Hamiltonian in an electromagnetic field

Define conj. canonical momentum: oL
L = % —z20+20- A 6q |
Legendre trafo to get Hamilton function noﬁongerjust my!

H(q,p,t) =pg— L

:mv—k/A)/ LS 2P — /1/

— No dependence on A

2
Express using canonical momentum
(p — zA)°

— — L 2@  Basis for quantization!
2m
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Hamiltonian in an electromagnetic field

e A 9 )
H = (p—z_) -z
\_ 2m )

For electrons: z=-e, in atomic units: z=-1, m=m_,=1. Quantize!

p=—iV

(/\
H =

(p+ A)?

Comment: no
guantization of fields
here

o

F=p+ A

kinetic momentum

_/

Non-relativistic Hamiltonian for electron in electromagnetic field!
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Spin contribution in electromagnetic field

* Schrodinger equation does not contain spin .
* Ad-hoc introduction of spin by Pauli (1927) [ﬁ — (Q;T) — Cb}

o o
vectgr of the Pauli spin T 0 1 0 L0
o

z

(o7)? = 7 +io (7 X ) Diracidentity

:ﬁ2-—zaM+M+pr+%
b Af = (5 x A)f —AXF]

=7’ +0(V x A4) -
— -
02‘2/53 B |:>[H:%—|—§§—(I)]
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Spin contribution in electromagnetic field

(0.7.‘.)2 g, — 23’@ 70

H=-— _9 - | H=—+4+Bs—®

e same result is obtained when taking non-relativistic limit (c— o)
of the (modified) Dirac equation

- arguments whether or not spin is a relativistic effect

—> see Trond’s lectures (we agree that spin-orbit coupling is a
relativistic effect ©)

* Note: magnetic field defines spin-quantization axis. Spin parallel
or antiparallel wrt field (a & B).
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Hamiltonian in electromagnetic field

( ]32\ r7/'\('2 ) (7/'1'2 )
> b [— - Bs—®
\ 2 ) - 2 , - 2 ,
field-free electromagn. field consideration of spin
p=-iV  wm=p+A

* Expanding 7%2
7= (p+ A)°

be aware that the momentum operator does in general not

commute with the vector potential!
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Hamiltonian in electromagnetic field

2 (& | [#° °
> = +Ls5-9@
field.free electromagn. field  consideration of spin

: ~ 2

* Expanding 7
it =(p+A)
2 o ) -~ AN A

=p '+ AT+ DA+ AP pAf = (AT + Apf

— ]52 + AQ 4+ QAZ/?\ Coulomb gauge! VA = (
4 )

~ 1 1
H = §ﬁ2+Aﬁ+§§+§A2—q>

\_ y 115




Hamiltonian

* Goal: Derive molecular Hamiltonian in electromagnetic field

* So far: Hamiltonian for 1 electron via use of the equivalence of
Newtonian and Lagrange eqgs. of motion:
* Find L such that Lagrange eqgs. of motion yield

F*' = 2(E +v x B)
. 0A
mfi“:z(—V(I)——) + zv x (V x A))

ot
e Determine p and set up Hamilton function H
. . N ~ A 2
Quantize - (P +2_) D

* Consideration of spin and using Coulomb gauge

117



Molecular Hamiltonian in electromagnetic

field

. 1

_ 2

|
H = —ﬁ2+Aﬁ+§§+§A2—

So far:
* 1 Electron in electromagnetic field

Now: Molecular Hamiltonian! (adding instantaneous
Coulomb interaction, summing over all electrons)

D> R
—I—ZAapa—l—ZB Sqo — ZCID
_ +§§O;A

~

/

Zeroth-order Hamiltonian
(non-relativistic)

First-order Hamiltonian

Second-order Hamiltonian
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Magnetic perturbations

[ﬁ=ﬁ0+2Aaﬁa+Z§a§a—Z%Jr%ZAi]

| | |
Orbital Zeeman Spin Zeeman diamagnetic

paramagnetic paramagnetic

* 1 atomic unit for B, By, corresponds to 235000 Tesla!

* 1 Byis very large in comparison to any field we would typically
apply

* due to the “smallness” of typical magnet fields on Earth,
perturbative treatment often sufficient
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Magnetic perturbations

* For quantum chemistry with magnetic fields, we are typically
interested in:

* Uniform external magnetic field, with vector potential

jor r-Rg - Ao

= Zeeman interactions

1
[Aext — §§ext X r

* Nuclear magnetic moments M, with vector potential

M. x7r ~ i
[Anuc _ }:AK _ Z a2 V1K : KJ a=1/137 fine structure constant
r
K K K

- Hyperfine interactions

e Combination: NMR
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Hamiltonian for static uniform magnetic field

Electronic Hamiltonian in static homogeneous magnetic field (in a.u.)

a )
A 1 1
H=-p"+Ap+Bs+-A°
2 2
\_ _J
[ﬁzconst ] [ B=VxA J
\ /
1
[Ao(f) — §(§ X ZQ)J d — 0
VAQ:O

Rewrite terms with vector potential A in terms of B
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Hamiltonian in uniform magnetic field

.1 1
[H§p2+4ﬁ+§§+§é2]

Linear term (orbital Zeeman)

N 1 N 1 A 1 O Angular momentum
Aop=5(Bx10) p =3B (Lo xP) = 5B reraior, dependent

on gauge origin

Quadratic term (diamagnetic)

1 1
54 = g(B X 10) = {(B x ro)(B x ro) = £ [B* 1% — (Bro)(Bro)l

1
= gET ro -1 —rord)B

It follows for the Hamiltonian

-1 1 1
[ H=-p>+ =BI° + Bs = éBT[ﬁo 11— fofg]B]
122
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Hamiltonian in uniform magnetic field

[ H—% + Ap+ Bs + A2]
. 1. 1 1
[ = 5P 24 2BlOJrBs—I—SBT[rO 1—rOrO]B]

Molecular Hamiltonian I

[H H0+Z BZO+ZBSQ+ ZBTTO 17“0(04)7%(04)]3]

] )
|

|
A 7@

Linearin B Quadraticin B
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Paramagnetism

Consider linear terms in the electronic Hamiltonian for molecule in
a homogeneous magnetic field in z-direction (in a.u.)

