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The Gaussian-product theorem

• The great success of GTOs is based on the fact that
all necessary integrals are easily evaluated
analytically.

• The most important reason for this efficiency is the
Gaussian-product theorem (GPT).  0
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• The figure shows the product of the (unnormalised) s-type GTOs
χa with exponent α = 0.25 at A = (1, 0, 0) and χb with exponent β = 0.50 at
B = (−1, 0, 0) ,

χa(r) = e−α(r−A)2 , χb(r) = e−β(r−B)2

• The two-centre product χa(r)χb(r) is again a Gaussian χp centred at the “centre of
gravity” P.



The Gaussian-product theorem

• The product of the GTOs χa and χb can be written as

χa(r)χb(r) = e−
αβ

α+β (A−B)2e−(α+β)(r−P)2

with
P =

αA + βB

α+ β

• The factor exp(− αβ
α+β (A−B)2) is known as pre-exponential factor. Obviously, this

factor vanishes for large distances between A and B .

• Note that for two like exponents of the order of 10−3 a−20 , the distance |A−B| must
be� 100 a0 to make the pre-exponential factor smaller than 10−6.



The overlap integral

• Using the GPT, We can easily compute the overlap integral Sab between two (real,
unnormalised) s-type Gaussians,∫

χa(r)χb(r)dr = e−
αβ

α+β (A−B)2
∫
e−(α+β)(r−P)2dr

= e−
αβ

α+β (A−B)2
∫
e−(α+β)r

2

dr

= e−
αβ

α+β (A−B)2
∫
e−(α+β)x

2

dx

∫
e−(α+β)y

2

dy

∫
e−(α+β)z

2

dz

= e−
αβ

α+β (A−B)2
(

π

α+ β

) 3
2

• This equation reveals another important property of integrals over Gaussians: the 3D
integral factorises into a product of three 1D integrals.



The overlap integral

• The figure shows the overlap integral Sab for two
s-type Gaussians with exponent α = β = 1 a−20 as a
function of the distance |A−B| (solid line).

• The dashed lines are overlap integrals with
exponents 10 times larger and 10 times smaller.  0
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• For the integral over contracted Gaussians (CGTOs), the overlap integral becomes

Sµν =

nµ∑
a=1

nν∑
b=1

caµSabcbν

• In general, a large number of integrals over primitive functions contribute to a
small number of integrals over CGTOs.



Primitive Cartesian GTOs

• The primitive Cartesian GTO is

χa(r) = xiAy
j
Az

k
A exp(−αr2A), rA = r−A

• Integrals over real-valued spherical-harmonic GTOs

χ′a(r) = Slm(xA, yA, zA) exp(−αr2A)

(where Slm(xA, yA, zA) is a real solid harmonic), can be obtained by transforming the
integrals over primitive Cartesian GTOs with a corresponding transformation matrix.

S′ = CT SC

• Usually, this transformation is done after the contraction:

primitive Cartesian GTOs⇒ contracted Cartesian GTOs
⇒ contracted spherical-harmonic GTOs



Primitive Cartesian GTOs
• As already mentioned, the factorisation of the Cartesian GTOs is an important

property,
χa =

{
xiA exp(−αx2A)

}{
yiA exp(−αy2A)

}{
ziA exp(−αz2A)

}
• We can thus focus our attention on only one Cartesian component, say x,

Gi(x, α,Ax) = xiA exp(−αx2A)

• The self overlap of the x component is

〈Gi|Gi〉 =
(2i− 1)!!

(4α)i

√
π

2α
, 〈G0|G0〉 =

√
π

2α

• All we have used thus far is the definite integral∫ ∞
−∞

x2ne−ax
2

dx =
1 · 3 · 5 . . . (2n− 1)

(2a)n

√
π

a



Recurrence relations for Cartesian GTOs

• The differentiation property of Cartesian GTOs is needed on several occasions,

∂Gi
∂Ax

= −∂Gi
∂x

= 2αGi+1 − iGi−1

• In words, differentation of a dxy-type GTO with respect to x gives a linear combination
of py and fx2y, etc.

