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Preface

• Self-consistent field (SCF) or mean-field methods are widely used in physics to
describe many-body problems.

• The idea is not to describe the interaction of one of the particles with all of the other
particles individually and instantaneously, but rather only the interaction with the
distribution of the particles.

• In the present course, we are concerned with the electrons in a molecule (not in the
solid state), and the particles’ distribution is the (total) molecular electron density ρ(r).

• Since electrons possess spin, also the spin-density ρs(r) may be relevant.

• The purpose of this course is to become familiar with the Hartree–Fock method using
the LCAO expansion.



The molecular Hamiltonian

• Our aim is to solve the nonrelativistic time-independent Schrödinger equation of a
molecular system (in S.I. units):

ˆ̃HmolΨ̃k = ŨkΨ̃k, k = 0, 1, 2, . . .

• In the absence of external (electric and magnetic) fields, the molecular Hamiltonian
reads:

ˆ̃Hmol = ˆ̃Tn + ˆ̃Te + ˆ̃Vnn + ˆ̃Vne + ˆ̃Vee

• The kinetic energy operators are (in S.I. units):

ˆ̃Tn = −
N∑
A=1

~2

2m̃A
∆̃A,

ˆ̃Te = −
n∑
µ=1

~2

2m̃e
∆̃µ, ∆̃ =

(
∂2

∂x̃2
+

∂2

∂ỹ2
+

∂2

∂z̃2

)



The molecular Hamiltonian

• The Hamiltonian reads:

ˆ̃Hmol = ˆ̃Tn + ˆ̃Te + ˆ̃Vnn + ˆ̃Vne + ˆ̃Vee

• The potential energy operators are (in S.I. units):

ˆ̃Vnn =

N∑
B=2

B−1∑
A=1

ZAZBe
2

4πε0|r̃A − r̃B |
=

N∑
B=2

B−1∑
A=1

ZAZBe
2

4πε0 r̃AB

ˆ̃Vne = −
N∑
A=1

n∑
ν=1

ZAe
2

4πε0|r̃A − r̃ν |
= −

N∑
A=1

n∑
ν=1

ZAe
2

4πε0 r̃Aν

ˆ̃Vee =
n∑
ν=2

ν−1∑
µ=1

e2

4πε0|r̃µ − r̃ν |
=

n∑
ν=2

ν−1∑
µ=1

e2

4πε0r̃µν



The molecular Hamiltonian: Simplifications

• We abbreviate summations as follows:

n∑
ν=2

ν−1∑
µ=1

→
∑
µ<ν

,

N∑
A=1

n∑
ν=1

→
∑
A,ν

• We introduce atomic units, which simplify the equations drastically. Consider the
dimensionless variable r = r̃/a0, where a0 is the Bohr radius,
a0 = 52.917 721 0544(82) pm.

• The Coulomb repulsion between two electrons at a distance r̃ can then be written as:

ˆ̃V =
e2

4πε0 r̃
=

e2

4πε0 r a0

• With V̂ = ˆ̃V/
(
e2/4πε0 a0

)
, we obtain: V̂ = 1/r.



Atomic units (a.u.)

• Also V̂ is dimensionless!

• We abbreviate e2/4πε0 a0 as Eh: Hartree, the unit of energy.
Eh = 4.359 744 722 2060(48)× 10−18 J.

Easy to remember: 0.04 Eh
∼= 1 eV ∼= 100 kJ/mol ∼= 10,000 cm−1

• Hence, V̂ = ˆ̃V/Eh, or ˆ̃V = V̂ × Eh.

• What about kinetic energy? The general kinetic energy operator is: ˆ̃T = −~2/(2m̃)∆̃.
In terms of the dimensionless mass m = m̃/me and dimensionless Laplacian
∆ = a2

0∆̃, we obtain
ˆ̃T = − 1

2m

(
~2

mea2
0

)
∆

• Indeed, we find that Eh = ~2/mea
2
0 and hence, T̂ = − 1

2m∆.



2022 CODATA recommended values (www.nist.gov)

Atomic unit Symbol Value S.I. unit
of energy Eh 4.359 744 722 2060(48) ×10−18 J
of length a0 0.529 177 210 544(82) ×10−10 m
of charge e 1.602 176 634 ×10−19 C
of mass me 9.109 383 7139(28) ×10−31 kg
of action ~ 1.054 571 817 . . . ×10−34 J s

... some derived atomic units:

Atomic unit Symbol Value S.I. unit
of time ~/Eh ≈ 2.419× 10−17 s
of force Eh/a0 ≈ 8.239× 10−8 N
of current eEh/~ ≈ 6.624× 10−3 A
of electric dipole moment ea0 ≈ 8.478× 10−30 C m
of magnetic dipole moment ~e/me ≈ 1.855× 10−23 J/T



Atomic units (a.u.)