N
NS v ]

Angular momenta L, and s, set up a magnetic moment

1
z:__Lz_ z
m 9 S

Magnetic moment interacts with magnetic field (dipolar
interaction)

1
—Bm, = §BLZ + Bs.,
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Paramagnetism

Consequences:

Reduction of symmetry and splitting of energy levels

Pt
/ P ‘ + m.="7 : a-spin
0 ‘ %%<
P+1 Po P-l \ + m.= - Y . B-spin
— P
1 . 1 )
P11 = _E(pm +ipy), p-1= ﬁ(pa: — ipy)
Orbital Zeeman Spin Zeeman

Energy can be raised or lowered depending on the orientation
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Paramagnetism

Note:

Orbital Zeeman:

e Trivial (WF is eigenfunction) for atoms and linear molecules
when field is parallel

* Non-trivial, i.e., needs quantum-chemical calculation for

general molecules %<‘I’ | j;z | U)B

Spin Zeeman: )
« Always trivial, WF is eigenfunction to 5,
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Perturbation theory

* Consider here closed-shell cases (no spin-Zeeman
contribution)

e First-order perturbation theory: (¥ | F1) | §©)) = p()
from general <\Ij(0) | 1 lA | \Ij(o)>B — M
2 — T

Hamiltonian
Q J

|

vector which defines the negative ,permanent (1)
magnetic moment” m of molecule due to —mB=F
angular momentum

e :
m=—(UO ] = 1, | 00) = (L)

*m is zero for most molecules eyromagnetic ratio = —27‘; - —‘%B

e atoms: this interaction is responsible for the normal
Zeeman effect e




Perturbation theory

* Most molecules can be described by a real wave
function A A
S (@O 10| w0y = (w® | O | Oy

for Hermitian operator O

. But: q,<o>|_z )y

Imaginary! l —i(ia X Vq)
S5 <\I;(0) | Zza | \p(0)> —@ \p(O) | Zza | q;(O)>*

(87
Contradiction, except if =0

- No permanent magnetic moment due to Orbital-Zeeman
(But due to spin for open-shell cases)

- No contribution from perturbation theory in first order
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Take-Home messages from lecture 2

* For non-conservative forces, we cannot get the
potential simply from F = VYV

* Hamiltonian that involves electromagnetic-field

interactions from Lorentz force > Newtonian
mechanics =2 Lagrange > Hamilton = quantize

* Ad-hoc: spin = leads to spin-Zeeman contribution

* Observable: fields (E & B), not observable (A & ®),
gauge transformations allowed

* Static magnetic field: Free choice of gauge origin
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Perturbation theory

*Second-order PT
exc. states <\IJ(O) | I"{(l) | \Il(l)><\11(1) | f{(l) | \II(O)>

@ — (g | @ | g©
E® = (w© | g®@ | 9Oy 4 Z SONE=0
\ l \'L#O 0 1

Y Y
diamagnetic contribution paramagnetic contribution

E(2) > Magnetizability, nonzero for all molecules!

Via derivative theory: expansion in B, compare to Taylor
(see lecture 1)

E(B) = BE(B =0)+ 2L
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Quantum-chemical calculation of
magnetizabilities

* Component in the magnetizability tensor

¢ 0°F
ij =
0B;0B; | g
OH i i Llin oh 1
e Needed: h—=h+SlBit+... S |
OB, 2 gp, ~ ghi= ik x V)i

. 1.
* Matrix elements: A, + (xu | 51,@ | x)Bi + ...
\ J

comvplex
* Numerical differentiation for magnetic properties requires
determination of complex wave function parameters 2
non-standard in most g.c. codes
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Quantum-chemical calculation of
magnetizabilities

42 EHF 0%h, % 92 o Lo pV))

Vo — _ O hyw L
“ = B.dB, %;D " OBOB; 2

pvaop
62

(1%
0D,,,, 8hﬂy T | pv)
pv 0B; ( Z o 2

W, 05
;V P

Do the basis functions depend on the magnetic field?

No... 0°h ,Lu/ aD,LLl/ ah,uz/
Cij = Z g 0B,0B; ~ <= 0B; 0B,
1 / ] .

(| 2055 —rr; | ) (el 5 )

Derivatives of density wrt B via CPHF
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Quantum-chemical calculation of
magnetizabilities

* CPHF equations for B (again, no 2el terms):

Uy (ea =€) + ) Up*({aj | bi) — {ab | ji)) = hgye
bj

* Overall, easy enough, no??
Did we miss something??
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Quantum-chemical calculation of
magnetizabilities

* Magnetizabilities of Argon, HF, aug-pVDZ

RO C Cdia Cpa,ra
0.0 -4,353 -4,353 0
1.0 -6,020 -7.353 1,333
5.0 -46,039 -79,353 33,314
10.0 -171,100 -304,353 -133,253

* Changes in gauge origin = very large changes in
magnetizability values

* Quantum-chemical calculations of magnetizabilities in
finite basis are not gauge-origin independent!

