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Preface

• So far, we have considered the molecular orbitals ϕk to depend on the coordinates of
the electron.

• One may have assumed that they are the three Cartesian coordinates of the
electron’s position in space, ri = {xi, yi, zi}.

• At the same time, we have introduced the antisymmetry of the wavefunction in an ad
hoc manner, since the electrons are fermions.

• The electron is known to have a spin with a quantum number s = 1
2 , the z-component

of which is quantised to take one of the possible values, ms = ± 1
2 .

• In order for electron spin to have meaning in Hartree–Fock theory, we must let the
orbitals depend on it.



Spin functions α and β

• Let the functions α and β be orthonormal eigenfunctions of the spin operators
ŝ2 and ŝz,

ŝ2α = 3
4α, ŝzα = + 1

2α

ŝ2β = 3
4β, ŝzβ = − 1

2β

• We let the orbitals depend on the spin by attaching an extra label (superscript) to it,

ϕkα = ϕαk (r)α, ϕkβ = ϕβk(r)β

• The functions ϕαk (r) and ϕβk(r) are spatial orbitals, that is, functions that depend only
on r = (x, y, z).

• The functions ϕkα and ϕkβ are spin orbitals that depend on spatial and spin
coordinates.



Sums over spin orbitals

• Having attached a spin label to the orbitals, we must write sums of the orbitals in the
following manner:

without spin :

n∑
k=1

⇒ with spin :
∑
σ=α,β

nσ∑
k=1

(nα + nβ = n)

• There is a sum over σ over the two spin cases and then (dependent on the first sum)
a second sum over the number of orbitals with that spin.

• Note that sums over electrons just remain unchanged, for example

Ĥ = V̂nn +

n∑
µ=1

ĥµ +

n∑
ν=2

ν−1∑
µ=1

1

rµν



Integration over spin coordinates

• To take spin into account, we must rewrite sums over orbitals in the following manner:

∑
i,j

hij =

n∑
i=1

n∑
j=1

〈ϕi|ĥ|ϕj〉 ⇒
∑
σ=α,β

nσ∑
k=1

∑
ρ=α,β

nρ∑
l=1

〈ϕkσ|ĥ|ϕlρ〉

• The expressions seem to become more lengthy, but fortunately, the rules for spin
integration are very simple,

〈α|α〉 = 〈β|β〉 = 1, 〈α|β〉 = 〈β|α〉 = 0

• Hence, in terms of the Kronecker delta function,

〈ϕkσ|ĥ|ϕlρ〉 = 〈σ|ρ〉 × 〈ϕσk |ĥ|ϕ
ρ
l 〉 = δσρ

∫
[ϕσk(r)]

∗
ĥ ϕρl (r)dr



Integration over spin coordinates

• Spin integration thus yields

n∑
i,j

hij =

nα∑
k,l

〈ϕαk |ĥ|ϕαl 〉+

nβ∑
k,l

〈ϕβk |ĥ|ϕ
β
l 〉

• Note that the integration would be more complicated for an operator that depends on
spin, such as ˆ̀ · ŝ,

〈ϕkσ| ˆ̀ · ŝ |ϕlρ〉 = 〈ϕσk | ˆ̀ |ϕ
ρ
l 〉 · 〈σ| ŝ |ρ〉

• We shall not be concerned with spin-dependent operators in this course!



Two-electron integration over spin coordinates
• We are now ready to integrate over the spin coordinates in antisymmetrised

two-electron integrals,

〈ϕiσϕjρ||ϕkτϕlω〉 = 〈ϕiσϕjρ|ϕkτϕlω〉 − 〈ϕiσϕjρ|ϕlωϕkτ 〉
= δστδρω〈ϕσi ϕ

ρ
j |ϕ

τ
kϕ

ω
l 〉 − δσωδρτ 〈ϕσi ϕ

ρ
j |ϕ

ω
l ϕ

τ
k〉

• Hence, we obtain for four different cases:

〈ϕiαϕjα||ϕkαϕlα〉 = 〈ϕαi ϕαj |ϕαkϕαl 〉 − 〈ϕαi ϕαj |ϕαl ϕαk 〉
〈ϕiαϕjα||ϕkβϕlβ〉 = 0

〈ϕiαϕjβ ||ϕkαϕlβ〉 = 〈ϕαi ϕ
β
j |ϕ

α
kϕ

β
l 〉

〈ϕiαϕjα||ϕkαϕlβ〉 = 0

• Note that in case of 〈αβ||αβ〉 = 〈αβ|αβ〉 − 〈αβ|βα〉, the last term vanishes.