• For higher derivatives, we obtain

∂n+1Gi

∂An+1
x

=

(
∂

∂Ax

)n
(2αGi+1 − iGi−1) = 2α

∂nGi+1

∂Anx
− i ∂

nGi−1
∂Anx

• We thus find (besides Gi+1 = xAGi):

Gn+1
i = 2αGni+1 − iGni−1, with Gni =

∂nGi
∂Anx



Gaussian overlap distributions
• We define the Gaussian overlap distribution

Ωab(r) = χa(r)χb(r)which factorises as

Ωab(r) = Gi(x, α,Ax)Gj(x, β,Bx) · · · = Ωxij(x, α, β,Ax, Bx) . . .

• Due to the GPT, Ωxij may be written as

Ωxij = Kx
abx

i
Ax

j
B exp(−ηx2P), with η = α+ β

Kx
ab is the x component of the pre-exponential factor.

• In the above equation, we give x relative to Ax, Bx and Px. We therefore rewrite the
equation using

xA = x−Ax = x− Px + (Px −Ax) = x− Px +XPA = xP +XPA

xB = x−Bx = x− Px + (Px −Bx) = xP +XPB



Properties of overlap distributions

• We have the obvious relationships

xAΩxij = Ωxi+1,j , xBΩxij = Ωxi,j+1, XABΩxij = Ωxi,j+1 − Ωxi+1,j

• Differentiating the overlap distributions yields

∂Ωxij
∂Ax

= 2αΩxi+1,j − iΩxi−1,j ,
∂Ωxij
∂Bx

= 2βΩxi,j+1 − j Ωxi,j−1

• We furthermore note that

XPA = Px −Ax =
αAx + βBx

η
− α+ β

η
Ax =

β

η
(Bx −Ax) = −β

η
XAB

XPB = Px −Bx =
αAx + βBx

η
− α+ β

η
Bx =

α

η
(Ax −Bx) =

α

η
XAB



The Obara–Saika scheme for Sij

• We consider the integral

Sij =

∫ ∞
−∞

Ωxijdx

• This integral is invariant to a translation of the coordinate system along the x-axis,

∂Sij
∂Ax

+
∂Sij
∂Bx

= 0

• This yields the translational recurrence relation

2αSi+1,j − i Si−1,j + 2βSi,j+1 − j Si,j−1 = 0

• This recurrence relation alone is not useful, because there are two terms with
“quantum number” i+ j + 1.



The Obara–Saika scheme for Sij
• In order to be useful, the translational recurrence relation

2αSi+1,j − i Si−1,j + 2βSi,j+1 − j Si,j−1 = 0

must be combined with the horizontal recurrence relation,

Si,j+1 − Si+1,j = XABSij

• By doing this, we obtain the Obara–Saika (OS) recurrence relations for the Cartesian
overlap integrals,

Si+1,j = XPASij +
1

2η
(i Si−1,j + j Si,j−1)

Si,j+1 = XPBSij +
1

2η
(i Si−1,j + j Si,j−1)

• We start with S00 = Kx
ab

√
π
η and then compute

S10 = XPAS00, S20 = XPAS10 +
1

2η
S00, etc.



The Obara–Saika scheme for Sij

• The fundamental ideas are:

1. Translational invariance:
∂Sij/∂Ax + ∂Sij/∂Bx = 0

2. Horizontal recurrrence:
xB − xA = XAB
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• Each Sij in the triangle is computed from one of the two above it and from the two
above that one.

• The target integral Sij may be generated in many different ways.

• Note that horizontal recurrrence relation can be applied to transfer “quantum
numbers” from i to j and vice versa for all kinds of basis functions, also contracted
Gaussians.

〈xAχµ|χν〉 = 〈χµ|xBχν〉 −XAB〈χµ|χν〉



Obara–Saika for multipole moments
• The Obara–Saika scheme may be applied to multipole-moment schemes in a slightly

modified form,
Sefgab = 〈χa|xeC y

f
C z

g
C|χb〉 = SeijS

f
klS

g
mn

• The x component is

Seij = 〈Gi|xeC|Gj〉 =

∫ ∞
−∞

xeCΩxijdx

• Translational invariance for this integral means that

∂Seij
∂Ax

+
∂Seij
∂Bx

+
∂Seij
∂Cx

= 0

• Furthermore, the horizontal recurrence relation for the order of the multipole operator
is (xC = xA +XAC, etc.)