* Gauge origin can be chosen randomly!
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Quantum-chemical calculation of
magnetizabilities

* Magnetizabilities of CO, HF, basis-set convergence,
gauge origin in center of mass

basis C Cdia Cpara
cc-pVDZ 4,224 -10,173 5,949
cc-pVTZ -3,354 -10,157 6,804
cc-pvVQZ 2,882 -10,153 7,271

fast convergence slow convergence

not particularly impressive...
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Quantum-chemical calculation of
magnetizabilities
* Reason for the bad convergence of the paramagnetic
term? (see also exercise)
* Consider H atom with magnetic field along z

*Chose R, =0:
e diamagnetic contribution <¢18 | o | ¢18>
Ls | L ‘ ¢a>

e paramagnetic contrib. <qb [
=0 (for whatever is in the ket)

*Chose R, #0:
e diamagnetic contribution <¢1s ‘ ‘ ¢1s>
. paramAagnetic contrib. O = [(r — Ro) x pl.
<¢ls‘lg‘¢a> (r — Ro) xp=1—(Ro x )

= (D15 | 1= | da) = (D15 | (Bo X D)= | a)
=0 #0
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Quantum-chemical calculation of
magnetizabilities

Problem: momentum operator
0 2 2

ar ar

) = —e — xre
pgbls ax .

p'funct'ion
Higher angular momentum functions
—> problem for incomplete basis
- “bad” results for paramagnetic contribution

Our example:
<§b1s L. ’ qba> described without error

<€b1s ZS \ ¢a> of worse quality, not exactly described

In the calculation, it matters where we put the gauge origin (unphysicall)
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Quantum-chemical calculation of
magnetizabilities

Conclusions:

Atoms: natural gauge origin in the center
Molecules: no natural gauge origin
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Gauge transformation of the wave function

* Allowed gauge trafos (lead to same fields E, B)| ¢’ = & — gf
t

* A general gauge trafo given by a unitary trafo | ./ _ 4 v

0 : 0
(Htrans - z&> = exp (—if) <H°“g — za) exp (7.f)

* For the Schrodinger equation to still be satisfied, i.e.,

A 0 Ao 9, :
Htrans R \Ijtrans E— orig Y orig
( ( 875) (H ( 375) v

the wave function compensates by phase oscillation

[\Ijtrans — exp (—if)\Ilorig]
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Gauge transformation of the wave function

such that observables do not change

[<\Ijtrans | OAtrans | \Ijtrans> _ <\Ijorig | Oorig ‘ \Ijorig>J

* Example: electron density
ptrans — (\IjtraHS)*\I}trans _ [eXp (—if)qforig]* [exp (—if)qforig]
— exp (O)(\Iforlg)*\lforlg N porig

e Same properties for any choice of gauge related by allowed
gauge trafos = gauge invariance
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Gauge-origin transformation

* For static uniform magnetic field (using Coulomb gauge)

| B = const.| | B=VxA4

N\
A 1 B contains arbitrary
Ao = 5(Bx(r=fo)) gauge-origin R,

* Already discussed: any choice of Ry valid.

* Change of gauge-origin from the original one to the transformed
one is related by gauge transformation

A ans(r) = A A . (R

£2trans L=orig (z) - £2orig (—trans)
= Aorig (Z) -+ Vf with f(f) — _Aorig(ﬂtrans) T

see exercise

Hence indeed A' = A+ Vf
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Gauge-origin transformation

For a change from Ro=R,, to R;;,ns the exact wave function
transforms as
\Ijexact — exp [—if(ﬁ)]\PexaCt

trans orig

— eXp [iéorig(RtI’aDS) ) f] \IjexaCt

orig

[ \ijra?r(;: = €Xp <§§ X (Etrans R —orig) ' f) \Ijgri;t J

inducing phase oscillations and ensuring that observables do not
change

— ensures gauge-origin independence

—>Not necessarily true for approximate wave functions!
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Gauge-origin transformation

FCl Wave function of H, on z axis in a magnetic field of B=0.2 B,
perpendicular to the bond

05( Rorig=(0,0,0)

0.4
0.3
=
0.2 g‘ 7t
5 L+ V)
S
= 0.1 =
< e
[} ©
5 =
s 0° 3
2 S
(] =
= _0.1 é
©
[=2]
-0.2 =]
(O]
—0.3 Re(y)
mey) Re(y)
2
-04r == hpl Im(y’)
----- lyp'I?
_0.5 1 1 1 1 1 J _0.5 1 1 1 1 1 J
-1.5 -1 -0.5 0 0.5 1 1.5 -1.5 -1 -0.5 0 0.5 1 1.5
Space coordinate, x (along the bond) Space coordinate, x (along the bond)

Observable quantity |W|?same in both cases!

T. Helgaker lecture notes 148



Distinctions

*Gauge invariance | o _ 4 _ %f
General
A'=A+Vf

* Gauge-origin independence
within the specific case of static uniform field

* To be distinguished
gauge-origin {ndependence > Fixed gauge-
= gaUge-origin Invariance origin does not fix
# gauge invariance! gauge completely
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Gauge-origin dependence

* Hamiltonian depends on gauge origin

* Physical properties should not depend on choice of
gauge origin

— ensured by according trafo of wave function

* Problem: approximate wave function does not
reproduce phase oscillation seen before

[ Virans = EXPp <%§ X (Etrans o Eorlg) —) \Ijorig ]
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Gauge-Including Atomic Orbitals

. i
eHow to solve this problem? Wtrans = €XP (52 X (Birans = Borig) I) Yorig
e build transformation behavior into the basis functions!

gauge-including atomic orbitals
(GIAOs, also known as London orbitals)

{xu@, B) = exp(~ 5B x (R, — Ro) - 1)xu(r) ]

