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Overview of basis functions

We may try to solve the Hartree—Fock or Kohn—Sham equations on a real-space grid in
3D. Accurate numerical Hartree—Fock methods exist for atoms and diatomic molecules.

Alternatively, we may expand the MOs or crystal wavefunctions in a set of basis functions.
Examples include:

e Numerical atomic functions

e Finite elements (FEM)

Wavelets

Plane and spherical waves
Slater-type orbitals (STOs)
e Gaussian-type orbitals (GTOs)
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Numerical atomic orbitals

It is possible to use purely numerical atomic functions that are defined on a
real-space grid in three dimensions.

In density-functional theory (DFT), integrals are computed by a numerical quadrature
in 3D.

DMo1? and STESTA are DFT programs that use numerical atomic orbitals.

The basis sets used by DMo1? are denoted Minimal, DN, DND, DNP, TNP. Also
STESTA uses multiple-zeta and polarisation functions.

In these programs, DFT is easily implemented in the local-density (LDA) and
generalised-gradient approximations (GGA). Hybrid functionals with Hartree—Fock
exchange are more difficult.

The potentials V;,(r), J(r) and v (r) are local.

AT



Numerical atomic orbitals

e In DFT, without exact exchange, all potentials are local, and the Coulomb potential at
a grid point r,, can be computed as

N e rg)pilry) N plrg)
J(rp) ~ quZﬁ = Z%r ]
q=1 i=1 L q=1 poa

e The w, are the appropriate weights of the quadrature.

e Matrix elements of the Coulomb and local exchange—correlation potentials can be
computed as

Ngrid

Xuldbo) = /xi(r)sf(r)xu(r)dr ~ Y wpx () (1) (rp)

(tulvwelis) = / N ®) e (0 xu)dr & 3wy (rp)one (1) x (1)
p=1 AT



Numerical molecular orbitals

Some DFT implementations (such as Octopus) attempt to describe the molecular
Kohn—Sham orbitals on a real-space grid.

A 3D simulation box is chosen together with a grid spacing, for example 0.5 a4. Then,
a grid in 3D is constructed and the SCF equations are solved on the grid.

This is different from an MO-LCAQO expansion in numerical AOs!

Pseudopotentials are inevitable for real-space grid methods, but they are not required
when numerical AOs are used.

A great advantage of the use of numerical AOs as in DMo1? is that the method is free
of the basis-set superposition error (BSSE).

Because exact atomic orbitals are used, the atoms in a molecule cannot improve
their orbitals artificially using basis functions from other atoms.
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e A famous example of BSSE is the
Hartree—Fock calculation of the
He- - - He potential curve in a
two-function 3-21G basis:

Basis-set superposition error (BSSE)
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The RHF/3-21G calculation of He- - - He
yields an interaction energy of —0.6 uF,
at R =5.77 ap.

The Hartree—Fock curve should be purely
repulsive!

Accidentally, the Hartree—Fock minimum is
close to the true minimum at 5.60 ay.
The true well depth amounts to ca. —35 puEy,.

The RHF/3-21G energy
of the He atom is in
error by 26 mE,.
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e Let us compute the RHF/3-21G
energy of one He atom while

Energy (Microhartree)

Basis-set superposition error (BSSE)
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e Shown is the computed energy relative to
the RHF calculation in only the atom’s
own 3-21G basis.

e This is the BSSE: artificial energy lowering
due to neighbouring functions.

e At R =5.77 ay, the artificial energy lowering
is —4.1 pFEy/atom
(—8.2 uwEy, for both atoms).

e We should add 8.2 uF, to the computed
interaction energy of —0.6 uEy,.
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The counterpoise correction

Thus, at R = 5.77 ag, we obtain a repulsive potential of +7.6 nE;, at the RHF/3-21G
level if we correct for BSSE.

This correction is known as counterpoise correction. It consists of computing not only
the system of interest but also its fragments in the basis set of the whole system.

The interaction energy is computed by subtracting the energies of the fragments
computed in the whole basis.