Se+1
ij = Sei+1,j +XACS

e
ij = Sei,j+1 +XBCS

e
ij



Obara–Saika for multipole moments

• Putting it all together yields

Sei+1,j = XPAS
e
ij +

1

2η

(
i Sei−1,j + j Sei,j−1 + eSe−1ij

)
Sei,j+1 = XPBS

e
ij +

1

2η

(
i Sei−1,j + j Sei,j−1 + eSe−1ij

)
Se+1
ij = XPCS

e
ij +

1

2η

(
i Sei−1,j + j Sei,j−1 + eSe−1ij

)
• These recurrence relations may be used in conjunction with the horizontal

recurrences
Se+1
ij = Sei+1,j +XACS

e
ij = Sei,j+1 +XBCS

e
ij

and
Sei,j+1 = XABS

e
ij + Sei+1,j



Differential operators

• We now consider the integrals in a slightly modified form,

Defg
ab = 〈χa|

∂e

∂xe
∂f

∂yf
∂g

∂zg
|χb〉 = De

ijD
f
klD

g
mn

• The x component is

De
ij = 〈Gi|

∂e

∂xe
|Gj〉 =

∫ ∞
−∞

Gi
∂eGj
∂xe

dx

• The trick we use here is that we can differentiate the Gaussian Gi(x, α,Ax) with
respect to the electron coordinate x or the basis-function centre Ax, because the
function depends on the difference (x−Ax)

∂Gi(x, α,Ax)

∂x
= −∂Gi(x, α,Ax)

∂Ax



Differential operators
• Since ∂Gi/∂x = −∂Gi/∂Ax and ∂Sij/∂Ax = −∂Sij/∂Bx, we obtain

De
ij = ∂eSij/∂A

e
x = (−1)e∂eSij/∂B

e
x

• Furthermore, since ∂XPA/∂Ax = −β/η and ∂XPB/∂Ax = α/η, we obtain the
Obara–Saika recurrence relations

De
i+1,j = XPAD

e
ij +

1

2η

(
iDe

i−1,j + j De
i,j−1−2βeDe−1

ij

)
De
i,j+1 = XPBD

e
ij +

1

2η

(
iDe

i−1,j + j De
i,j−1+2αeDe−1

ij

)
De+1
ij = 2αDe

i+1,j − iDe
i−1,j

• The horizontal recurrence relation becomes

De
i,j+1 −De

i+1,j = XABD
e
ij + eDe−1

ij



Momentum and kinetic-energy integrals
• Consider the one-electron integrals

Pab = −i〈χa|∇|χb〉 (linear momentum)
Lab = −i〈χa|r×∇|χb〉 (angular momentum)

Tab = −1

2
〈χa|∆|χb〉 (kinetic energy)

• The z components of the momentum integrals, for example, may be computed from

P zab = −iSijSklD
1
mn

Lzab = −i〈χa|x
∂

∂y
− ∂

∂x
y|χb〉 = −i

(
S1
ijD

1
klSmn −D1

ijS
1
klSmn

)
• For the kinetic-energy integral, we obtain

Tab = −1

2

(
D2
ijSklSmn + SijD

2
klSmn + SijSklD

2
mn

)



Coulomb integrals over spherical Gaussians

• We consider the electrostatics of the (normalised) spherical Gaussian charge
distributions

ρp(r) =
( η
π

)3/2
exp(−ηr2P), ρq(r) =

(
ζ

π

)3/2

exp(−ζr2Q)

• The normalisation means that∫
ρp(r)dr =

∫
ρq(r)dr = 1

• The electrostatic potential at C due to ρp is

Vp(C) =

∫
ρp(r)

rC
dr

(0,0,0)

C

r rC = | r ! rC |

! 

" p r( )



Coulomb integrals over spherical Gaussians

• The energy of repulsion between the charge distributions ρp and ρq is

Vpq =

∫ ∫
ρp(r)ρq(r

′)

|r− r′|
drdr′

• The difficulty with this integral and Vp(C) is that they do not factorise into products of
x, y and z components due to the distances (square roots) rC and |r− r′|.

• Integrals over rk with k even are easy, those with k odd are difficult.

• However, the integrals factorise again after the integral transform

1

rC
=

1√
π

∫ ∞
−∞

exp(−r2C t2)dt

• This is the key step in treating Coulomb integrals.