(London, 1937)

e equivalent to local gauge-origins Eu for AOs

e unique results (but still no gauge invariance)

e fast basis-set convergence

nowadays standard for magnetic properties 151



GIAO naming conventions

Gauge-including atomic orbitals
ok

London orbitals
ok

Gauge-invariant atomic orbitals

not ideal as AOs are explicitly dependent on gauge origin

Gauge-independent atomic orbitals

not ideal as AOs are explicitly dependent on gauge origin
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Elimination of gauge origin

(xy(r, B)|7%|x (1, B)) independent of gauge origin R,

/dﬁ exp(%ﬁ x (R, = Ro) - 1)xu (1)7° exp(—%ﬁ X (B, —Ro) - r)xu(r)

= /dt eXp(%E X (R, — R,) - r)xu(r)(—iV? + %E X (r—R,))*xu(r)

— results of quantum-chemical calculations independent of R,
(see also exercise session)
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Consequences of use of GIAOs for
magnetizabilities?

1

[XM(Z, B) = exp(—§§ X ((Eu — Ro) 'K)Xu(ﬁ)]

 From before

* The basis functions depend on the magnetic field

_ d*EHF 0?h 0% (o | vp—+0* o | pv)
2G5 = dB;dB, _%;D‘“’(?BaB T3 ;;,D Lo 0B;0B; —=2 OB, )
1% ¢ |
8D, ( Ohy
~—~ 0B; \ 0B,

W, 38
; P
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Consequences of use of GIAOs for
magnetizabilities?

1

[XM(Z, B) = exp(—§§ X ((Eu — Ro) 'K)Xu(ﬁ)]

 From before

* The basis functions depend on the magnetic field

d? EHY 0%h 1 0% (uo | vp) 10%(uo | pv)
20 = ——  — i T _Z
Gig dB;dB; ZD " OB;0B; i g;p DiswDep ( OB;0B, 2 0B;0B; )
82
- W v /J/V
Z " OB;0B;

D, 0hW Ho ‘ VP> O{uo | pv)
OB ( ZP“’) ( 2 0B;

OW 1, BS,u,
_Z dB; OB,
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Consequences of use of GIAOs for
magnetizabilities?

* Additional integrals
&SM,,_ Xy Xy
B, < aBa|X”> - <X“| &Ba>’
&S, P IX a1 OX IX ) WX FX
P (P ) (Bl (Sl ()P )

a’Dg a’Pp a B B a a’PpB

oh ax 1 ax
Ky _ M - _R.) X v
0.,Ba <O"Ba|h|XV> + 2<X,u|((r 0) p)a|XV> + <X,u|h|aBa>,

Ph, Py It X X | WX Fxo \ 1/ oxu
.08, \asam, ) *\op "og [+ \ om am, )+ \ XM op g ) 5\ g J(F - Ro) X Phelxs
a?Pp a9D o a B B a a’Pp B

1 J 1/ 1 P
" 5<X“|((r ~Ro) X p)aﬁ;}) + 5<£i|((r -Rp) X p),BXv> + 5<X,L((r ~Ry) X p)4 &;:>

1
" Z<X,u‘ 501,3(1‘ - RO)Z —(r- RO)ﬂ(r - Ro)a|X”>’

Kpolvp) _{ Xu | + %| + |% + | Xp
B, é’BaXU XvXp X,LLO,,Ba XvXp XuXo (9BaXp XuXo XV&Ba )
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Consequences of use of GIAOs for
magnetizabilities?

e Additional integrals (cont’)

Huolvp) [ Px X, IX,, IX
= - 4 AnZAo
9B,oBy  \ B aBBX"|X”X” Xeop aBﬁ|X”X” X“X"| 9B aB *\ o AT aBB|X”XP
Xy Xo 8)(,, ax &XV N
<aB 7B, ”XP> < L > <_B/i X“|X”&B 9B X"|X”aB
g 5 g g
Y IXo ﬁXV Y IXo &XV Y |X N 0XU|X Yoy |8XV IXp
*oB,, aBB * 0B g B, “aB ”aBﬁ #oBg " d #7 0B 3B

N IXp
+\ Xuko 9B 3B,

* These have to be implemented (all methods)
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Derivatives of the basis functions

1
Xulr, B) = exp(5 B x ((Bo — £,) - 1)Xu(r)
* Derivative wrt to one component B,

3Xu(£,§) - 0 L(BX(Rp—R,)T)
aBa _X,U(Z)ﬁBae

1 i "R V)
B 5{(EO - Eu) X I'}a ez Bx(Bo~R,) _)Xu(f)

_ %{(Eo —R,) X 1r}a Xu(r, B)

*In the limit B=0 (magnetic properties), the dependence on
B is removed (e®=1) and the corresponding integrals

become purely imaginary

— can deal with in real analyticcode (bookkeeping of /)
- not true in finite field 158



Quantum-chemical calculation of
magnetizabilities

* Was it worth it (to introduce the GIAOs)?
* Magnetizabilities of CO, HF, basis-set convergence

basis Cwithout GIAOs CWith GIAOs
cc-pVvVDZ 4,224 22,642
cc-pVTZ -3,354 -2,612
cc-pvVQZ -2,882 -2,607
\ ]

fast conve rgence

much improved basis-set convergence when GIAOs are used!
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Terminology para- and diamagnetic

*Reminder: do not confuse:

*paramagnetic/diamagnetic as linear/quadratic
in B contributions to the energy

*paramagnetic/diamagnetic as overall
magnetizability response, i.e., molecule is
attracted/repelled by magnetic field

—>closed-shell molecules typically diamagnetic
E(=0, contributions only from E{2)
- open-shell molecules typically paramagnetic
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Magnetizabilities for paramagnetic
molecules