• The dimensionless quantities without a tilde can be interpreted as quantities
expressed in atomic units.

• From here on, we shall only work with these quantities!

• It’s a good habit to report computational results with the proper symbols instead of
"atomic units" or a.u.

• For example, it is better to report a computed first hyperpolarizability as
"1.234 e3a3

0/E
2
h" than simply "1.234 a.u.".



The molecular Hamiltonian in atomic units

• Expectation values of the operator Ŝ2 are usually reported as plain numbers, for
example, 〈Ŝ2〉 = 0.75. Should one add symbols? What is the value in S.I. units?

• An alternative way to introduce atomic units is to say that these are a system of units
in which ~ = me = e = 4πε0 = 1.

• In atomic units, the molecular Hamiltonian reads:

Ĥmol = T̂n + T̂e + V̂nn + V̂ne + V̂ee, with

T̂n = −
∑
A

1

2mA
∆A, T̂e = −

∑
µ

1

2
∆µ,

V̂nn =
∑
A<B

ZAZB
rAB

, V̂ne = −
∑
A,ν

ZA
rAν

, V̂ee =
∑
µ<ν

1

rµν



The adiabatic approximation

• We are now ready to write Schrödinger’s equation in atomic units,

ĤmolΨk = UkΨk, k = 0, 1, 2, . . .

• The wavefunction Ψk depends on the positions of all particles and their spins,

Ψk ≡ Ψk(rA, rµ,nuclear spins, electron spins), rA ∈ R3N , rµ ∈ R3n

• In the adiabatic approximation, we write the total wavefunction as a product of a
nuclear and an electronic wavefunction,

Ψk ≈ χK(rA,nuclear spins)× Φκ(rµ, electron spins; rA)

For short,
Ψk = χK Φκ



Separation of centre-of-mass motion

• At this point, however, we realise that the function Ψk = χK Φκ cannot be normalised
since it contains the centre-of-mass (COM) motion, that is, the motion of the molecule
as a whole.

• The COM coordinate is

RCOM =

{∑
A

mArA +
∑
µ

rµ

}
/M, M = n+

∑
A

mA

• The corresponding kinetic energy operator is:

T̂COM = − 1

2M
∆RCOM

, Ĥrelative = Ĥ − T̂COM

• The wavefunction can be written as product of functions for relative and COM motion,

Ψk,total = Ψk,relative ξCOM



The electronic Schrödinger equation

• We limit our attention to such Ĥrelative that have bound-state solutions and we choose
Ψk,relative (normalised to unity) as a trial function to approximate a bound state of
Ĥrelative.

• To proceed, we measure all of the coordinates relative to one of the nuclei, say rX ,

qA = rA − rX qµ = rµ − rX

• We ignore spin for the moment and make the Born–Oppenheimer Ansatz

Ψk,relative(qA,qµ) ≈ χK(qA)× Φκ(qµ;qA), qA ∈ R3(N−1), qµ ∈ R3n

or, for short

Ψk = χK Φκ same as before but with relative coordinates



The electronic Schrödinger equation
• Using relative coordinates, we investigate the expectation value

Ek,relative = 〈χK Φκ|Ĥrelative|χK Φκ〉 = 〈χK Φκ|Ĥmol − T̂COM|χK Φκ〉

over the normalised wavefunction.

• Let us now assume that we have solved the electronic Schrödinger equation (SE)
for clamped nuclei,{

T̂e + V̂nn + V̂ne + V̂ee

}
Φκ(qµ;qA) = EκΦκ(qµ;qA)

• We can then integrate over the electronic coordinates and obtain

Ek,relative ≈ 〈χK |T̂n + Eκ + ∆Eκ|χK〉

(This is the starting point for describing nuclear motion.)



The Born–Oppenheimer diagonal correction

• On the previous slide, we have encountered the Born–Oppenheimer diagonal
correction (BODC)

∆Eκ = 〈Φκ|T̂n|Φκ〉

• This is the expectation value of the nuclear kinetic energy operator over the electronic
wavefunction. In most of today’s quantum-chemical calculations, the BODC is
ignored (Born–Oppenheimer approximation). It’s often a tiny correction.