In practice, the basis set in a counterpoise calculation is most easily defined by
setting the nuclear charge of the corresponding atom to zero (ghost atom).
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The counterpoise correction

The CP-corrected interaction energy is directly obtained by calculating both the
system and the fragments in the same basis,

AEcP corrected = EAB — EA ghost(B) — EB4ghost(A)
The CP corrections to fragments A and B are defined as follows:
dcp(A) = EA — Ea4ghost(B)s dcp(B) = EB — Epfghost(a)
Hence, the CP-corrected interaction energy can also be computed from

AE‘CP corrected = AECP uncorrected + 6CP (A) + §CP (B)
AE‘CP uncorrected = FAB — EA — BB

Using numerical AOs, Ex = Ea{ghost(B) = Ea(exact)!
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Counterpoise corrected binding energies

e Usually, free fragments have another geometry than b’ , Q)\
in the complex (such as the H,O dimer).

The binding energy is the energy of the complex or supermolecule in its optimized
geometry relative to the energies of the dissocation products in their own, optimized
geometries,

Ebinding energy — AE(l) + AE(Q) = AE]CP corrected + AE(l)

AE® is a one-body term. It contains the relaxation energy of the dissociation
products,
AE(I) = EA, complex geom. — EA, relaxed geom. + same for B

As defined here, the binding energy is a negative quantity.
Often, however, it is reported as a positive value.
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Finite elements methods (FEM)

The finite-element method is an expansion method which uses a strictly local,
piecewise polynomial basis.

4
@) =3 e fula)
k=1

It combines the advantages of basis-set and real-space grid approaches.

A finite element is a basis function, which takes the value 1 at a grid point in real
space, but which is 0 at its neighbouring grid points and at all other grid points.

In its simplest form, the basis function is linear between
two grid points x; and x4 1.
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Finite elements methods (FEM)

e In 2D, the space is divided up in triangles and the surface is
approximated by piecewise linear functions (see figure).

e FEM is also applicable in 3D.

e FEM has been used for benchmark Hartree—Fock and MP2 (2"4-order Mgller—Plesset
perturbation theory) calculations of atoms (e.g., with partial waves up to L = 12).

e FEM has also been used for benchmark calculations of one-electron diatomics and for
benchmark DFT calculations of diatomic systems.

e Modern techniques: Hermite interpolation functions, adaptive curvilinear coordinates,
separable norm-conserving pseudopotentials, periodic boundary conditions, multigrid

methods.
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Wavelets

Wavelets are a relatively new basis set in electronic structure calculations.

Being localised both in real and in Fourier space, wavelets combine the advantages
of local basis-set and plane waves.

Localised orbitals and density matrices can be represented in a very compact way,
and wavelets therefore seem an ideal basis set for O(/V) schemes.

There exist fast wavelet transforms (FWT).

As an example, we shall consider the Haar wavelets, but there are many others (e.g.,
Daubechies wavelets, which can be used in electronic-structure theory).

The Haar transform is very useful in image compression (JPEG).

To the author’s knowledge, an efficient general-purpose DFT program is not yet
available.
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Wavelets

e A simple example is the Haar wavelet,
1, fo<z<1/2
B () = 27™/2R(27 ™2 —n)  with h(z)=¢ —1, if1/2<z<1
0, otherwise
e h(z) is denoted as mother wavelet.

e The wavelets {h,,,(z)} form an orthonormal basis.

scale
and shift

Bigp(x) = h(x) by, (x) =2 h(2x =1)
Ol)x X X X ﬂ(IT



Plane (and spherical) waves

Plane (and spherical) waves are used in DFT
codes that treat the electronic structure of Plane waves Soneri
pherical waves
condensed matter. approach a propagate beyond
small obstacle the obstacle
CPMD, FLEUR, VASP and Wien2K are
programs using plane waves.