Coulomb integrals over spherical Gaussians

• In the integral Vp(C), we have a product of two Gaussians: ρp(r) and exp(−r2C t2).

• This product yields a new Gaussian centred at

S = (ηP + t2C)/(η + t2)

according to the Gaussian-product theorem (GPT),

Vp(C) =
η3/2

π2

∫ ∞
−∞

{∫
exp[−(η + t2)r2S]dr

}
exp

(
− ηt2

η + t2
R2

PC

)
dt

• The spatial integral can easily be computed and we obtain

Vp(C) =
2η3/2√
π

∫ ∞
0

(η + t2)−3/2 exp

(
−ηR2

PC

t2

η + t2

)
dt

which can be solved after substituting u2 = t2/(η + t2).



The Boys function

• Since dt =
√
η(1− u2)−3/2du, we obtain

Vp(C) =

√
4η

π

∫ 1

0

exp(−ηR2
PCu

2)du

• The integration over all space (x, y and z from −∞ to∞) has been replaced by a
one-dimensional integration over a finite interval.

• This integral is the Boys function Fm(x) with m = 0,

Fm(x) =

∫ 1

0

t2m exp(−xt2)dt, F0(x) =

√
π

4x
erf(
√
x)

(erf is the error function).

• We can thus write
Vp(C) =

√
4η

π
F0(ηR2

PC)



Calculating the Boys function
• The Boys function can be computed efficiently by pretabulating Fm(xk) for a series

of grid points xk.

• For example, we can tabulate Fm(xk) for m = 0, 1, 2, . . . , mmax + 5 at regular
intervals x1 = 0.0, x2 = 0.1, x3 = 0.2, . . . , xn = 2mmax + 36.

• The Boys functions Fm(x) may then be computed with machine precision from a
six-term Taylor expansion around xk,

Fm(x) = Fm(xk + ∆x) = Fm(xk)− Fm+1(xk)∆x+ 1
2Fm+2(xk)(∆x)2

− 1
6Fm+3(xk)(∆x)3 + 1

24Fm+4(xk)(∆x)4 − . . .

x
4
           x

5                 
x

6                
x

7                 
x

8                
x

9

F
7

F
6

F
5

F
4

F
3

F
2

F
1

F
0

x

!x

The figure shows the
grid points involved in
computing F2(x) with
x7 < x < x8.



Calculating the Boys function

• We note in passing that the exponential exp(−x) can be computed similarly by
pretabulating exp(−xk) at a number of grid points xk.

• This number can be chosen such that a four-term Taylor expansion is enough to
obtain machine precision.

• At the grid points xk, the Boys functions are computed by downward recursion,

Fm(x) =
2xFm+1(x) + exp(−x)

2m+ 1
, F∞(x) = 0

• Fm(x) can be set equal to zero for sufficiently large m.

• For large x, we have

Fm(x) ≈ (2m− 1)!!

2m+1

√
π

x2m+1
, (x large)



The OS scheme for one-electron Coulomb integrals
• We write the Coulomb integral as

Θ0
ijklmn = 〈χa|

1

rC
|χb〉 =

∫
Ωab(r)

rC
dr =

∫
ΩxijΩ

y
klΩ

z
mn

rC
dr

• We obtain Θ0
ijklmn from ΘN

000000 = 2π
η K

xyz
ab FN (ηR2

PC) and

ΘN
i+1,jklmn = XPAΘN

ijklmn +
1

2η
(iΘN

i−1,jklmn + jΘN
i,j−1,klmn)

− XPCΘN+1
ijklmn −

1

2η
(iΘN+1

i−1,jklmn + jΘN+1
i,j−1,klmn)

ΘN
i,j+1,klmn = XPBΘN

ijklmn +
1

2η
(iΘN

i−1,jklmn + jΘN
i,j−1,klmn)

− XPCΘN+1
ijklmn −

1

2η
(iΘN+1

i−1,jklmn + jΘN+1
i,j−1,klmn)



The McMurchie–Davidson scheme

• Before we turn our attention to the two-electron repulsion integrals, we note that the
following three integral-evaluation techniques are currently in use:

1. The Obara–Saika scheme
2. The McMurchie–Davidson scheme
3. Rys quadrature

• The idea of the McMurchie–Davidson scheme is to expand the overlap distribution
Ωab in Hermite Gaussians,

Ωxij =

i+j∑
t=0

Eijt Λt, Λt = (∂/∂Px)t exp(−ηx2P)

and similarly for Ωykl and Ωzmn.