• The electronic energy Eκ defines a potential-energy (hyper)surface (PES). It is
independent of the nuclear masses and hence equal for all isotopic species.

• ∆Eκ, however, does depend on the nuclear masses and thus, the sum Eκ + ∆Eκ
defines an isotope-dependent PES.



The hydrogen atom

• The H atom has only one nucleus with coordinate rP . Solving the ground-state
(κ = 0) electronic SE yields:

Φ0(r) =
1√
π

exp(−|r− rP |), E0 = −0.500 000 0 Eh

• The BODC to the ground-state energy is:

∆E0 = 〈Φ0|T̂n|Φ0〉 =
1

2mP
= 0.000 272 3 Eh

• We thus find E0 + ∆E0 = −0.499 727 7 Eh, which is in almost full agreement with the
exact energy E0,exact = −0.499 727 8 Eh.

• Note that, in terms of the reduced mass mred = mP /(1 +mP ),

E0,exact = −1

2
mred = −1

2

(
1− 1

mP
+

1

m2
P

− . . .
)



The potential energy (hyper)surface (PES)

• The BO approximation is an excellent
approximation.

• It defines a mass-independent Eκ and
a small mass-dependent correction ∆Eκ
(usually ignored).

• The BO approximation defines the potential
(hyper)surface and justifies (“explains”) the
separation of UV/Vis, IR, and microwave
spectra.

• Treatment of ĤΦκ = EκΦκ is central to
quantum chemistry
— it’s a formidable problem.

• Methods are available to
locate stationary points
(minima, saddle points) on
the PES.



The electronic Schrödinger equation

• The electronic SE reads:

ĤΦκ = EκΦκ, with Ĥ = Te + V̂nn + V̂ne + V̂ee

• In the following, we are only concerned with the electronic Hamiltonian Ĥ.

• However, the exact solution of the electronic SE is hopeless.

• Therefore, we shall apply the variation method,

E[Φ] = 〈Φ|Ĥ|Φ〉/〈Φ|Φ〉 ≥ E0, δΦE[Φ] = 0↔ Φ = exact

• If the energy functional (i.e., the expectation value) is stationary with respect to all
possible variations δΦ in the function Φ, then Φ is the exact solution.



Approximate solutions

• Concerning the variation method,

E[Φ] = 〈Φ|Ĥ|Φ〉/〈Φ|Φ〉 ≥ E0, δΦE[Φ] = 0↔ Φ = exact

we guess an Ansatz Φ and do a limited variation.

• Main problem: E[Φ] requires 3n-dimensional integration since Φ is a function of the
3n electronic coordinates.

• For example, if the wavefunction is expanded using exponentially correlated
Gaussians (ECG), then 3n-dimensional integrals must be evaluated,

χECG = exp
(
−
∑
µ

aµ|rµ −Cµ|2 −
∑
µ<ν

bµν |rµ − rν |2
)

• Today, the ECG approach is limited to molecules with at most six electrons.



The Hartree product Θ for two electrons

• We consider the function Θ(1, 2) = ϕ1(1)ϕ2(2). This is the Hartree product.
Electron 1 is in orbital 1, electron 2 is in (another) orbital 2. The orbitals are
normalised to unity.

• This Hartree product contradicts the indistinguishability of electrons and is hence not
acceptable as a wavefunction.

• Furthermore, we ignore electron spin.

• Nevertheless, it is worth computing the expectation value of the Hartree product and
to apply the variation method,

〈Θ|Ĥ|Θ〉 = h11 + h22 + 〈12|12〉+ Vnn

hii = 〈ϕi|ĥ|ϕi〉 =

∫
ϕ∗i (r)

(
− 1

2∆−
∑
A

ZA
|r− rA|

)
ϕi(r)dr



The Hartree product Θ for two electrons

• For a two-electron system, the expectation value of the Hartree product is

〈Θ|Ĥ|Θ〉 = h11 + h22 + 〈12|12〉+ Vnn

〈12|12〉 =

∫ ∫
ϕ∗1(r)ϕ∗2(r′)

1

|r− r′|
ϕ1(r)ϕ2(r′)drdr′

• How is the above expression derived?