The basis functions can be written as

ikr

Ux(r) = % (plane wave), and Ug(r) = (spherical wave)

Advantage of plane wave codes: After defining a 3D box, the number of plane waves
and the basis-set quality is controlled by a single energy-cutoff value. Basis functions
up to that energy level are considered.
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Pseudopotentials (PPs)

Disadvantage of plane wave approaches: It is very difficult for plane waves to
describe the electronic structure near the nuclei.

One solution to this problem consists of using (ultra-soft) pseudopotentials (US-PP).

The idea is that with PPs, the (remaining) eigenstates and the electron density are
much smoother than without. Plane waves can only handle a smooth potential well.

Typical cutoff values range from 10-20 E, for Vanderbilt ultra-soft pseudopotentials,
30-50 Ey, for Troullier—Martins norm-conserving pseudopotentials to 40—100 F, for
Goedecker pseudopotentials (i.e., higher values for less soft PPs).

With PPs, the number of plane waves is of the order of 100 per atom. Modern
programs can treat thousands of valence electrons.

AT



Hydrogen atom eigenfunctions

e The hydrogenic functions seem to form a natural basis for the MO-LCAO Ansatz.

e These are the true atomic functions of hydrogen and H-like ions. The bounded
eigenfunctions may be written as

Ynim = Ru(r) Y™ (0, ¢)
27\*? [(n—1—-1) (22r\' o1 (22r Zr
rae) = () S (o) 2 (57 ) e ()

e The radial part contains an associated Laguerre polynomial L' | in2Zr/n
and an exponential in —Zr/n. AT



Hydrogen atom eigenfunctions

The H-atom eigenfunctions are the exact solutions for a one-electron Coulombic
system, but the functions ,,;,,, are not useful as basis functions for many-electron
atoms or molecules.

In 1928, it was already recognised by Born and Hylleraas that the He atom could not
be described by a Cl expansion using the H-like bound-state eigenfunctions.

To constitute a complete set, the bound-state eigenfunctions must be supplemented
by the unbounded continuum states.

Furthermore, the H-like functions spread out rapidly and become quickly too diffuse
for calculations of the core and valence regions of a many-electron atom.

3n? —1(l+1)

<wnlm|T|wnlm> = 27

They may be useful to describe Rydberg states.
ymey AT



Hydrogen atom eigenfunctions

The problem with the H-atom eigenfunctions is that the exponent Z/n in the
exponential decreases when n increases,

Vnim o< (r/n) L2FY (22 /n) exp(—Zr /n)
It seems a good idea to change to functions of the type
Xntm ¢ (Cr)' L2 (2C7) exp(—Cr)

These Laguerre functions form a complete, orthonormal set in L?(R3).

Laguerre functions are very useful for highly accurate work on atoms.
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Nodeless Slater-type orbitals (STOs)

We can expand the Hartree—Fock orbital of He in a basis of Laguerre functions,

Mmax

PHe(r) = Z CnLi—l@CT) exp(—(r)

n=1

There is one nonlinear parameter (¢, which could be determined via (V) =

and we must choose the expansion length.

Can we fix n and use variable exponents?
Kmax

re(r) = > cpexp(—Ger)

k=1
Can we even take variable exponents and variable powers in r?

Nmax Fmax (1)

Z Z Cnk r’ - LXp C’n,ls’ T‘)

n=1 k=1

—2(T)
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Slater-type orbitals (STOs)

0.8
The figure shows the radial distribution _ oe /\
472 [®o, (1)]? § o4
of the C atom from a minimal 2s1p basis (solid line) g _
and from an extended 6s4p basis (dashed line).
0 \
In the minimal basis: 0 N u

pas(r) = —0.231 N5 exp(—5.58 1) + 1.024 Nog r exp(—1.46 1)

In the extended basis:

P2s(r) = D crNigexp(—CGaar) + Y ckaNagr exp(—Crar)

k=1,2 k=14
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Slater-type orbitals (STOs)

e Clementi-Roothaan—Yoshimine 6s4p STO basis for carbon:

Coefficients
STO type Exponents 1s 2s 2p
1s STO 9.2683 0.07657 —0.01196
5.4125 0.92604 —0.21041
2s STO 4.2595 0.00210 —0.13209
2.5897 0.00638 0.34624
1.5020 0.00167 0.74108
1.0311 —0.00073 0.06495
2p STO 6.3438 0.01090
2.5873 0.23563
1.4209 0.57774
0.9554 0.24756

pas(r) = —0.01196 N15 exp(—9.2683 1) + - - - + 0.06495 No, r exp(—1.0311r)

e The extended basis contains 2 + 4 + 4 x 3 = 18 basis functions.
e The (Hartree—Fock) coefficients are given with respect to normalised basis functions.