Paramagnetic molecules: 107>°)7~2
BH XX=yy  418.7
zz —196.0
total 213.8
CH* XX=Yy 5467
zZ —113.6
total 326.6
AlH XX=yy 2398
zz —358.9
total 40.2
SiH XX=YY 2479
Zz —247.3
total 820
BeH™ XX=YY 2468
z —588.4
total 316

Reimann et al., Mol. Phys., , 97,

Calculated using CCSD(T),
aug-cc-pCV5Z, using GIAOs

Unquenching of angular
momentum due to Tt orbitals
(from atomic p) and
corresponding low-lying II states

Field-free ground state: 1%
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Magnetizabilities for paramagnetic
molecules

* Similar results for ScH and YH CCSD(T), cc-pVQyz,
ScH 18.7958 using GIAOs, in a.u.
YH 6.4492

Similar effects also for t and & orbitals (from atomic d)

Grazioli et al., J. Comp. Phys., 45, 1215, 2024 162



Energy of closed-shell paramagnetic molecules

Development of the energy as a function of a magnetic field

PARALLEL

BH at 0°

-25.00

-25.05 |
-25.10

-25.15

Etot/Eh

-25.20

-25.25

-25.30 |

diamagnetic

125,35 L

0.0 0.1

1B,=235000T

0.2
B/ B,

0.3

0.4

Etot/Eh

PERPENDICULAR

0.5

BH at 90°
-25.00 —————————————7 71—
-25.05 -
-25.10 | _
-25.15 | . . .
i diamagnetic |
95920 I paramagnetic \ .
95.25 / A
-25.30 -
i —
2535 e e
0.0 0.1 0.2 0.3 0.4
B/ By
Paramagnetic response to external
perpendicular magnetic field

(up to ~0.2 B,~50000T)

163



Paramagnetism in closed-shell molecules can also be
understood as a result from Zeeman coupling between
electronic states in the magnetic field
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Nuclear Magnetic Resonance (NMR)

experime Nt
*Setup
Static sample
homogenous J P
magnetic field L characterize
(defines z-axis) < | les]
/> °
<\> Mmolecules
|
P
<>>
TN
Magnet

Radio frequency coil

* Nuclear spin = nuclear magnetic moment =2 interacts with

external magnetic field 2 Magnetic field splits energy levels of
nuclear spins (Zeeman)

e Larmor-frequency: Transitions between energy levels of the
nuclear spins.
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Nuclear Magnetic Resonance (NMR)
experiment

* Important: Shielding through electrons! Movement of electrons
induces magnetic field = nuclei experience different strengths of

magnetic fields
Blocal _ Bext 4+ Bind

shielding tensor: different for different molecules
and nuclei, hyperfine-interaction between
electrons and nuclear spins

* Interaction energy

[ Einteraction _ _MTﬁlocal _ _MT (l3 o Q)EeXt J
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Zeeman and hyperfine interactions

T12

SS, SO, 00

FC+SD hyperfine FC+SD

2 A
RKL

Fig. from ESQC books, chapter by T. Helgaker
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Calculation of nuclear shielding constants

* Taylor expansion of the energy as function of magnetic moments
My and external magnetic field B (closed-shell = no first-order
terms)

E(M,B) = EOEL S MEEY; O)MLJE S MBS 1>BI+ B'E©2B 1 ]
KL

> NMR spin-spin couplings > NMR shieldings = magnetizability
* Perturbation theory adequate since
* weak magnetic induction (~ 104 B,, 1 B;~ 235 000 Tesla )
* magnetic moments couple weakly as well

« B}V :interaction of magnetic field and nuclear moment
T
* without electrons: coupling= -l HGH ==Y MyB

K
* in molecule: coupling is modified by nuclear shielding tensor

E(1 D _ = —1, eIectronlc

contribution!
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Calculation of nuclear shielding constants

Perturbations [ A\ = ZM% [)\2 _ ZBext]
K K

Perturbed Hamiltonian more complicated:

[ H=094 )75 4,700 4 270 4 \2g02) 4\ A, gD ]

Expansion of energy and wave function:

. )
E(Mi,\) = Eg + A2E@9 1 X2E02 4\ \EGD

E(M,B)=Ey+Y MpEZY M, + Z M;;lE“ 1}3 +BTEOYp .
\_ KL )

Insert into Schrodinger-eq, collect terms of order A;\,, project onto W,©:

0 R 0 0 ~ 1’0 0 i 0,1
[E(l’l) _ (\I!g) | 1) | \I’é )> 4 <\If(()) |H(O,1) | \P(() )> 4 <\Ijé) | F7(1,0) | \I/é )>]

\I!,S,LO) I:I(O,l) ’ \IJ%O)>
[ \P(()O’l)> _ Z < ’ | \IJ%O)>

= ay
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Calculation of nuclear shielding constants

* From second-order perturbation theory:
(
A~ 1’0 (0,1
H | W) (0, | HY | W)
ESI. o E'?%l.
. y

* Identify the operators! ﬁ“"” > Apbi \
1K

since
FI(O,l) . Zégxt Ai

\

) o
EGD — (w | ALY | W) +2Z Wo |

[ﬁ[ = Hy + ZA(%‘)I% + % ZA(W)Q}

N 1
A0 2 ZA%{M
and "

R 1 2
(02 L3 goa?,
[ AtOt _ Aext 4 ZAK ] 2 ;
K

R 1
(1’1) - ext
H — 5 g QAKZ'Ai

%




Calculation of nuclear shielding constants

*Term 1, diamagnetic (comes from A?)

s .