• First, we note that

Ĥ = T̂e + V̂nn + V̂ne + V̂ee = ĥ1 + ĥ2 +
1

|r1 − r2|
+ V̂nn

ĥµ = − 1
2∆µ −

∑
A

ZA
|rµ − rA|

, Ĥ = V̂nn +
∑
µ

ĥµ +
∑
µ<ν

r−1
µν



The Hartree product Θ for two electrons

• We thus have evaluated the following integrals:

〈Θ|ĥ1|Θ〉 = 〈ϕ1|ĥ1|ϕ1〉1 × 〈ϕ2|ϕ2〉2 = 〈ϕ1|ĥ|ϕ1〉 = h11

〈Θ|ĥ2|Θ〉 = 〈ϕ1|ϕ1〉1 × 〈ϕ2|ĥ2|ϕ2〉2 = 〈ϕ2|ĥ|ϕ2〉 = h22

〈Θ|r−1
12 |Θ〉 = 〈12|12〉

〈Θ|V̂nn|Θ〉 = Vnn

• Next, we change ϕ1 into ϕ1 + δ (with 〈ϕ1|δ〉 = 0) and require that the terms linear in δ
vanish (variation method),

〈(ϕ1 + δ)ϕ2|Ĥ|(ϕ1 + δ)ϕ2〉 = 〈Θ|Ĥ|Θ〉+ 〈δϕ2|Ĥ|Θ〉+ 〈Θ|Ĥ|δϕ2〉+O(δ2)

• This yields
〈δϕ2|Ĥ|Θ〉 = 0 and 〈Θ|Ĥ|δϕ2〉 = 0



The Hartree product Θ for two electrons

• We evaluate 〈δϕ2|Ĥ|Θ〉 and its complex conjugate (c.c.),

〈δϕ2|Ĥ|ϕ1ϕ2〉 = 〈δ|ĥ|ϕ1〉〈ϕ2|ϕ2〉+ 〈δ|ϕ1〉〈ϕ2|ĥ|ϕ2〉+ 〈δϕ2|ϕ1ϕ2〉
= 〈δ|ĥ|ϕ1〉+ 〈δϕ2|ϕ1ϕ2〉 = 〈δ|ĥ+ Ĵ2|ϕ1〉

with
Ĵ2(r) =

∫
ϕ∗2(r′)ϕ2(r′)

|r− r′|
dr′

• Analogously,
〈ϕ1ϕ2|Ĥ|δϕ2〉 = 〈ϕ1|ĥ+ Ĵ2|δ〉

• Thus, we find that the “best orbital ϕ1” in the sense of the variation principle is the
orbital that satisfies

〈δ|ĥ+ Ĵ2|ϕ1〉 = 0 and 〈ϕ1|ĥ+ Ĵ2|δ〉 = 0



The Coulomb operator

• We have encountered the operator

Ĵ2(r) =

∫
ϕ∗2(r′)ϕ2(r′)

|r− r′|
dr′

• Ĵ2 is the Coulomb operator. It is the potential generated by the charge distribution
ϕ∗2(r′)ϕ2(r′). Note that the “2” on Ĵ2 refers to the “orbital 2 ”, not to the “electron 2 ”.

• In general, we may write

Ĵk(r) =

∫
ϕ∗k(r′)ϕk(r′)

|r− r′|
dr′

• Furthermore, if we change ϕ2 into ϕ2 + δ, we obtain

〈δ|ĥ+ Ĵ1|ϕ2〉 = 0 and 〈ϕ2|ĥ+ Ĵ1|δ〉 = 0



The Hartree equations for two electrons

• We find that the two orbitals ϕ1 and ϕ2 must be eigenfunctions to the operators
ĥ+ Ĵ2 and ĥ+ Ĵ1, respectively:(

ĥ+ Ĵ2

)
|ϕ1〉 = F̂1|ϕ1〉 = ε1|ϕ1〉(

ĥ+ Ĵ1

)
|ϕ2〉 = F̂2|ϕ2〉 = ε2|ϕ2〉

• The two orbitals are eigenfunctions to different operators. The Coulomb potential is
only due to the other orbital. This is not so in the Hartree–Fock method, as we shall
see later.

• The operators F̂k (k = 1, 2) depend on the orbitals, and thus, the equations must be
solved in an iterative manner.

• The two-electron Hartree method can easily be generalised to any number of
(distinguishable and spin-free) particles.