Two-electron integration over spin coordinates

• We are now ready to integrate over the spin coordinates in the two-electron
expectation value over the Slater determinant,∑

i,j

〈ij||ij〉 =
∑
i,j

〈i j||i j〉+
∑
i,j

〈i j||i j〉+
∑
i,j

〈i j||i j〉+
∑
i,j

〈i j||i j〉

• For simplicity, α orbitals are denoted by the index “k” and β orbitals by “k”.

• We obtain: ∑
i,j

〈ij||ij〉 =
∑
i,j

〈i j||i j〉+
∑
i,j

〈i j||i j〉+ 2
∑
i,j

〈i j| i j〉

• The sum over “k” runs from 1 to nα and the sum over “k” runs from 1 to nβ .



〈Φ|Ĥ|Φ〉 with spin orbitals
• Putting it all together, we obtain the following expression for the expectation value of

the Hamiltonian over the SD:

E[Φ] = Vnn +
∑
i

hii +
∑
i

hii + 1
2

∑
i,j

〈i j||i j〉+ 1
2

∑
i,j

〈i j||i j〉+
∑
i,j

〈i j| i j〉

• We can split the last term into two sums∑
i,j

〈i j| i j〉 = 1
2

∑
i

〈i|Ĵ (β)|i〉+ 1
2

∑
j

〈j|Ĵ (α)|j〉

and obtain

E[Φ] = Vnn +
∑
i

hii + 1
2

∑
i

〈i|Ĵ (α) + Ĵ (β) − K̂(α)|i〉

+
∑
j

hjj + 1
2

∑
j

〈j|Ĵ (α) + Ĵ (β) − K̂(β)|j〉



Exchange operators K̂(α) and K̂(β)

• Since exchange only occurs between electrons with like spins, we can define
exchange operators K̂(α) and K̂(β) that give the same result as K̂ when acting on a
spin orbital with spin function α respectively β,

K̂(α) f(r)α =

nα∑
m=1

(∫
[ϕαm(r′)]

∗
f(r′)

|r− r′|
dr′
)
ϕαm(r)α, K̂(α) g(r)β = 0

K̂(β) f(r)α = 0, K̂(β) g(r)β =

nβ∑
m=1

(∫ [
ϕβm(r′)

]∗
g(r′)

|r− r′|
dr′

)
ϕβm(r)β

• Accordingly, we define

F̂ (α) = ĥ+ Ĵ − K̂(α) and F̂ (β) = ĥ+ Ĵ − K̂(β)



Spin-unrestricted Hartree–Fock theory

• The straightforward implementation of the equations obtained thus far is known as
unrestricted Hartree–Fock (UHF) theory.

• In UHF theory, there are two sets of MOs, which are the α and β spin orbitals,
eigenfunctions of the operators F̂ (α) and F̂ (β),

F̂ (α)ϕαk (r)α = εαkϕ
α
k (r)α, F̂ (β)ϕβk(r)β = εβkϕ

β
k(r)β

• The two equations are coupled through the Coulomb operator Ĵ , which depends
on all MOs.

• Note that the two sets of spatial orbitals {ϕαk (r)} and {ϕβk(r)} are completely
independent. Spatial orbitals of the α set need not be orthogonal on the β set.

• The equations may be solved iteratively. The α orbitals define K̂(α), the β orbitals
define K̂(β), and all orbitals define Ĵ .



Spatial and spin symmetries
• Molecules may possess symmetry. Some may perhaps display no symmetry at all

(C1 point group), but many are symmetric with respect to a plane of reflection, etc.

• We define symmetry operations Ri of a given point group G that map the nuclear
coordinates xA onto themselves, Ri xA = yA. They induce operators in function
space as

R̂iΦ(xµ;xA) = Φ(xµ;R−1i xA) = ψ(xµ;xA)

• These operators commute with the clamped-nuclei Hamiltonian,

[R̂i, Ĥ] = 0 ∀ Ri ∈ G

and hence, the exact electronic wavefunctions are (or can be chosen as)
eigenfunctions of both R̂i and Ĥ,

R̂iΨk(xµ;xA) = ρikΨk(xµ;xA)



Spatial and spin symmetries

• As long as the Hamiltonian does not refer to spin, it commutes with spin operators,
and the spin quantum numbers (e.g., S, MS) are constants of motion. Any electronic
wavefunction should also be eigenfunction of the spin operators,

Ŝ2Ψk = S(S + 1)Ψk, ŜzΨk = MSΨk

Hence, we are looking for eigenfunctions of Ĥ, Ŝ2, Ŝz and all R̂i of the point group!