• In the McMurchie–Davidson (MD) scheme, integrals over Hermite Gaussians are
evaluated and transformed to the Cartesian Gaussian basis using the expansion
coefficients Eijt .



The MD expansion coefficients

• In order to compute the expansion coefficients Eijt , we consider the incremented
distribution

Ωxi+1,j =

i+j+1∑
t=0

Ei+1,j
t Λt

• Of course, Ωxi+1,j = xAΩxij = xPΩxij +XPAΩxij , and furthermore

xPΛt = tΛt−1 +
1

2η
Λt+1

• We thus obtain

xPΩxij =

i+j∑
t=0

Eijt (tΛt−1 +
1

2η
Λt+1) =

i+j+1∑
t=0

{
(t+ 1)Eijt+1 +

1

2η
Eijt−1

}
Λt

• Here, we assume that Eijt = 0 when t < 0 or t > i+ j.



The MD expansion coefficients

• We have established that

Ωxi+1,j =

i+j+1∑
t=0

Ei+1,j
t Λt

and
Ωxi+1,j =

i+j+1∑
t=0

{
(t+ 1)Eijt+1 +

1

2η
Eijt−1 +XPAE

ij
t

}
Λt

• We therefore arrive at the following McMurchie–Davidson recurrence relations for the
expansion coefficients:

Ei+1,j
t =

1

2η
Eijt−1 +XPAE

ij
t + (t+ 1)Eijt+1

Ei,j+1
t =

1

2η
Eijt−1 +XPBE

ij
t + (t+ 1)Eijt+1

E00
0 = Kx

ab



The McMurchie–Davidson scheme
• For all three Cartesian coordinates, we have

Λtuv = ΛtΛuΛv =

(
∂

∂Px

)t(
∂

∂Py

)u(
∂

∂Pz

)v
exp(−ηr2P)

and
Ωab =

i+j∑
t=0

k+l∑
u=0

m+n∑
v=0

Eijt E
kl
u E

mn
v Λtuv

• Thus, using the MD scheme, the Coulomb integrals becomes

Θ0
ijklmn =

i+j∑
t=0

k+l∑
u=0

m+n∑
v=0

Eijt E
kl
u E

mn
v

∫
Λtuv
rC

dr

• Furthermore, ∫
Λtuv
rC

dr =
2π

η

(
∂

∂Px

)t(
∂

∂Py

)u(
∂

∂Pz

)v
F0(ηR2

PC)



The McMurchie–Davidson recurrence relations
• The Coulomb integrals are written as

Θ0
ijklmn =

i+j∑
t=0

k+l∑
u=0

m+n∑
v=0

Eijt E
kl
u E

mn
v

∫
Λtuv
rC

dr

=
2π

η

i+j∑
t=0

k+l∑
u=0

m+n∑
v=0

Eijt E
kl
u E

mn
v R0

tuv

• Here, we have introduced the auxiliary integrals

RN000 = (−2η)NFN (ηR2
PC)

• The integrals R0
tuv are obtained from the recurrence relations

RNt+1,uv = tRN+1
t−1,uv +XPCR

N+1
tuv

RNt,u+1,v = uRN+1
t,u−1,v + YPCR

N+1
tuv

RNtu,v+1 = v RN+1
tu,v−1 + ZPCR

N+1
tuv



Gauß–Rys quadrature
• We have seen that the Coulomb integrals are obtained as a linear combination of

Boys functions

Θ0
ijklmn =

M∑
N=0

cNFN (ηR2
PC), M = i+ j + k + l +m+ n

where the coefficients cN depend on the exponents and coordinates involved.

• Since FN (x) =
∫ 1

0
t2N exp(−xt2)dt, we may write

Θ0
ijklmn =

∫ 1

0

pM (t2) exp(−ηR2
PCt

2)dt

• pM (t2) is a polynomial in t2 of degree M . The integral can be evaluated from a
Gauß–Rys quadrature with L =

[
M
2

]
+ 1 quadrature points (roots tλ and weights wλ),

Θ0
ijklmn =

L∑
λ=1

wλ pM (t2λ) exp(−ηR2
PCt

2
λ)



Two-electron Coulomb integrals

• We now turn our attention to the two-electron integral Vpq, which is the energy of
repulsion between the (normalised) charge distributions ρp and ρq,

Vpq =

∫ ∫
ρp(r)ρq(r

′)

|r− r′|
drdr′

• Integration over r′ yields

Vpq =

√
4ζ

π

∫
F0(ζr2Q)ρp(r)dr

• The charge distribution ρp(r) is a Gaussian, F0(ζr2Q) is an integral over a Gaussian,
and their product is again (an integral over) a Gaussian by virtue of the GPT.