The Hartree equations for many electrons

• For three electrons, we find

〈ϕ1ϕ2ϕ3|Ĥ|ϕ1ϕ2ϕ3〉 = Vnn + h11 + h22 + h33 + 〈12|12〉+ 〈13|13〉+ 〈23|23〉

• In general, we find
〈Θ|Ĥ|Θ〉 = Vnn +

∑
i

hii +
∑
i<j

〈ij|ij〉

• It follows from the variation ϕm → ϕm + δ that

F̂m|ϕm〉 = εm|ϕm〉, with F̂m = ĥ+
∑
k 6=m

∫
ϕ∗k(r′)ϕk(r′)

|r− r′|
dr′

• Note that the orbital m is excluded from the above sum.



Pauli exclusion principle

• The Hartree product is inacceptable as electronic wavefunction.

• Electrons are identical particles and there should be no detectable change in any of
the observable properties of the molecule if the identical particles were to be
interchanged.

• For a system of identical particles, the wavefunction must obey

P̂µνΦ(1 . . . µ . . . ν . . . n) = ±Φ(1 . . . ν . . . µ . . . n)

• For fermionic systems, we accept as a postulate that

P̂µνΦ(1 . . . µ . . . ν . . . n) = −Φ(1 . . . ν . . . µ . . . n)

• Pauli exclusion principle: “A many-electron wavefunction must be antisymmetric with
respect to interchange of the coordinates of any two electrons.”



Permutations

• The permutations P : (12 . . . n)⇒ (ij . . . k) form the symmetric group of order n!

• The transposition Pij interchanges the integers i and j.

• Every P can be represented as a product of p transpositions
(in different ways).

• The parity δP of the permutation P is defined as δP = (−1)p.

• It is easily verified that

δ(P−1) = δP, δ(PQ) = δPδQ

• A permutation P describes a mapping of n-electron coordinate space, x = (1 . . . n),
onto itself

Px = P (1 . . . n) = y



Permutation operators

• The permutation P that describes a mapping of n-electron coordinate space onto
itself, Px = y, induces an operator P̂ in function space as follows:

P̂ φ(x) = φ(P−1x) = ψ(x)

• The operators P̂ are unitary operators, P̂ † = P̂−1 and have the same algebra as the
permutations,

PQ = R⇒ P̂ Q̂ = R̂

• The crucial operator for many-electron systems is the antisymmetriser Â,

Â =
∑
P

δP P̂ =
∑
P

(−1)pP̂ =
∑
P

(−1)pP̂−1

• Â is hermitean (Â† = Â).



The antisymmetriser Â
• Applied to an arbitrary function Θ, we obtain

P̂µν(ÂΘ) = −(ÂΘ)

Thus, (ÂΘ) always obeys the Pauli exclusion principle.

• Let Ô be a totally symmetric n-electron operator such as the electronic
Hamiltonian Ĥ. Then,

[Â, Ô] = 0

• Using the antisymmetriser, we can obtain an acceptable electronic wavefunction from
the Hartree product as follows:

Φ = CÂΘ, where C is a normalisation constant

• Φ is usually referred to as Slater determinant.



The Slater determinant (SD)
• We define, for given orbitals ϕi and coordinates rµ, the matrix

ϕ : ϕiµ = ϕi(µ) = ϕi(rµ)

Then, Φ can be written as
Φ = CÂΘ = C det(ϕ)

• Usually, we abbreviate the SD in the following manner:

Φ = C det(ϕ) = C

∣∣∣∣∣∣∣∣∣
ϕ1(1) ϕ1(2) . . . ϕ1(n)
ϕ2(1) ϕ2(2) . . . ϕ2(n)

...
...

ϕn(1) ϕn(2) . . . ϕn(n)

∣∣∣∣∣∣∣∣∣ = |ϕ1ϕ2ϕ3 . . . ϕn〉

Note that the notation |ϕ1ϕ2ϕ3 . . . ϕn〉 includes the normalisation constant
(and so does Φ).



Properties of determinant wavefunctions

• SD’s are, up to a constant, invariant under linear transformations of the MOs,

ϕ̃ : ϕ̃i(rµ) =

n∑
j=1

ϕj(rµ)Vji ⇒ det(ϕ̃) = det(ϕ) det(V)

Hence, we shall assume in the following that the MOs are orthonormal (in contrast
with valence-bond theory, VB).

• Then, the normalisation constant is C = (n!)−
1
2 , which follows from requiring that

〈Φ|Φ〉 = C2〈ÂΘ|ÂΘ〉 = n!C2〈Θ|ÂΘ〉 = n!C2 = 1

where we have used Â2 = n!Â.