• The UHF approach as we know it so far yields approximate wavefunctions that may
or may not be eigenfunctions of the spatial symmetry and spin operators.

• Restrictions must be imposed to ensure that eigenfunctions of all of the relevant
operators are obtained.



A broken-symmetry UHF wavefunction

• A UHF calculation on two Na atoms at a distance of 10 a0 can be performed in such
a manner that the determinant becomes

Φ = | . . . 3sαAα . . . 3s
β
Bβ . . . | ≡ |AαBβ|

• The 1s, 2s and 2p shells are fully occupied and can be ignored. The notation |AαBβ|
means that we consider a two-electron determinant that consists of two spin orbitals:
a 3s atomic orbital on atom A with α spin and a 3s atomic orbital on B with β spin.

Spin-up

Spin-down • The figure shows the spin density
3s2A − 3s2B obtained from |AαBβ|.

• Φ is not eigenfunction of an operator
that interchanges the nuclei,

R̂i |AαBβ| = |BαAβ|



Broken-symmetry UHF wavefunctions

• Although UHF determinants such as the one for Na· · ·Na seem unphysical, they may
be useful in various applications of MO theory (e.g., unrestricted Kohn–Sham (UKS)
theory).

• Heisenberg exchange couplings J may be estimated.

• The figure shows the spin density of a
selected UKS solution for the “ferric
wheel” Na+@Fe6(tea)6 (H3tea =
triethanolamine).

• 〈Φ|Ŝz|Φ〉 = 5 ~, but 〈Φ|Ŝ2|Φ〉 ≈ 40 ~2.

• The underlying UKS determinant is
clearly not an eigenfunction of rotations
about the S6 axis.



Spin-restricted Hartree–Fock theory
• In Hartree–Fock theory, the orbitals are optimised by the variation method. We

assume that those orbitals leading to the lowest energy 〈Φ|Ĥ|Φ〉 are the “best” in a
general sense.

• The orbitals can be optimised without worrying much about spin and spatial
symmetries (as in UHF theory), but one can also apply constraints.

• The following table shows Hartree–Fock energies of the NO· radical
(RNO = 115.1 pm, def2-QVZPP basis).

Spin symmetry Spatial symmetry State E/Eh

constraints? constraints?
No No ? –129.308 11
Yes No Doublet –129.300 26
Yes Yes 2Π –129.298 06

• What is the “best” calculation?



Closed-shell Hartree–Fock theory
• An important and frequent situation occurs when the electronic situation under

consideration is a spin singlet (S = 0,MS = 0).

• The number of electrons is even.

• We require that the spin orbitals occur in pairs having the same spatial function
(perfect spin pairing),

ϕαk (r) = ϕβk(r)

• The determinant is then an eigenfunction of the operators Ŝ2, Ŝz, Ŝ+ and Ŝ−,
with eigenvalue 0 in all cases.

• We find that

E[Φ] = Vnn + 2
∑
i

hii +
∑
i,j

〈i j||i j〉+
∑
i,j

〈i j| i j〉

= Vnn + 2
∑
i

hii +
∑
i,j

(2〈i j|i j〉 − 〈i j|j i〉)



Closed-shell Hartree–Fock theory

• The two Fock operators F̂ (α) and F̂ (β) are identical in closed–shell restricted
Hartree–Fock (RHF) theory.

• Thus, the work and memory requirements are reduced by ca. 50% compared to UHF.

• The Fock operator can be written as

F̂ (α) = ĥ+ 2Ĵ (α) − K̂(α)

• RHF is commonly used, since many stable main-group molecules have an even
number of electrons and a singlet ground state.

• Often, when the UHF approach is applied to a stable closed-shell molecule, the same
solution is obtained as with the RHF method (but with more work).

• Do we know when UHF gives a lower energy than RHF?



Singlet and triplet instabilities in RHF theory

• We consider nondegenerate electronic states with an even number of electrons.

• Nondegenerate RHF states are stationary with respect to symmetry-breaking
rotations, but they may not be stable, that is, they may be saddle points.