• The integration over r is easy and the integration over t
[hidden in F0(ζr2Q)] remains.



Two-electron Coulomb integrals

• We obtain

Vpq =

√
4ηζ

π

∫ 1

0

ζ

(ηt2 + ζ)3/2
exp

(
−
ηζt2R2

PQ

ηt2 + ζ

)
dt

• This integral can be written as

Vpq =

√
4ω

π
F0(ωR2

PQ), ω =
ηζ

η + ζ

which can be verified by substituting u2 = η+ζ
ηt2+ζ t

2. ω is the reduced exponent.

• Recurrence relations for Cartesian Gaussians other than s-type functions may be
obtained in a mannner similar to the one-electron Coulomb integrals, e.g., with the
auxiliary functions

ΘN
0000;0000;0000 =

2π5/2

ηζ
√
η + ζ

Kxyz
ab Kxyz

cd FN (ωR2
PQ)



Two-electron Coulomb integrals

• The two-electron Coulomb integrals are

〈ab|r−112 |cd〉 = gabcd = Θ0
iji′j′;klk′l′;mnm′n′

• Since there are four Gaussians involved (χa, χb, χc and χd) the total number of
integrals scales as N4, where N is the size of the basis set.

• When we increase the basis set in a series of calculations of the same small
molecule, there is little we can do about the O(N4) scaling.

• When we run calculations on a series of molecules of different size (e.g., on the
alkanes CNH2N+2) in a given Gaussian basis, then many two-electron Coulomb
integrals are very small and can be ignored.

• In that case, the number of significant integrals scales as O(N2).



Scaling of two-electron Coulomb integrals
• To facilitate the discussion, we consider two-electron Coulomb integrals over

(unnormalized) s-type Gaussians,

gabcd = 〈ab|r−112 |cd〉 = Θ0
0000;0000;0000 =

2π5/2

ηζ
√
η + ζ

Kxyz
ab Kxyz

cd F0(ωR2
PQ)

• We note that

2π5/2

ηζ
√
η + ζ

=

√
4ω

π

(
π

η

)3/2(
π

ζ

)3/2

and Sab =

(
π

η

)3/2

Kxyz
ab

• The two-electron Coulomb integral can thus be written as

gabcd =

√
4ω

π
SabScdF0(ωR2

PQ)

• We furthermore know that

F0(x) ≤ 1 and F0(x) ≤ 1

2

√
π

x



Scaling of two-electron Coulomb integrals

• We find that the Coulomb integral is bounded by

gabcd ≤ SabScd min

(√
4ω

π
,

1

RPQ

)

• For large molecular systems, the number of nonzero overlap integrals Sab scales as
O(N).

• When the number of significant overlap integrals begins to increase as N , the
number of significant two-electron Coulomb integrals will begin to increase as N2.

• Note that R−1PQ will not be smaller than 10−6 in any practical calculation.

• The number of significant two-electron Coulomb integrals will depend at least
quadratically on the size of the system.



Prescreening of integrals
• In large systems, the number of significant two-electron integrals increases only

quadratically.

• In order to exploit this fact, we need a strict upper bound for the magnitude of the
integrals.

• Such a bound is provided by the Schwarz inequality,

|(ab|cd)| ≤ QabQcd with Qab =
√

(ab|ab) and Qcd =
√

(cd|cd)

• Before an integral is computed, the product QabQcd is compared with some
threshold τ . The integral is only computed if

QabQcd ≥ τ

• Typical values are τ = 10−7 − 10−8 for small molecules.

• The upper bound is also useful when we ask how the integral contributes to the
energy or the Fock matrix.