¢ The linear combinations with the Hartree—Fock coefficients can be used as
a minimal basis comprising 1+ 1+ 1 x 3 = 5 basis functions (contractions). AT



Slater-type orbitals (STOs)

Advantages of STOs:

e Correct description of the cusp at the nucleus. For a one-electron 1 200.2)
system, for example, we have
OR(r
Y15 X Rr, 85“ ) =—ZR(0)#0 PP —

r=0

e STOs have the correct asymptotic long-range behaviour,

vrnomo X exp(—(r), (= V2. 1P = \/2 - lemomo

e Accurate calculations are possible for atoms and diatomics.
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Slater-type orbitals (STOs)

Disadvantages of STOs:

¢ No efficient program available to evaluate the many-centre two-electron STO
integrals.

e Long-range behaviour of the density is correct only if the smallest STO exponent is
Cmin = V2 - IP . Stable molecules have IP > 5 eV. Hence, ¢ should not be smaller
than 0.6 a; *, but lower values are often required for accurate work on molecules.

A program that uses STOs is ADF.
e The basis sets used by this program are denoted SZ, DZ, DZP, TZP, TZ2P.
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Gaussian-type orbitals (GTOs)

. . fx(0,0,z)
e In molecular calculations, the many-centre integrals are much

easier to compute with Gaussian-type orbitals,

z

x(r) o 2Pyl 2™ exp(—ar?) 1s6TO  — ¢
e GTOs have no cusp at the nucleus, but this is not a main concern in chemical
applications.

e The cusp occurs with point charges. For more realistic nuclei with finite extension, the
Gaussian shape is actually more realistic.

e GTOs have the wrong asymptotic long-range behaviour, but the error due to falling off
too quickly is less severe than the too long tail of an STO with too small exponent.

e Accurate calculations are possible for polyatomic molecules!

e In terms of accuracy/effort, GTOs win over STOs.
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Gaussian basis sets: Overview

Minimal basis sets (STO-nQG)

Double-zeta basis sets (DZ, SV, 6-31G)

Pople basis sets (6-311G*, 6-311+G(2df,2pd), etc.)
Karlsruhe “def2” basis sets

Polarisation-consistent basis sets (pc-n)

Atomic natural orbital (ANO) basis sets
Correlation-consistent basis sets (cc-pVXZ)
Special-purpose basis sets (IGLO, Sadlej)
Effective core potentials (e.g., LANL2DZ)

Auxiliary basis sets (RI-J, RI-JK, “cbas”, “cabs”)
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Gaussian basis sets: Purpose

Choosing the right basis depends much on the type of calculation that we want to
perform.

Be aware that different basis sets are needed for Hartree—Fock and DFT calculations
on the one hand and electron-correlation calculations (MPn, Cl, CC) on the other.

The electron density of negative ions may be extended in space and GTOs with small
exponents are required (diffuse functions).

For some properties, the region near the nucleus is important (e.g., electric field
gradient at the nucleus, Fermi contact term). Then, GTOs with large exponents are
required (tight functions).

Van der Waals intermolecular interactions need diffuse functions and are different
from strongly covalently bound molecules.

Be aware of the BSSE.
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STO-nG basis sets

The STO-nG basis sets are minimal basis sets.
The idea is to represent a Slater-type orbital (STO) by a linear combination of GTOs.