• To find out, one has to compute the second derivative with respect to the
wavefunction parameters (electronic Hessian), including the parameters that change
the RHF solution into a UHF state or a symmetric solution into a nonsymmetric
wavefunction.

• Triplet instabilities: There is a UHF state lower than RHF.

• Singlet instabilities: A SD with symmetry lower than the molecule’s point group has a
lower energy than a SD that transforms as an irreducible representation of that point
group.



Triplet instability in H2

• The figure shows potential energy
curves of H2 obtained from RHF and
UHF calculations (cc-pVTZ).

• Beyond about R = 2.3 a0, the UHF
treatment yields a lower energy than
RHF.

• Note that the UHF guess must have

ϕαk 6= ϕβk

• At R = 3 a0, the spin-contaminated
UHF state has 〈Ŝ2〉 ≈ 0.67 ~2.
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Singlet instability in the C3H5· radical

• We optimise the geometry at the
restricted HF level (ROHF/cc-pVDZ)
in C2v symmetry⇒
RCC = 2.5980 a0, ∠CCC = 124.49◦.

• Things look fine until we compute
the harmonic vibrational frequencies
from numerical differences of
analytic gradients (as done with
NumForce of Turbomole).

• We find one imaginary frequency
with wavenumber ≈ 3777i cm−1.

• The allyl radical (C3H5·)
provides an example of a
singlet instability.

defaults used                           
                                        
 Edge =  9.86 Space =  0.0750 Orient Psi
 = 12                                   
                                        
                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

• The unpaired electron
occupies the nonbonding
π orbital (1a2) and the SD
transforms as 2A2.



Restricted open-shell Hartree–Fock theory

• Consider a case where nc spatial orbitals are doubly occupied with perfect spin
pairing —the closed shells— and no are singly occupied, all with α spins, the open
shells:

Φ = |ϕ1αϕ1βϕ2αϕ2β . . . ϕncαϕncβϕ(nc+1)αϕ(nc+2)α . . . ϕ(nc+no)α|

• This SD is eigenfunction of Ŝz with eigenvalue MS = no
2 .

• Furthermore, Ŝ+Φ = 0, because raising the spin is either not possible (when the
orbital has already ms = 1/2) or creates an orbital that is already contained in the SD.

• Hence, Ŝ2Φ =
(
Ŝ−Ŝ+ + Ŝ2

z + Ŝz

)
Φ = no

2 (no2 + 1)Φ ⇒ S = no
2

• The ROHF determinant is an eigenfunction of Ŝ2 with quantum number S = no
2 .

• An high-spin open shell.



Restricted open-shell Hartree–Fock theory
• We shall use indices i, j, k, . . . for doubly occupied orbitals and s, t, u, . . . for singly

occupied orbitals.

• The energy can then be written as

E[Φ] = Vnn + 2
∑
i

hii +
∑
s

hss +
∑
i,j

[2〈ij|ij〉 − 〈ij|ji〉]

+
∑
i,t

[2〈it|it〉 − 〈it|ti〉] + 1
2

∑
s,t

[〈st|st〉 − 〈st|ts〉]

• It may also be written as (Jpq = 〈pq|pq〉,Kpq = 〈pq|qp〉):

E[Φ] = f

2
∑
s

hss + f
∑
s,t

(2aJst − bKst) + 2
∑
i,t

(2Jit −Kit)


+ Vnn + 2

∑
i

hii +
∑
i,j

(2Jij −Kij)



Roothaan parameters a and b

E[Φ] = f

2
∑
s

hss + f
∑
s,t

(2aJst − bKst) + 2
∑
i,t

(2Jit −Kit)

+ . . .

• f is the occupancy of the open shell (f = 1 means complete occupany and f = 1
2

refers to a half-filled shell (or MO).

• For the closed-shell case, f = 1 and a = b = 1.

• For all single-electron cases, a = b = 0. The fractional occupation f depends on the
degeneracy of the shell (e.g., f = 1/10 in a d1 configuration).

• For high-spin half-filled shells (e.g., the N atom’s 4S(p3) state),
f = 1

2 and a = 1, b = 2.

• Roothaan has shown that the above energy expression can be used for atoms with
pn shells and linear molecules with πn shells. The method fails for most dn

configurations.