• Although the SD consists of n! terms, the 3n-dimensional integration is not difficult.
We shall use orthonormal MOs and the property Â2 = n!Â.



Expectation values over a SD

• The expectation value over the nuclear repulsion operator is a trivial zero-electron
term,

〈Φ|V̂nn|Φ〉 = Vnn =
∑
A<B

ZAZB
rAB

• The expectation value of the one-electron part of the Hamiltonian is also easy to
compute (note that Φ = CÂΘ),

〈Φ|
∑
µ

ĥµ|Φ〉 = C2〈ÂΘ|
∑
µ

ĥµ|ÂΘ〉 = C2〈Â2Θ|
∑
µ

ĥµ|Θ〉

= C2 n! 〈ÂΘ|
∑
µ

ĥµ|Θ〉 = 〈ÂΘ|
∑
µ

ĥµ|Θ〉 = 〈Θ|
∑
µ

ĥµ|Θ〉

Note that Â commutes with the Hamiltionian and that the turn-over rule can be
applied. Furthermore, only the identity permutation survives.



Expectation values over a SD

• The expectation value of the two-electron part of the Hamiltonian is not more difficult
to compute than the one-electron part,

〈Φ|
∑
µ<ν

r−1
µν |Φ〉 = 〈Θ|

∑
µ<ν

r−1
µν |ÂΘ〉 =

∑
µ<ν

〈Θ|r−1
µν |ÂΘ〉

• Only the identity permutation and the transposition P̂µν survive,

〈Φ|
∑
µ<ν

r−1
µν |Φ〉 =

∑
µ<ν

〈Θ|r−1
µν |(1− P̂µν)Θ〉

• The final result is
〈Φ|Ĥ|Φ〉 = Vnn +

∑
i

hii +
∑
i<j

〈ij||ij〉

with 〈ij||ij〉 = 〈ij|ij〉 − 〈ij|ji〉.



Hartree versus Hartree–Fock

• The expectation value of the Hartree product Θ was:

〈Θ|Ĥ|Θ〉 = Vnn +
∑
i

hii +
∑
i<j

〈ij|ij〉

• The Hartree–Fock expectation value of the SD is:

〈Φ|Ĥ|Φ〉 = Vnn +
∑
i

hii +
∑
i<j

〈ij||ij〉

• The expectation values look very similar, but note that:

1. The Hartree product is inacceptable for electrons.
2. The Hartree–Fock orbitals must be chosen orthogonal to give a simple result.
3. Ĥ is the exact nonrelativistic, clamped-nuclei Hamiltonian. The only

approximation that we have invoked so far has been the wavefunction
being a single determinant.



The Hartree–Fock equations

• A SD seems a reasonable approximation for the many-electron wavefunction, but we
still have to determine the orbitals (MOs).

• As before for the Hartree method, we change ϕk into ϕk + δ (with 〈ϕm|δ〉 = 0 ∀ m)
and require that the terms linear in δ vanish (variation method). We do so for all k.

• Before we do so, we write the Hartree–Fock expectation value E[Φ] = 〈Φ|Ĥ|Φ〉 as

E[Φ] = Vnn +
∑
i

hii +
∑
i<j

〈ij||ij〉 = Vnn +
∑
i

hii + 1
2

∑
i,j

〈ij||ij〉

• The first-order variation δ(1)
k E[Φ] becomes

δ
(1)
k E[Φ] = hδk + 1

2

∑
j

〈δj||kj〉+ 1
2

∑
i

〈iδ||ik〉+ c.c.



The Hartree–Fock equations

• Of course, we can add the last two sums and obtain

δ
(1)
k E[Φ] = hδk +

∑
m

〈mδ||mk〉+ c.c. = Fδk + c.c. = 0

• Here, we have defined the Fock operator (p, q arbitrary),

Fpq = 〈ϕp|F̂ |ϕq〉 = 〈ϕp|ĥ+ Ĵ − K̂|ϕq〉 = hpq +
∑
m

〈mp|mq〉 −
∑
m

〈mp|qm〉

• This equation in turn defines the Coulomb operator Ĵ and the exchange operator K̂
via their matrix elements,

Jpq = 〈ϕp|Ĵ |ϕq〉 =
∑
m

〈mp|mq〉, Kpq = 〈ϕp|K̂|ϕq〉 =
∑
m

〈mp|qm〉



The Coulomb operator

• We can write the Coulomb
operator as

Ĵ =
∑
m

Ĵm =
∑
m

∫
ϕ∗m(r′)ϕm(r′)

|r− r′|
dr′

• The Coulomb operator is a
multiplicative local operator.
Ĵm is the electrostatic potential
from the charge distribution ϕ∗mϕm.