% TiK

D ZZAGi (r;) Ak, (r;) = 5 Z (B x riG)(;v{K X TiK)

A

2 T T
K 2 ’
K 7

-~

~

J

\_ Ml
* Term 2, paramagnetic (comes from A)
. 1
/ 7O Ag,(r;)p; = 2 ZB X Iq - Pi
1
— 5 ZB X Z’LG
1
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Calculation of nuclear shielding constants

e Term 2 continued:

. M )P
[ HO Z Ak, (r;)pi = o Z (Mg j?;K) P \
K 1K ?

lix

= ; MK Oé2 ; ’I“?K
N s y

* Collect:

é )

. | U, | HZ™L | @, (U, | HP® | ¥
B = (g | H | o) 2y Rl G S 120
§ " y
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Calculation of nuclear shielding constants

E(M,B)=Ey+Y MiEZ M, + Z M} EVYB4+BTEOAB 4
KL

Connect to Taylor expansion
ELD) _ ( O*FE ) Calculation in quantum
: OMgKOB /. . g_o | chemistry via derivative theory!

- Beginning lecture 1: order of differentiation?
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Calculation of nuclear shielding constants

E(M,B)=Ey+Y MiEZ M, + Z M} EVYB4+BTEOAB 4
KL

Connect to Taylor expansion

pan _ (_O°F
K OMkOB ), 5,

For any quantum-chemical method, the energy can be written as
b= ZDuth + Z Fuvap<MU | vp)

Calculation in quantum
chemistry via derivative theory!

Differentiate wrt. M
and B

vV Kn,o,V,p
4 )
(1 l)el. ah,uy aD/ﬂ/ hul/
Z Dy +>
0BOM 0B oM
a4 K/ Mk,B=0 B=0 K /) Mg=0
\ Hxo p

~

82Eel' )

1 1,1)el. 1
) (E( ’ ) )
3 \"K 3 (aMKaB

~\
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Basis-set convergence

o('H)

60

55 |
50 -
45

o
*J

40

35 -
30

&
&

25

dz+d tz+d qz+2d pz3d2f 15sllp 15sllp
+4d3f +4d3f
+diffuse spd

'H shielding of hydrogen fluoride

Very poor convergence wrt to basis-set limit...

J. Gauss, ,,Molecular properties”, published in ,,Modern MethodsEland Algorithms of Quantum Chemistry”, 2000.



Gauge-origin dependence

gauge-origin

basis set center of mass fluorine hydrogen
dz+d 29.3 27.6 60.1
tz+d 28.4 27.2 50.8
qz+2d 27.7 27.0 40.4

HF-SCF calculations for the proton shielding of HF

results are not unique and depend on arbitrary
choice of gauge-origin!
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Basis-set convergence

o('H)
60 common gauge-origin: O

55 GIAQ: o

T

50
45

40 -
35

30 [ ] [

o
O

25 -

dz+d tz+d qz+2d pz3d2f 15s11lp 15sllp
+4d3f +4d3f
+diffuse spd

'H shielding of hydrogen fluoride

J. Gauss, ,Molecular properties”, published in ,,Modern Methodsland Algorithms of

191
Quantum Chemistry”, 2000.



NMR shieldings for various methods

* Mean absolute errors relative to experimental (blue)
and empirical (red) equilibrium values

MAE / ppm

* DFT results uneven quality
* Errors increase when vibrational corrections included

193
Figure from T. Helgaker. See also Teale et al. JCP 138, 024111 (2013)



13C NMR chemical shieldings

accuracy of MP2

i 0

m HF-SCF

o MP2

20

10

of.':'

10
-20
30

[wdd]
((L)ASDD)o— (poyrow)o

-40

£9)
‘HOD*HD
‘HOD'HD
NDHD
NDH
*HDOD'*HD
OHD*HD
‘0D

0D
*HOOD*HD
OHD'HD
ND*HD
‘HN*HD
HO*HD
A*HD
‘HD

"HD

"HD

"HD

194

Figure from J. Gauss



Summary

* Hamiltonian for molecule in electromagnetic field
e Calculation of NMR shieldings

* Important to ensure gauge-origin independence via use
of GIAOs

201



Strong magnetic fields



Magnetic fields on Earth

Human brain Earth magnetic field Refrigerator magnet NMR
60uT AmT 12T

Levitate a frog Strongest non-destructive magnet Z-machine
16T 100 T ~10.000 T




Cranking up the magnetic field
Atomic unit of the magnetic field B: 1B0= 235000 T

Distinguish 3 regimes:

B << B, i [ Coulomb regime ]
©
Q
o
L
&0 - .
B =B, o [ Mixing regime ]
7
©
v
G
£

B>>B, v [ Landau regime ]
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Magnetic fields on Earth

Human brain Earth magnetic field Refrigerator magnet NMR
17 nB,

4.35 aB, | 260 pB,

Levitate a frog Strongest non-destructive magnet
68 uB, 0.4 mB, 0.04 B,




Magnetic fields in space

Compact stars

Magnetic White Dwarf stars ~3T — 100kT — up to ~0.4 B'O v

z .. '.‘!,v\‘

Neutron stars ~¥1-100MT — up to ':400 Bg

Magnetars ~10 GT — up to ~400 kB




Magnetic White Dwarf spectra with metals

157 - _
| c N M C i ]
Lol ai gi a ii ai |
| o) I\ e -m |
0.5 " ]
[ E 08 , Iﬁ -
- w 1
L J<5) g
= 00F -% 061 1
[ g -
[ 3
—0.5F Z 0.4 -
~10f 0.2 By = 45.6 MG
[ visible: 22.8 — 30.0 MG
1 5 1 1 1 ] 0.0 I 1 1 1 1 1
=1.5 —1 0 —0 5 0.0 0.5 1.0 1.5 4500 5000 5500 6000 6500
x Wavelength [A]

* First assignment of metals in the spectrum of a strongly magnetic WD
(~3000 T) using finite-field CC theory
* Further elements/transitions present — possibly iron ...