Closed- and open-shell Fock operators

• The variation method leads to the closed- and open-shell Fock operators

F̂ c = ĥ+
∑
i

(2Ĵi − K̂i) + f
∑
s

(2Ĵs − K̂s)

F̂ o = ĥ+
∑
i

(2Ĵi − K̂i) + f
∑
s

(2aĴs − bK̂s)

• The Hartree–Fock equations can be written as

〈ϕa|F̂ c|ϕi〉 = 0, 〈ϕa|F̂ o|ϕs〉 = 0, 〈ϕi|F̂ c − fF̂ o|ϕs〉 = 0

• ROHF theory is a complex field, which requires a careful reading of the literature and
program manuals (e.g., Turbomole).

• For example, would you have known that a = b = 8/9 for the O−2 · radical?



Example: the 3P ground state of the O atom

• Calculations performed in the aug-cc-pVQZ basis set.

• Calculation with Turbomole in Td symmetry:

$ closed shells

a1 1-2 ( 2 )

$ open shells type=1

t2 1 ( 4/3 )

$ roothaan 1

a = 15/16 b = 9/8

• ROHF ground-state energy: E = −74.808 078 382 Eh



Example: the 3P ground state of the O atom

• Next, switch to C1 symmetry and copy the ROHF orbitals to the file containing the α
spin orbitals as well as to the file containing the β spin orbitals.

• Evaluation of the UHF expectation value using these spin orbitals gives:

〈Φ|Ĥ|Φ〉 = −74.808 078 382 Eh

• This results could also be obtained by running a state-averaged CASSCF calculation
in D2h symmetry.

• Molpro input:

{casscf;closed,2;wf,8,4,2;wf,8,6,2;wf,8,7,2}

• (State average of the 3B1g, 3B2g, and 3B3g states.)



Self-consistent field theory: The LCAO expansion

• Brute-force numerical methods can be used to solve the Hartree–Fock equations for
(di)atoms (by finite differences and finite elements methods, multi-grid techniques).

• The Hartree–Fock equations are one-electron equations and one may think that the
problem is three-dimensional.

• However, the nonlocal exchange contribution makes the problem of solving the
Hartree–Fock equations for a general molecule six-dimensional.

• This is why certain DFT programs have no “hybrid” functionals implemented, which
include Hartree–Fock exchange. Computationally, K̂ is much more complicated
than Ĵ .

• In the following, we shall expand the MOs in a basis of atomic orbitals (AOs),

ϕσk(r) =

Nbas∑
µ=1

χµ(r)Cσµi



The Roothaan–Hall equations

• To simplify the derivation of the Roothaan–Hall equations as much as possible, we

1. . . . assume that the MOs are real (and hence, also the MO coefficients Cσµi),
2. . . . ignore spin (but shall return to it later), and
3. . . . use the Mulliken notation for two-electron integrals:

〈µρ|ντ〉 =

∫ ∫
χµ(r)χρ(r

′)
1

|r− r′|
χν(r)χτ (r′)drdr′ = (µν|ρτ)

Obviously:

n∑
i=1

〈ϕi|ĥ|ϕi〉 =

n∑
i=1

Nbas∑
µ=1

Cµi〈χµ|ĥ|ϕi〉 =

n∑
i=1

Nbas∑
µ=1

Nbas∑
ν=1

Cµi〈χµ|ĥ|χν〉Cνi

=

Nbas∑
µ=1

Nbas∑
ν=1

Dµν〈χµ|ĥ|χν〉 =

Nbas∑
µ=1

Nbas∑
ν=1

Dµνhµν



The Roothaan–Hall equations

• We have introduced the density matrix D, where the summation is over all (spin)
orbitals,

Dµν =

n∑
i=1

CµiCνi, or D = CCT

• By inserting the LCAO expansion also into the two-electron energy contribution, we
obtain (here and in the following, we omit the summation limits):

E[C] = Vnn +
∑
µ,ν

Dµνhµν + 1
2

∑
µ,ν

∑
ρ,τ

[DµνDρτ −DµρDντ ] (µν|ρτ)

• The orbitals are orthonormal,

CTSC = 1, with Sµν = 〈χµ|χν〉



The Lagrangian
• We are interested in finding the MO coefficients C that minimise the SCF energy
E(C) in the sense of the variation method, but we cannot simply require the first
derivatives of E(C) to be zero for all Cµi.

• Rather, we must minimise E(C) under the constraint that the MOs remain
orthonormal. This can be done using Lagrange’s method of undetermined multipliers,

F [C,λ] = E[C] + Tr
[
(1−CTSC)λ

]
• Note that the unit matrix 1 and the matrix of Lagrange multipliers λ are n× n

matrices while S is a Nbas ×Nbas matrix. The MO-coefficients matrix C has Nbas

rows and n columns.