(0,0,0)
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• The total Coulomb operator Ĵ is the electrostatic potential from the total electron
distribution in the molecule. Thus, an electron that “feels” this potential interacts with
itself (self-interaction).



The exchange operator

• The exchange operator is much more difficult to interpret than the Coulomb operator.
It does not occur in the Hartree method.

• It has its pure quantum mechanical origin in the need for an antisymmetric
wavefunction for non-distinguishable fermions.

• It is a non-local, integral operator, defined by its action on an arbitrary function f(r),

K̂ f(r) =
∑
m

K̂m f(r) =
∑
m

[∫
ϕ∗m(r′)f(r′)

|r− r′|
dr′
]
ϕm(r) = g(r)

• The (local) Coulomb operator can be defined analogously,

Ĵ f(r) =
∑
m

Ĵm f(r) =
∑
m

[∫
ϕ∗m(r′)ϕm(r′)

|r− r′|
dr′
]
f(r) = J(r)f(r)



The Coulomb and exchange operators

• For any point r in space, we can ask for the value of the Coulomb potential J(r). We
can give this value in atomic units in Eh/e or in S.I. units in J/C (joules per coulomb).

• An important action of the exchange operator in Hartree–Fock theory is that it
cancels the (unphysical) self-interaction 〈kk|kk〉 that occurs in the Coulomb operator,

〈ϕk|Ĵ − K̂|ϕk〉 =
∑
m

(〈mk|mk〉 − 〈mk|km〉)

=
∑
m 6=k

(〈mk|mk〉 − 〈mk|km〉)

• In density-functional theory (DFT), the self-interaction causes big problems.



The Hartree–Fock equations

• We had derived before that

δ
(1)
k E[Φ] = Fδk + c.c. = 0

• Since the variation δ is orthogonal on all of the orbitals (〈δ|ϕm〉 = 0 ∀ m), it follows
that Fδk = 0 if

F̂ϕk =
∑
m

ϕmλmk ∀ k

• These are the general Hartree–Fock equations. The complex conjucate in the upper
equation vanishes if and only if Fδk = 0.

• The λkm form a hermitean matrix because F̂ is hermitean (λkm = λ∗mk).

• We can linearly transform the MOs such that λ becomes the diagonal matrix ε.
We then obtain the canonical Hartree–Fock equations.



The canonical Hartree–Fock equations
• We can write the Hartree–Fock equations with a diagonal matrix λ, which we denote

as ε. To see that this is possible, we write the MOs as

ϕk =
∑
j

ϕ̃jUjk with a unitary matrix U†U = UU† = 1

• It then follows that

F̂ϕk =
∑
j

F̂ ϕ̃jUjk =
∑
i

∑
j

ϕ̃iλ̃ijUjk

=
∑
i

∑
j

∑
m

ϕmU
†
miλ̃ijUjk =

∑
m

ϕmλmk

Thus, λ = U†λ̃U, and the unitary matrix U can be chosen such that λ is diagonal,
that is, λmk = εkδmk.



Canonical Hartree–Fock orbitals

• The canonical Hartree–Fock equations read: F̂ϕk = εkϕk

!

1a
1

2a
1

t
2

• By choosing the orbitals such
that λ is diagonal, we obtain
orbital energies εk as
eigenvalues of the Fock operator.

• Note that canonical orbitals may
look different from what you may
have expected. The figure shows
canonical MOs of methane, for
example.



Localised Hartree–Fock orbitals

There are infinitely many Hartree–Fock orbitals that solve the general Hartree–Fock
equations and give the same Slater determinant. The canonical MOs are one special
choice (with arbitrariness only among degenerate MOs). There are methods to select
MOs that are as much as possible localised in space:

• Foster–Boys localisation: the distances between orbital charge centroids are
maximised.

• Edmiston-Ruedenberg localisation: the sum of orbital self-repulsion terms is
maximised.

• Pipek-Mezey localisation: the number of atom centres spanned by the MOs is
minimized. The orbitals are delocalised over as few atoms as possible.

The HF method is invariant with respect to transformations of the MOs. It is very important
that post-HF methods are also invariant.