Prescreening of integrals
• In closed-shell Hartree–Fock theory, the Fock matrix is

Fµν = hµν +
∑
κλ

Dκλ[2(µν|κλ)− (µκ|νλ)]

• Using real basis functions, we have the following permutational symmetry among the
two-electron integrals:

(µν|κλ) = (νµ|κλ) = (νµ|λκ) = (µν|λκ) = (κλ|µν) = (κλ|νµ) = (λκ|νµ) = (λκ|µν)

• Hence, only ca. 1/8 of the total number of integrals is used:

Fµν ← Fµν + 4Dκλ(µν|κλ)

Fκλ ← Fκλ + 4Dµν(µν|κλ)

Fµκ ← Fµκ − Dνλ(µν|κλ)

Fµλ ← Fµλ − Dνκ(µν|κλ)

Fνκ ← Fνκ − Dµλ(µν|κλ)

Fνλ ← Fνλ − Dµκ(µν|κλ)



Prescreening of integrals

• The density matrix elements are known when the integrals are evaluated. They can
be incorporated in the prescreening tests.

• The evaluation of the integral (µν|κλ) is only needed if

QµνQκλDmax ≥ τ

where
Dmax = max {4|Dµν |, 4|Dκλ|, |Dµκ|, |Dµλ|, |Dνκ|, |Dνλ|}

• Concerning the Hartree–Fock energy, we could screen with

QµνQκλmax {4|DµνDκλ|, |DµκDνλ|, |DνκDµλ|} ≥ τ

but this leaves an unmonitored error in the Fock matrix.

• This last screening is however useful for energy-related properties such as the
nuclear forces.



The direct SCF procedure
• In conventional SCF procedures, the integrals are computed only once and stored on

disk for later use. In such procedures, the Schwarz screening helps to eliminate
integrals once and for all.

• In direct SCF procedures, the integrals are re-evaluated in each SCF iteration.

• The prescreening is then performed in conjunction with the density matrix, which is
usually done for batches of integrals,

DMN = max |Dµν |
µ ∈ M, ν ∈ N

QMN = max |Qµν |
µ ∈ M, ν ∈ N

• Furthermore, important savings in the number of calculated integrals may be
obtained by considering the change of the Fock matrix in two consecutive iterations.

• The screening can then be performed using the change of the density matrix,

∆D(i)
µν = D(i)

µν −D(i−1)
µν



The direct SCF procedure

• In the direct SCF procedure, the Fock matrix in iteration
number i is computed from

F (i)
µν = F (i−1)

µν +
∑
κλ

∆D
(i)
κλ [2(µν|κλ)− (µκ|νλ)]

• Only those integrals are required which are related to significant changes in the
density matrix from one iteration to the next.

• Close to convergence, screening with ∆D(i) is extremely efficient.

• Furthermore, if the Coulomb and exchange matrices are constructed separately, we
have the following two screening criteria:

QµνQκλ {4|Dµν |, 4|Dκλ|} ≥ τ
QµνQκλ {|Dµκ|, |Dµλ|, |Dνκ|, |Dνλ|} ≥ τ



The RI approximation

• The idea of the resolution-of-the-identity (RI) approximation is to avoid four-index (or
four-centre) two-electron integrals.

• In a naive approach, we can insert an approximation to the unity operator
represented in an orthonormal auxiliary basis {ϕP },

1̂ ≈
∑
P

|ϕP 〉〈ϕP |

• We then obtain, for example,

(µν|κλ) ≈
∑
P

(µν|P )〈Pκλ〉, 〈Pκλ〉 =

∫
ϕP (1)χκ(1)χλ(1)dr1

• (µν|P ) is a three-index two-electron repulsion integral,

(µν|P ) =

∫ ∫
χµ(1)χν(1)r−112 ϕP (2)dr1dr2



RI approximation with non-orthonormal basis

• If we approximate the unity operator by a projection operator onto a non-orthonormal
auxiliary basis {χP }, then we have

1̂ ≈
∑
P,Q

|χP 〉S−1PQ〈χQ|

• Note that S−1PQ is a matrix element of the inverse overlap matrix,

S−1PQ ≡
(
S−1

)
PQ

• We obtain
(µν|κλ) ≈

∑
PQ

(µν|P )S−1PQ〈Qκλ〉

• It has turned out that the most accurate RI approximation is obtained by using
the Coulomb metric.