Minimising the Lagrangian

• We require the Lagrange functional F [C,λ] to be stationary with respect to the
coefficients C and multipliers λ,

∂F [C,λ]

∂Cωi
= 0 ∀ Cωi,

∂F [C,λ]

∂λkl
= 0 ∀ λkl ⇔ 1−CTSC = 0

• While the equation to the right is just the normalisation condition, the equations to the
left are the Roothaan–Hall equations.

• The gradient is easily computed by taking partial derivatives with respect to Dκλ,

∂E[C]

∂Cωi
=

∑
κ,λ

∂E[C]

∂Dκλ

∂Dκλ

∂Cωi
= 2

∑
λ

∂E[C]

∂Dωλ
Cλi

= 2
∑
λ

hωλCλi + two-electron terms = 2(hC)ωi + two-electron terms



Minimising the Lagrangian

• Similarly, we obtain for the orthonormality constraint,

∂Tr
[
(1−CTSC)λ

]
∂Cωi

= −2 (SCλ)ωi

• Hence,
∂F [C,λ]

∂Cωi
= 2(hC)ωi − 2 (SCλ)ωi + two-electron terms

= 2(FC)ωi − 2 (SCλ)ωi = 0 ∀ Cωi

 F              C                                S               C       ! "             =                                "          "#

The two-electron terms add to the one-electron
Hamiltonian to yield the Fock operator. The
Roothaan–Hall equations thus read:

FC = SCλ



Canonical Roothaan–Hall equations

• The Roothaan–Hall equations in the LCAO Ansatz are nothing but the translation of
the coupled integro-differential Hartree–Fock equations into the language of standard
linear algebra,

F̂ϕi =
∑
m

ϕmλmi ⇔ FC = SCλ

• As for Hartree–Fock, orthogonal transformations of the MOs (i.e., columns of C) do
neither change the energy E[C] nor the Lagrangian F [C,λ].

• Hence, we can choose the orbitals such that λ becomes the diagonal matrix ε.
These orbitals are the canonical MOs,

F̂ϕi = ϕiεi ⇔ FC = SCε ⇒ FCi = SCiεi

(Ci is the i-th column of the matrix C).



An orthonormal basis
• The Roothaan–Hall equation is a generalized matrix eigenvalue equation. To solve it,

it is convenient to bring it on a conventional matrix eigenvalue form without S.

• Let U be a real, nonsingular matrix: UU−1 = U−1U = 1. We can insert UU−1 into
the Roothaan–Hall equation and obtain:

FC = SCε ⇔ (FU)(U−1C) = (SU)(U−1C)ε

⇔ (UTFU)(U−1C) = (UTSU)(U−1C)ε

• The matrix U can be chosen such that UTSU = 1. We then obtain

F̃C̃i = C̃iεi, with F̃ = UTFU and C̃ = U−1C

• The matrix U defines an orthonormal basis {φτ}, expanded in our original basis,

φτ (r) =

Nbas∑
µ=1

χµ(r)Uµτ



An orthonormal basis

• Of course, the final MOs are still expanded in the original basis,

ϕi(r) =

Nbas∑
τ=1

φτ (r) C̃τi =

Nbas∑
τ=1

Nbas∑
µ=1

χµ(r)Uµτ C̃τi =

Nbas∑
µ=1

χµ(r)Cµi

• Hence, we see that C = UC̃.

• During the SCF iterations (vide infra), we can simply use the MO coefficients from the
previous iteration, C(k−1) as an orthonormal basis and compute

F̃ =
[
C(k−1)]TFC(k−1)

The new coefficients are then obtained as C(k) = C(k−1)C̃.

• In actual calculations, an orthonormal basis is constructed before starting the SCF
iterations. How should we start?



An orthonormal basis

• In the first SCF iteration, we can orthogonalise the AOs using the Gram–Schmidt
approach: The first AO is taken as is. The second AO is orthogonalised against the
first, the third against the first two, the fourth against the first three, and so on.

• Alternatively, we start by diagonalising the overlap matrix S,

VTSV = σ

with σ diagonal and V an orthogonal matrix. We then form the matrix

U = Vσ−
1
2 , UTSU = σ−

1
2VTSVσ−

1
2 = σ−

1
2σσ−

1
2 = 1

• This canonical orthogonalisation has the advantage that we can identify a near (or
exact) linear dependency in the basis set (an eigenvalue σµµ ≈ 0) and remove the
corresponding column Vµ simply by setting σ−1/2µµ = 0.