In the STO-3G basis, for example,

3

N exp(—Cr) ~ Y e Ny, exp(—ay 1?)
k=1

For hydrogen, the following STO-3G basis represents the standard STO with
exponent ¢ = 1.24 a5 *:

k 1 2 3
ak,/a(;2 3.42525091 0.62391373 0.1688554
(8 0.15432897 0.53532814 0.4446345

The exponents ay, and contraction coefficients ¢, are obtained by a least-squares fit.
A contraction is one single basis function, which itself is a fixed linear
combination of (primitive) GTOs. g("-
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STO-nG basis sets

The H-atom STO-3G function (dashed line) replaces an STO with ¢ = 1.24 (solid line).
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The figure on the left shows that the STO-6G basis function has no cusp at r = 0.

STO-nG basis sets

The H-atom STO-6G function (dashed line) replaces an STO with ¢ = 1.24 (solid line).
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STO-nG basis sets

STO-3G basis sets exist for the atoms H-I.
STO-6G basis sets exist for all atoms H-Kr.

The exponents of the primitive Gaussians are chosen in a special manner. The same
exponents are chosen for the various angular momenta in an atomic shell.

For example, the same three exponents 7.295991196, 2.841021154 and 1.250624506
are used to replace the 4s, 4p and 4d STOs of iodine by Gaussians.

Choosing the same exponents may speed up the integral evaluation significantly, but
not all programs exploit this opportunity.

If a certain STO-nG basis function substitutes an STO with exponent ¢, then a similar
STO-nG basis function with exponents o}, = ax x (¢'/¢)? replaces an STO with
exponent (’.
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Cartesian versus spherical-harmonic GTOs

We may want to use Cartesian GTOs—centred at the centre A (usually an atom)—of
the form

X(I’, a, ka l7 m, A) = Nk‘lm,a(x - xA)k<y - yA)l<Z - ZA)M/ eXp(_OélI' - A|2)

A set of f-type functions (I = 3) is then defined by all combinations with
k+ 1+ m = 3. This yields 10 Cartesian f-type functions. Similarly, there are
6 Cartesian d-type functions, etc.

The linear combination of 3 of the 6 Cartesian d-type functions corresponds to an
3s-type function (22 + y2 + 22). Similarly, the 10-component f-set contains three
4p-type functions: (22 + y? + 2%)z, etc.

It is much better to use the spherical-harmonic GTOs (5d, 7f, 9g, etc.) in the place of
Cartesian GTOs to avoid near-degeneracies in the basis set. Most programs do this,
but note that some standard basis-set definitions imply that they are Cartesian.
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Double-zeta and split-valence basis sets

The double-zeta (DZ) basis set consists of two basis functions per atomic orbital and
is twice as large as the minimal basis set.

The split-valence (SV) basis is a minimal basis for core orbitals and is of double-zeta
quality for the valence shell.

Examples of SV basis sets are the 3-21G (atoms H-Cs), 4-31G (atoms H-Ne, P—CI)
and 6-31G (H-Zn) basis sets.

The notation “6-31G” means that 6 primitive GTOs are contracted to one basis
function to describe the core orbitals. Furthermore, 3 primitive GTOs are contracted
to the first basis function for the valence shell while another GTO is used as second
basis function.

Also in (most of) these basis sets, the exponents are constraint to be equal in ns and

np shells.
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Polarisation functions

The inclusion of a set of polarisation functions is often indicated by “P” or by an
asterisk.

Polarisation functions are basis functions with angular momentum that is not
occupied in the atom, for example, p-type functions of H or d-type functions on O.

Polarisation functions are important when polarisation is important.

For example, the dipole moment of H,O amounts to 0.96 eaq in the SV basis but to
0.83 eag in the SVP basis.

Another example is the barrier to rotation in H,O». The interaction between the
dipoles along the polar OH bonds must be described accurately with polarisation
functions.