The Hartree–Fock energy

• Once we have determined the canonical MOs by solving the canonical HF equations,
we can write the HF energy in terms of orbital energies,

Fpq = hpq + Jpq −Kpq = hpq +
∑
i

〈ip||iq〉 ⇒

EHF = 〈Φ|Ĥ|Φ〉 = Vnn +
∑
i

hii + 1
2

∑
i,j

〈ij||ij〉

= Vnn +
∑
i

Fii − 1
2

∑
i,j

〈ij||ij〉 = Vnn +
∑
i

εi − 1
2

∑
i,j

〈ij||ij〉

• The HF energy is not equal to the sum of the orbital energies!
(This is often assumed in semi-empirical theories.)

• The negative orbital energies approximate ionisation potentials (Koopmans’ theorem).



Koopmans’ theorem

• To describe the system with (n− 1) electrons, we simply remove one orbital ϕn from
the original set, assuming all the other orbitals to remain unchanged.

• Hence, we neglect orbital-relaxation effects (as well as correlation effects).

• For the energies EnHF and En−1
HF , we have

En−1
HF = Vnn +

n−1∑
i=1

hii + 1
2

n−1∑
i,j=1

〈ij||ij〉

EnHF = En−1
HF + hnn + 1

2

n−1∑
i

〈in||in〉+ 1
2

n−1∑
j=1

〈nj||nj〉+ 1
2 〈nn||nn〉

• Since 〈nn||nn〉 = 0, we find

En−1
HF − E

n
HF = −hnn −

n∑
i

〈in||in〉 = −εn



Koopmans’ theorem

The table shows the computed first ionisation potential (IP) of the Na atom. All values in
eV. The experimental value is 5.14 eV.

Theory −εHOMO(Na) ∆E −εaverage

Hartree–Fock 4.96 4.95 –
LDA 3.08 5.37 5.05
BLYP 2.90 5.36 5.32
B3LYP 3.40 5.35 5.27

• εHOMO(Na) is the orbital energy of the highest occupied MO.

• ∆E is the difference between the energies of Na and Na+.

• εaverage = 1
2

{
εHOMO(Na) + εLUMO(Na+)

}
, the average of the HOMO of Na

and the LUMO (lowest unoccupied MO) of Na+.

• For Na, the orbital-relaxation effect is small.



Frontier orbitals

• So far, we have only considered F̂ϕk = εkϕk or F̂ϕk =
∑
m ϕmλmk, where the set

{ϕk} forms the Slater determinant. These are occupied MOs, for which we use the
indices i, j, k, . . . .

• The orbital ϕk with the highest (= least negative) eigenvalue is the highest occupied
molecular orbital, HOMO.

• The Fock operator F̂ , however, has many more eigenfunctions. The HF solutions
form a complete set of (square integrable) one-electron functions,

F̂ϕa = εaϕa or F̂ϕa =
∑
c

ϕcλca, ϕc /∈ {ϕk}

• The orbitals with index a, b, c, . . . are denoted unoccupied or virtual orbitals. The
orbital ϕa with the lowest eigenvalue is the lowest unoccupied molecular orbital,
LUMO.

• HOMO and LUMO are the frontier orbitals.



The LUMO of Hartree–Fock theory

• The LUMO is the lowest unoccupied MO. It has no meaning at all and cannot be
used to estimate the electron affinity (EA).

• But we can consider the HOMO of the anion to estimate the EA of the neutral.

• Consider the Li atom. Its experimentally determined electron affinity amounts to
EA(exp) = 0.62 eV.

Theory −εHOMO(Li−) ∆E
Hartree–Fock 0.40 –0.12
CCSD(T)/WMR 0.62

• The HOMO of Li− is negative, and hence, 4 electrons are bound at the Hartree–Fock
level, but the Hartree–Fock energy of Li− is 0.12 eV higher than that of neutral Li.

• WMR = Widmark–Malmqvist–Roos 7s6p4d3f ANO basis.
(In this basis, the HF results is also −0.12 eV.)



Removing two electrons / excitation energies

• If we were to remove two electrons from the orbitals ϕk and ϕl, then the energy
change will not simply be the sum of the orbital energies. Rather,

En−2
HF − E

n
HF = −εk − εl + 〈kl||kl〉

• Similarly, if we were to compute an “excitation energy” by removing an electron from
an occupied orbital ϕi and adding it to a virtual orbital ϕa, we would obtain:

∆Ei→aHF = Eai − E0 = εa − εi − 〈ia||ia〉

• Remember that the total Hartree–Fock energy is not the sum of the orbital energies.