An orthonormal basis

• It is also possible to define U as

U = S−
1
2 = Vσ−

1
2VT, UTSU = S−

1
2SS−

1
2 = 1

The advantage of this symmetric orthogonalisation is that the new basis is as close to
the original set as possible.

• Although the number of small eigenvalues of S may change along a potential curve
and thus lead to unpleasant discontinuities in the energy, it often is a prerequisite to
post-Hartree–Fock calculations (CI, CC) to remove eigenvalues smaller than, say,
10−7 (relative to normalised AOs).

• A near linear dependence leads to MOs with large coefficients alternating in sign,
and hence, significant round-off errors may occur in integral-transformation steps,

(pq|rs) =
∑
κ

∑
λ

∑
µ

∑
ν

CκpCλqCµrCνs(κλ|µν)



Solving the Roothaan–Hall equations

The box below shows a simple algorithm for solving the Roothaan–Hall equations by the
self-consistent-field procedure.

! 

k = 0,     D
(0) = 0

SV = V"  #   C
(0) = V" $1/ 2

V
T

k= k +1

Build  F D
(k$1)[ ]

Transform  ˜ F = (C
(k$1)

)
T
FC

(k$1)

  Solve  ˜ F ̃  C = ˜ C %

C
(k ) = C

(k$1) ˜ C 

D
(k ) = C

(k )
(C

(k )
)
T



Roothaan–Hall equations for UHF
• In UHF theory, the α and β spin orbitals are expanded in the same AO basis,

ϕαk (r) =

Nbas∑
µ=1

χµ(r)Cαµk, ϕβk(r) =

Nbas∑
µ=1

χµ(r)Cβµk

With these orbitals, a density matrix can be defined for each of the spins (assuming
real MOs),

Dα
µν =

nα∑
i=1

CαµiC
α
νi, Dβ

µν =

nβ∑
i=1

CβµiC
β
νi,

• We can now write the energy

E[Φ] = Vnn +
∑
i

hii +
∑
i

hii + 1
2

∑
i,j

〈i j||i j〉+ 1
2

∑
i,j

〈i j||i j〉+
∑
i,j

〈i j| i j〉

as a function of the density matrices Dα and Dβ .



Roothaan–Hall equations for UHF
We obtain

E[Φ] = Vnn +
∑
µν

[Dα
µν +Dβ

µν ]hµν

+ 1
2

∑
κλµν

Dα
µνD

α
κλ[(µν|κλ)− (µκ|νλ)]

+ 1
2

∑
κλµν

Dβ
µνD

β
κλ[(µν|κλ)− (µκ|νλ)] +

∑
κλµν

Dα
µνD

β
κλ(µν|κλ)

which can be rewritten using D = Dα + Dβ and Dspin = Dα −Dβ ,

E[Φ] = Vnn +
∑
µν

Dµνhµν +
1

4

∑
κλµν

DµνDκλ[2(µν|κλ)− (µκ|νλ)]

− 1

4

∑
κλµν

Dspin
µν Dspin

κλ (µκ|νλ)



Roothaan–Hall equations for UHF

• We also obtain two Fock matrices (in the AO basis),

Fαµν = hµν + 1
2

∑
κλ

{
Dκλ[2(µν|κλ)− (µκ|νλ)]−Dspin

κλ (µκ|νλ)
}

F βµν = hµν + 1
2

∑
κλ

{
Dκλ[2(µν|κλ)− (µκ|νλ)] +Dspin

κλ (µκ|νλ)
}

• We now obtain the following UHF Roothaan–Hall equations (including the
closed-shell case):

FαCα = SCαεα

FβCβ = SCβεβ

⇔
(

Fα 0

0 Fβ

)(
Cα 0

0 Cβ

)
=

(
S 0
0 S

)(
Cα 0

0 Cβ

)(
εα 0

0 εβ

)



Guess of initial orbitals

• In order to converge the SCF procedure quickly, it is important to have an accurate
guess of the orbitals for the first iteration or an accurate guess of the trial density.
There are several possibilities:

1. We start with D(0) = (Dspin)(0) = 0. Electron repulsion is neglected in the first
iteration (bare nuclear Hamiltonian).