The polarisation functions are not always added to the H atoms. They are in sets
denoted as 6-31G** and SVP but not in sets denoted 6-31G* and SV(P).
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Valence triple-zeta plus polarisation

e Recommended for molecular SCF calculations: basis sets such as SV(P), SVP,
6-31G* or 6-31G**.

e For accurate SCF calculations, triple-zeta basis sets may be used. They are usually
used with polarisation functions,

e 6-311G*: three contractions (311) for the valence shell, no polarisation functions
on H.

e 6-311G**: same as 6-311G* but with pol. func. on H.

e 6-311G(2df,2pd): same as 6-311G* but with 2p1d polarisation set on H and 2d1 f
set on other atoms.

e 6-311G(3df,3pd): same as 6-311G(2df,2pd) but with 3 d and 3 p sets.

o def2-TZVP: valence triple-zeta plus 1p polarisation for H, 2d1 f for B-Ne and
Al-Ar, 1pldl1f for Sc—Zn.

o def2-TZVPP: similar to def2-TZVP but with 2p1d polarisation for H.
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Recommendations for Hartree—Fock and DFT

e For routine work: SV(P) or 4-31G* or pc-1.
e For accurate work: def2-TZVP or 6-311G* or pc-2.
e For very accurate work: def2-TZVPP or 6-311G** or 6-311G(2df,2pd) or pc-3.

For some applications, diffuse functions must be added to obtain accurate (or even
meaningful) results.

e A plus sign is added to the basis (6-311+G*, 6-311+G(2df,2pd), etc.) when diffuse
functions are added to the nonhydrogen atoms.

e Two plus signs are added when also the H atoms carry diffuse functions
(6-311++G**, 6-311++G(2df,2pd), etc.)

e Diffuse functions are for instance required for anions, polar bonds, weak
intermolecular interactions, Rydberg orbitals and excitation energies.
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“def2” sets from the Turbomole basis-set library

e The “def2” basis sets form a system of segmented contracted basis sets for the
elements H-Rn for different levels of flexibility/accuracy.

e The basis sets are denoted def2-SV(P) to def2-QZVPP. They are designed to give

similar errors all accross the periodic table for a given basis-set type.

e At the Hartree—Fock and DFT levels, the extended QZVPP basis yields atomisation
energies (per atom) with an error < 1 kd/mol with respect to the basis-set limit. Other

sets yield (in kd/mol):

Basis Hartree—Fock DFT (BP-86)

mean o mean o
def2-SV(P) —145 153 —58 938
def2-SVP —-8.9 10.4 -2.0 8.8
def2-TZVP —3.7 3.4 —2.6 2.1
def2-TZVPP  —2.0 22  -11 1.7
def2-QZVP —0.2 0.6 —0.1 0.4
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Polarisation-consistent basis sets (pc-n)

Higher angular momentum functions are included based on energetical importance in
Hartree—Fock calculations.

Atom pc-0 pc-1 pc-2 pc-3 pc-4
C 3s2p  3s2pld  4s3p2dlf 6sbpdd2flg 8sTp6d3f2glh
Si 4s3p  4s3pld  5sdp2dlf 6sbpdd2flg Ts6p6d3f2glh

Systematic basis sets (pc-n with n = 0, 1, 2, 3, 4) for which results converge
monotonically to the Hartree—Fock limit. The Hartree—
Fock energy obtained in a basis with angular momentum functions up to L is well
described by

Ep = E. + A(L+1)exp(—BVL)

The pc-n basis sets are available for the elements H-Ar and can be augmented with
diffuse functions (aug-pc-n).

These basis sets use a general contraction scheme. AT



Segmented versus general contractions

e Consider the pc-1 basis for carbon (3s2p1d), which is of “double-zeta plus polarisation

(DZP)” quality.