226
Hollands, Stopkowicz, Hermes, Kitsaras, Hampe, Blaschke, MNRAS 520, 3560 (2023)



Molecular Hamiltonian

* Electronic Hamiltonian in homogeneous magnetic field
(in a.u., with gauge origin O)

(" N )
. . 1 1
H = Ho+ ;BLo +BS + - > (B — (Brio)?)
N N\ i y
> N )
angular momentum _ e
operator Lo = zk:zrk X Vi
\ J

—> complex wave function!
- origin dependence in H : use of GIAOs important
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Finite-field methods

* Magnetic field treated non-perturbatively
Example: Static magnetic field input: (B,, B,, B,)

* \Wave-function is complex = complex orbitals and
other wave-function parameters =2 complex integrals
In particular: New software implementations needed!

* Efficiency:

* Larger computational cost (Factor 4 in matrix multiplication (Factor 3 with
specialized BLAS routines)

* Larger memory requirements (Factor 2 and more)
* Less permutational symmetry: Factor 4 instead of 8 in 2-electron integrals

_ *
hpq # hqp7 hpq o hqp
< pqlrs >=< rs|pqg >"T=< qp|sr >=< sr|qp >*
(#< pslrq >#<rqlps >#< qrlsp >#< splgr >)



Molecular Hamiltonian

* Electronic Hamiltonian in homogeneous magnetic field

(in a.u.)
r

~

N
. A 1 1 2 9 2
H = Hy+5BLo +BS+ > (B — (Brio)?)

for a field in z-direction 0
B=10
B,
~

N
A A 1 A N 1
H:Ho+§BLZ+BSZ+§;BQ (:1:,%+yi2))

. J

v

-

g




Molecular Hamiltonian

Electronic Hamiltonian for molecule in a homogeneous magnetic
field in z-direction (in a.u.)

~

N

A A 1 A N 1
H:HO+§BLZ+BSZ+§ZBQ (27 + y7)
" i \ ; N y

. X AW

-

Orbital-Zeeman term Spin-Zeeman term diamagr.n?tic term
* |eads to complex wave * |ifts degeneracy of alpha * always positive
function and beta spin e confinement
* gauge-origin dependent ||* favorization of high-spin * gauge-origin dependent

states open-shell states
for stronger fields

P
/ ) 8 %M + m.="72 : o-spin
0
P.i Po Py \ ‘ \ + m=- % : B-spin
— PP
1 , 233



Atom in magnetic field

* Symmetry

B

 Only rotation along B, but any angle C.

* Mirror planes?

— Perpendicular to B (non-intuitive)

B is an axial vector
B (pseudovector):

=

/\\ //\
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Pt e e e e e e e e

.
————:

C..,, Character table

2C¢

1

|

exp(i¢)
exp(-ih)
exp(i¢)
exp(-i)
exp(2ih)
exp(-2id))
exp(2ih)
exp(-2id))

exp(nid)
exp(-nid)
exp(nidp)
exp(-ni¢)

25¢

|

-1
exp(ip)
exp(-if)
exp(ip)
exp(-ih)
exp(2ic))
exp(-2i¢))
exp(2ich)
exp(-2i¢)

-exp(ni¢)
-eXp(-ni¢)
exp(ni¢)
exp(-nid)

Y

(I, Iy)

(x,y)

https://www.staff.ncl.ac.uk/j.p.goss/symmetry/Categorisation.html

x2+y?';z2

(zx, yz)

(x>-y%, xy)

(S¢ specifically includes theoy, and i operations with¢p=2mandp=mnrespectively.)

236


https://www.staff.ncl.ac.uk/j.p.goss/symmetry/Categorisation.html

Symmetry of the orbitals of atoms in a
magnetic field

* Consequences

nnmn

T[1u Oy T[+1u 62g nlg Og T[+1g +2g

N
a1 .1
H:HO+§BLZ+BSZ+§ZBQ(x§+y§)

Still eigenfunctions to L, L. =mh
Same is true for linear molecules (C..,, or C..)
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* LUMO of Neon in magnetic field

w
o

Paramagnetic effects

N
(9]

N
o

5)

Energy of the LUMO / eV

magnetic field / a.u.

1,5

54
5,35
53
5,25
5
5,15
51
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Paramagnetic effects

* LUMO of Neon in magnetic field

N

) °

239



Paramagnetic effects

* LUMO of Neon in magnetic field s * L

53
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5,05 ’
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0 0,5 1
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Energy of the LUMO / eV
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Ground state of the C atom in a magnetic
field

Total energies as a function of B

-37.2 I .
-37.0 .
-37.8

-38.1

Etot / Eh

152 25% 2p_4 2p,
(10,220,211, 4 10,)

= 3P,

0.0 0.2 0.4 0.6 0.8 1.0
B / By

Hampe and Stopkowicz, J. Chem. Phys., 146, 154105 (2017)



Ground state of the C atom in a magnetic

Hampe and Stopkowicz, J.

field

Total energies as a function of B

37.2 F -
-37.5 F -
) 1
- -37.8
m -
—_ -38.1
2 I
&5 -38.4 h 152 25% 2p_4 2p,
-38.7
D 15225 2p.12py 2p.1
390 F —H5— 3P/3Hg 4 (lo220,1m, 416, 1M, 41 )
- o 5Q /5 1
_393 B " ] S/ ;u ) ] ) ] ) i
0.0 0.2 0.4 0.6 0.8 1.0
B / By

Chem. Phys., 146, 154105 (2017)