2. We use the orbitals from another calculation, for example,
a calculation carried out in a smaller AO basis,

D
(0)
large basis = S̃TDsmall basisS̃, S̃µν = 〈χµ,small|χν,large〉

3. We use the density obtained from extended Hückel theory (EHT), projected onto
the actual basis set.

4. We construct the trial density as superposition of atomic densities.
This density can be diagonalised and the eigenvectors with near integer
occupation numbers can be used as trial orbitals.



Level shifting
• In order to converge the SCF procedure quickly (or to converge it at all), it may be

needed to monitor the convergence process and to manipulate the Fock matrix,

F̃C̃ = C̃ε, with F̃ =
[
C(k−1)]TFC(k−1) and C(k) = C(k−1)C̃

• Near convergence, C̃ will be close to unity, C̃ = 1 + ω. The values of ω can be
estimated from first-order perturbation theory,

ωia =
F̃ia

F̃aa − F̃ii
=

F̃ia

ε
(k−1)
a − ε(k−1)i

• If there is a small HOMO–LUMO gap (in the previous iteration), then the
corresponding ωia is large and can cause oscillations.

• We can stabilise the iterations by adding a level shift ∆ > 0
to the diagonal elements of the virtuals, F̃aa → F̃aa + ∆.



Damping

• Another way to reduce ωia (also when ∆ = 0) is by reducing the off-diagonal
elements F̃ia,

ωia =
F̃ia

F̃aa − F̃ii + ∆
, F̃ia → αF̃ia, 0 < α < 1

• This can for example be achieved by adding the Fock matrix of the previous iteration
(which is diagonal) with a certain weight (e.g., β = 0.5) to the present Fock matrix,

F̃ii → F̃ii + βε
(k−1)
i , F̃aa → F̃aa + βε(k−1)a

• Level shifting and damping can be combined. Level shifting reduces the mixing of
high-lying occupied MOs with low-lying virtual MOs. Damping reduces all mixing.

• Neither of the techniques help to accelerate creepingly slow SCF procedures.



Fermi smearing (in DFT)

• The idea of Fermi smearing is to compute density matrices D and Dspin from partially
occupied orbitals. These density matrices are then used to build Fock matrices, to
obtain new orbitals, and so on.

• Fractional occupation numbers np ∈ [0, 1] are computed as a function of a
temperature T when the HOMO–LUMO gap drops below a given threshold
(µ is the Fermi level),

np = 1
2erfc

(
εp − µ
fT

)
, f = 4kB/

√
π

• When the energy has converged to within a given threshold, the Fermi smearing is
switched off (T = 0).

• Calculation of fractional occupation numbers often requires much higher damping
and level shifting.



Pulay’s DIIS procedure

• Let us be concerned with a general iterative procedure in which we try to solve

f [x] = 0

• Examples include:

1. Geometry optimizations, where x is the geometry and f [x] the gradient. If not
yet converged in iteration step number k, we have

f [x(k)] = g(k) 6= 0, g(k) ⇒ x(k+1)

2. Coupled-cluster calculations, where x contains the amplitudes, f [x] are the
amplitudes equations and g(k)

the vector functions.

3. SCF calculations, where F[D(k)]D(k)S− SD(k)F[D(k)] = g(k)



Pulay’s DIIS procedure

f(x)

x

x(k)
x(k+1)

• As an example of Pulay’s DIIS
method, we apply it to a simple
Newton–Raphson procedure to
solve f(x) = 0. From a given x(k),
we obtain a new x(k+1) via

x(k+1) = x(k) − f(x(k))

f ′(x(k))

• After having obtained a series of n approximations x(1), x(2), . . . , x(n), we construct
the linear combination

x̃ =

n∑
k=1

dk x
(k), with the constraint

n∑
k=1

dk = 1

• The dk ’s are obtained from requiring that ||f(x̃)||2 = min.



Pulay’s DIIS procedure
• To compute f(x̃), we approximate the function as

f(x̃) ≈
n∑
k=1

dk f(x(k)),

• Minimising the appropriate Lagrangian leads to


f(x(1))f(x(1)) . . . f(x(1))f(x(n)) −1
f(x(2))f(x(1)) . . . f(x(2))f(x(n)) −1

...
...

...
f(x(n))f(x(1)) . . . f(x(n))f(x(n)) −1

1 . . . 1 0




d1
d2
...
dn
λ

 =


0
0
...
0
1


• In SCF theory, the dk ’s are used to extrapolate directly the Fock matrix.