S-TYPE FUNCTIONS
7 3
1252.600000000
188.570000000
42.839000000
11.818000000
556700000
542580000
160580000
P-TYPE FUNCTIONS
4 2
9.142600000
1.929800000
0.525220000
0.136080000
D-TYPE FUNCTIONS
1 1
0.800000000

oo w

005573400
041492000
182630000
461180000
449400000
000000000
000000000

oo ooooo

044464000
228860000
512230000
000000000

1.000000000

0.000000000
0.000277450
0.002560200
0.033485000
0.087579000
-0.537390000
0.000000000

0.000000000
0.000000000
0.000000000
1.000000000

0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
1.000000000

e The input for a program that cannot handle general contractions must list an s-type

CGTO built from the first 5 primitive GTOs, a second s-type CGTO built from the

primitives 2—6, etc.
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Performance of various basis sets (test set)

e The table shows mean absolute deviations in r. (pm), w. (cm~!) and intensity
(km/mol) relative to the Hartree—Fock limit.

Basis Size §(re) d(we) d(Intensity)

STO-3G 9 55 1423 22.8
pc-0 13 8.2 60.9 19.0
SVP 18 1.6 141 5.2
6-31G* 18 1.5 119 7.6
pc-1 18 1.8 11.8 5.4
cc-pVTZ 34 0.7 4.9 2.3
pc-2 34 0.3 3.1 4.3
cc-pvQZz 59 0.3 2.5 1.2
pc-3 64 <O0.1 0.3 0.9
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Performance of various basis sets for S»

The table shows deviations in D, (kJ/mol), 7. (pm) and w,. (cm~—!) relative to the ROHF
Hartree—Fock limit.

Basis Size §(D.) O(re) O(we)
pc-0 13 —220 20.3 —148
pc-1 18 —60 21 =17
pc-2 34 -19 0.5 —6
pc-3 64 -1 <0.1 <1
SV 13 —-235 171 —178
def2-SVP 18 —47 1.7 -3
def2-TZVP 37 -7 0.2 -2
def2-TZVPP 42 —6 0.2 -2
def2-QZVP 70 -2 <01 <1

¢ No significant difference between basis sets of similar size.
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Relevance of basis-set errors

The table shows the Hartree—Fock value and various further contributions to the harmonic
vibrational frequency of Ns.

Contribution we /cm~1
Near Hartree—Fock limit 2730.5
fc-CCSD(T) contribution (near basis-set limit) —367.1
fc-CCSDTQ contribution (cc-pVTZ basis) -9.1
fc-CCSDTQ5 contribution (cc-pVDZ basis) -3.9
Core-correlation contribution 9.8
Relativistic correction (Dirac-Coulomb) -0.8
Breit correction -0.5
Calculated value 2358.9
Experimental value 2358.6

e Hartree—Fock theory tends to overestimate vibrational frequencies (by ca. 10%).
Basis-set errors of the order of 1% are therefore fully acceptable.
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Concluding remarks on CGTO basis sets for SCF

e |t is recommended to run applications in a “double-zeta plus polarisation”-type basis
(DZP). For example,

o def2-SV(P): for H-Rn and programs that work efficiently with segmented
contractions.
e pc-1: for H-Ar and programs that work efficiently with general contractions.

e Itis recommended to investigate basis-set effects by repeating the DZP calculation in
a "triple-zeta plus polarisation™type basis. For example,

o def2-TZVP: for H-Rn and segmented contractions.
e pc-2: for H-Ar and general contractions.

e Similar procedures apply to STOs (DZP and TZP in 2DF and numerical AOs (DNP
and TNP in DMo13).

e Need for diffuse functions must be checked.
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Atomic natural orbital (ANO) basis sets

ANO basis sets are available for the atoms H-Cm.

These are large generally contracted basis sets that are particularly useful in

electron-correlation (also denoted post-Hartree—Fock) calculations.

The contraction coefficients are the natural orbitals obtained from atomic
post-Hartree—Fock calculations (e.g., CISD, MCPF).

Various states (also of ions) are averaged. Examples are:

Primitives CGTOs Hartree—Fock range
H 8s4p3d 6s4p3d 2s1p — 3s2pld
0] 14s9p4d3 f TsTpdd3 f 3s2pld — 4s3p2d1 f

S 17s12p5daf TsTpbdaf 4s3p2d — 5s4p3d2 f
Zn  21s15p10d6fdg 8sTp6d5bfdg 5s3p2d — 6s5pdd3f2g

Can be systematically enlarged and BSSE is small.
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Correlation-consistent basis sets

Analogous to ANOs, the aim of the correlation-consistent basis sets is to form
systematic sequencies of basis sets of increasing size and accuracy.