RI approximation with Coulomb metric

• Using the Coulomb metric, we approximate the unity operator as follows:

1̂ ≈
∑
P,Q

|χP 〉(P |Q)−1(χQ|,

where
(χQ| =

∫
χQ(2)r−112 dr2

• Note that (P |Q)−1 is a matrix element of the inverse of the two-index Coulomb
integrals,

(P |Q)−1 ≡
(
C−1

)
PQ

, CPQ =

∫ ∫
χP (1)r−112 χQ(2)dr1dr2

• We obtain
(µν|κλ) ≈

∑
PQ

(µν|P )(P |Q)−1(Q|κλ)



RI approximation with Coulomb metric

• Alternatively, we expand the orbital product χκχλ in a basis {χP },

χκχλ ≈ χ̃κχλ =
∑
P

cκλP χP

• We then minimise the self-repulsion of the error,

(κλ− κ̃λ|κλ− κ̃λ) = min

• This immediately leads to the set of linear equations∑
Q

(P |Q)cκλQ = (P |κλ) ∀P ⇒ cκλP =
∑
Q

(P |Q)−1(Q|κλ)

• Hence,
(µν|κλ) ≈

∑
P

(µν|P )cκλP =
∑
PQ

(µν|P )(P |Q)−1(Q|κλ)



Robust fitting

• The RI approximation can be inserted in such a manner, that the error in the target
integral is only quadratic in the error of the fit,

(µν|κλ) ≈
∑
P

cµνP (P |κλ) +
∑
Q

(µν|Q)cκλQ −
∑
PQ

cµνP (P |Q)cκλQ

• For Coulomb integrals, as before, this leads to

(µν|κλ) ≈
∑
PQ

(µν|P )(P |Q)−1(Q|κλ)

• The robust fitting is, however, important for other two-electron integrals, for example
those over the operator f(r12),

(µν|f(r12|κλ) ≈
∑
P

cµνP (P |f(r12|κλ) +
∑
Q

(µν|f(r12|Q)cκλQ −
∑
PQ

cµνP (P |f(r12|Q)cκλQ



Various applications of the RI approximation

• The RI approximation is for example used to accelerate the calculation of the
Coulomb operator Ĵ (RI-J approximation), especially in DFT.

• The RI approximation can also be used to accelerate the calculation of the exchange
operator K̂ (RI-JK approximation) in Hartree–Fock theory or DFT with hybrid
functional (e.g., B3LYP).

• Finally, it can also be used to approximate integrals of the type (IA|JB), where I, J
are occupied Hartree–Fock orbitals and A,B are virtual Hartree–Fock orbitals. These
integrals occur in the MP2 and CC2 theories.

• Clearly, different basis sets are needed to approximate orbital products of the types
ϕIϕI (RI-J), ϕIχµ (RI-JK) and ϕIϕA (cbas in Turbomole).

• These three types of auxiliary basis sets have been designed and optimised for the
Turbomole basis sets.



RI-J approximation

• In the RI-J approximation, the electron density is expanded in an appropriate
auxiliary basis,

Jµν = (µν|ρ) ≈
∑
P

(µν|P )cρP =
∑
P

∑
κλ

(µν|P )cκλP Dκλ

=
∑
PQ

∑
κλ

(µν|P )(P |Q)−1(Q|κλ)Dκλ

• The formal scaling is no longer N4 but rather N3, assuming that the auxiliary basis
increases linearly with system size.

• It is possible to obtain accurate results (with an error of ca. 0.1 mEh per atom) with
auxiliary basis sets that are about three times larger than the orbital basis.

• Asymptotically, the construction of the Coulomb matrix will scale as N2, as before,
but with a much smaller prefactor.



RI-JK approximation

• In the RI-JK approximation, the RI approximation is not only used for the Coulomb
matrix but also for the exchange matrix,

Kµν =
∑
κλ

Dκλ(µκ|νλ) ≈
∑
PQ

∑
κλ

(µκ|P )(P |Q)−1(Q|νλ)Dκλ

• The formal scaling is still N4, as before.

• The RI-JK approximation is very useful when relatively large basis sets are used, for
example when the Hartree–Fock calculation is followed by a post-Hartree–Fock
treatment.

• Similar algorithms have been developed for the RI-MP2 and RI-CC2 methods. The
formal scaling is still N5 for these methods, as before, but with a much smaller
prefactor.