Ground state of the C atom in a magnetic
field

Total energies as a function of B

h 152 25% 2p_4 2p,

D 15225 2p.12py 2p+1

A 15225 2p., 2p, 3d.,
(lo,220,1m, 10,16, )

1.0

Exotic states become ground states in strong field!
Hampe and Stopkowicz, J. Chem. Phys., 146, 154105 (2017)



Excitation energies for Mg in magnetic field

6,0

50

Excitation energies/ eV
w »
o o

N
o

1,0

0,0

Excitation energies for Mg 3P = 3S (3s3p to 3s4s) transitions

from finite-field

e

Magnetic field strength/ MG

calculations!
T3 P2 4s
3py24s
3p, 2> 4s
400 450 500
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Atom in magnetic field

* Consequences

-nmn

T[1u Oy T[+1u 62g T[1 O

g T[+1 +2 ,8

N |

not distinguishable, may not cross

Still eigenfunctions to L, L. =mh
Same is true for linear molecules (C..,, or C..)
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Excitation energies for Mg in magnetic field

—o—[u-
-199,75 —o—Tu+
—o—2Uu
28
a23g
[Ne]343d,
-199,85 4s & 3d, : o,
L
~
IS
Wi’ -199,95
-200,05
-200,15
0,00 0,05 0,10 0,15 0,20
B/ B, \
Avoided crossings occuring! 470 MG

Kitsaras, Grazioli, Stopkowicz, JCP 160, 094112 (2024)



Mg Orbitals

B=0 B, (field free)

3s

4s

B=0.1 B,=235 MG

3P
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Paramagnetic bonding

A Paramagnetic Bonding Mechanism for Diatomics in
Strong Magnetic Fields

Kai K. Lange', E. |. Tellgren', M. R. Hoffmann'Z, T. Helgaker'"
+ See all authors and affiliations

Science 20 Jul 2012:
Vol. 337, Issue 6092, pp. 327-331
DOk 10.1126/science. 1219703

Abstract

Elementary chemistry distinguishes two kinds of strong bonds between atoms in molecules:
the covalent bond, where bonding arises from valence electron pairs shared between
neighboring atoms, and the ionic bond, where transfer of electrons from one atom to another
leads to Coulombic attraction between the resulting ions. We present a third, distinct bonding
mechanism: perpendicular paramaanetic bonding, generated by the stabilization of
antibonding orbitals in their perpendicular orientation relative to an external magnetic field. In
strong fields such as those present in the atmospheres of white dwarfs (on the order of 10°
teslas) and other stellar objects, our calculations suggest that this mechanism underlies the

strong bonding of H, in the 32*,, (10, 10: ) triplet state and of He; in the 'Eg* ( lcyg2 lan)

singlet state, as well as their preferred perpendicular orientation in the external field.

. 262
Lange, Tellgren, Hoffmann, Helgaker, Science 337, 327 (2012)



Paramagnetic bonding in H,*

field-free perpendicular magnetic field

A BB A A
— — — I

s/ e .| OE.

AE, + AE.= 0 AE,+AE. <O

R . A 1 N  Bonding with formal bond order 0!
=1 } BS. 50 B (af +ui)
i

* Perpendicular magnetic field lowers symmetry to C,,

1s
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Symmetry considerations
' B,

H, in perpendicular magnetic field

H H X
- C,,

Remaining symmetries: 8 e o il vector
* Center of inversion 5 (pseudovector):

* Mirror plane o, (xy-plane)
* C,-axis (z) h @ @

IR

Parallel case: B coincides with molecular axis, no mirror planes that include z 2 C..;,



C,,, character table

| Con| E | Co | op | i H
Ta] 1 1] 1| i 222el
EREEE R

’7"_1 | -1] -1k —\ 2, X2, Y2, 2
EREEREE [y, 02,5232, 2,5

https://www.staff.ncl.ac.uk/j.p.goss/symmetry/Categorisation.html
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Paramagnetic bonding in H,

‘
HOMO HOMO
Magnetic field +

. (perpendicular)

1s 1s 1s 1s
Field-free: highest In magnetic field (ca. 200000 T):
occupied MO (HOMO) is HOMO is bound via perpendicular
antibonding bonding

Lange, Tellgren, Hoffmann, Helgaker, Science 337, 327 (2012)
Stopkowicz, Nachr. Chem. 70, 11, 62-66 (2022)
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Paramagnetic bonding in H,

field-free perpendicular magnetic field
HOMO: o, — N
° T () EES [rovo: ol A ‘:)
AE O, ag A|E
. .| AE. Is by *fau AE.
6. v A 5
N e
AE,+ AE.=0 AE,+ AE_<0

R . ) 1 N  Bonding with formal bond order 0!
=1 } BS. + 52 B (af +47)
i

* Perpendicular magnetic field lowers symmetry to C,,
* m;no longer good quantum number, /o symmetry broken
» Higher-lying mt splits into b, and a,
» Mixing with HOMO allowed
» Induces angular momentum and lowers <L,>
» Paramagnetic stabilization (GENERAL!): Here: Induces a bond 267



Binding energies of He, in perpendicular
field k

perpendicular He, binding energy B

paramagnetic

bonding 70 He <
60

—8—CCSD(T) He

He

50

—e—HF-SCF

40

30

20

10

binding energy / kJ/mol

0

-10
00 02 04 06 08 10 12 14 16 18 20

magnetic field (perpendicular) / B,

* Becomes paramagnetically bound (not to be confused with van der Waals
interaction)

e Correlation contribution more important with increasing field
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Summary

* Strong fields exists on magnetic White Dwarf stars
* Assignment of spectra

* Lowering of symmetry

* Exotic states become ground states

* Paramagnetic bonding
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