Usually, the correlation-consistent basis sets have generally contracted inner shells.
They are particularly useful in electron-correlation calculations.

Polarisation functions are added in groups that contribute almost equally to the
correlation energy.

In their simplest form, they are denoted cc-pVXZ, with X =D, T, Q, 5 ,6). “D” for
“double-zeta”, “T” for “triple-zeta”, and so on.

Diffuse functions can be added (aug-cc-pVXZ) as well as function to correlate the
inner shells (aug-cc-pCVXZ, aug-cc-pwCVXZ).

Basis sets such as aug-cc-pV(X+d)Z, cc-pVXZ-PP and cc-pVXZ-F12 exist
for selected atoms.
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MP2 correlation energies
e Valence-shell MP2 correlation energies of benzene. The basis-set limit is estimated

as AEypa = —1.0575 £ 0.0005 E,.

Basis Size AEMPQ/O/O AEMPQ-FlQ/O/O
aug-cc-pVDZ 192 76.8 98.4
aug-cc-pVTZ 414 91.2 99.6
aug-cc-pvQZz 756 96.1 99.9
aug-cc-pV5Z 1242 97.9 100.0
aug-cc-pV6Z 1896 98.8

def2-TZVP 222 88.2 99.1
def2-TZVPP 270 89.7 99.3
def2-QZVP 522 95.3 99.8

o Slater-type geminals of the form ¥l ¢ (1) (v) exp(—1.57,,) were used in the

MP2-F12 method for each orbital pair ;.

e With standard MP2, extremely large basis sets are required to capture 98%.
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Special-purpose basis sets / ECPs

Most basis sets have been optimised with respect to the total energy of an atom (or
molecule).

There exist basis sets that have been developed for the calculations of optical,
electric or magnetic properties.

Examples are the Sadlej basis sets for electric properties (dipole moment,
polarisability) or the IGLO basis sets for NMR chemical shifts.

In general, calculations of electric properties require diffuse functions. When those
are added to all angular-momentum shells of a given basis, the prefix aug is added to
the basis (aug-cc-pVXZ, aug-pc-n).

Sometimes, still more diffuse sets are required (d-aug- and t-aug- sets for
polarisabilites and hyperpolarisabilities).

Tight functions must be added when the wavefunction close
to a nucleus is important (e.g., electric-field gradient). QAT



Auxiliary basis sets

Thus far, we have discussed basis sets for the expansion of MOs and the electronic
wavefunction.

It is possible to save lots of computer time in DFT calculations when the electron
density is expanded in a basis set,

~ Y chxp(r)
P

In Turbomole nomenclature, such a basis is denoted jbas auxiliary basis.

When also orbital products ¢;x, are expanded to build the exchange matrix, a jkbas
auxiliary basis is needed.

For the products ;. that occur in MP2/CC2 theory, a cbas auxiliary basis is used.
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Again other auxiliary basis sets are used in explicitly-correlated methods (cabs).



Closing remarks on basis sets

For Hartree—Fock (and DFT), the ANO and correlation-consistent basis sets have no
advantages over SVP/pc-1 respectively TZVPP/pc-2.

Basis sets of at least quadruple-zeta quality are required for electron-correlation
treatments.

For very accurate electron-correlation calculations, basis sets larger than cc-pVQZ
etc. are needed, in conjunction with basis-set extrapolation.

Experience with explicitly-correlated theory using Slater-type geminals (two-particle
basis functions) indicates that basis sets beyond triple-zeta quality are no longer
needed.

Recipes:

o def2-SV(P) for DFT, check results with def2-TZVP.
o def2-TZVPP or cc-pVTZ-F12 for MP2-F12, CCSD-F12 etc.,
check results with def2-QZVPP or cc-pVQZ-F12.
e P AT



