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The Gaussian-product theorem

1

The great success of GTOs is based on the fact that Iy
all necessary integrals are easily evaluated oo p
analytically. T a \
The most important reason for this efficiency is the ozl /
Gaussian-product theorem (GPT). o k=2

The figure shows the product of the (unnormalised) s-type GTOs
Xa With exponent o = 0.25 at A = (1,0,0) and y;, with exponent 8 = 0.50 at
B =(-1,0,0),
2 2
Xa(r) = e =&y (r) = e 0B

The two-centre product x,(r)xs(r) is again a Gaussian x,, centred at the “centre of

ravity” P.
graviy AT



The Gaussian-product theorem

e The product of the GTOs x, and x; can be written as

—_ 9B (A_B)? _(a r—P)2
Xa(T)xp(r) = e~ a5 (A7BY gm (et A)xP)

with
aA + (B

a+f

e The factor exp(—;‘—fﬁ(A — B)?) is known as pre-exponential factor. Obviously, this

factor vanishes for large distances between A and B.

* Note that for two like exponents of the order of 10~ a, 2, the distance |A — B| must
be >> 100 a( to make the pre-exponential factor smaller than 10-6.
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The overlap integral

e Using the GPT, We can easily compute the overlap integral S,, between two (real,
unnormalised) s-type Gaussians,

[ xateoyie = e FH A [ ey,
— ¢~atp(A- B)z/ef(‘”*g)ﬁdr
_ 2 (A-B) / e~ (@B gy / e—(@B) g / (B2 g,

3
_ o5 (a-By (” )
a+ 0

e This equation reveals another important property of integrals over Gaussians: the 3D
integral factorises into a product of three 1D integrals. QAT



The overlap integral

e The figure shows the overlap integral S,; for two
s-type Gaussians with exponent o = 5 =1 %_2 asa

function of the distance |A — B| (solid line).

e The dashed lines are overlap integrals with

exponents 10 times larger and 10 times smaller.

e For the integral over contracted Gaussians (CGTOs), the overlap integral becomes

,Lw - E § Cap abcbu

e In general, a large number of integrals over primitive functions contribute to a
small number of integrals over CGTOs.
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Primitive Cartesian GTOs
e The primitive Cartesian GTO is
Xa(r) = z 54 25 exp(—ard), ra=r—A
e Integrals over real-valued spherical-harmonic GTOs
X (t) = Sim (A, Ya, 28) exp(—ari)

(where S;.(za,ya,za) is a real solid harmonic), can be obtained by transforming the
integrals over primitive Cartesian GTOs with a corresponding transformation matrix.

s =c’sc
e Usually, this transformation is done after the contraction:

primitive Cartesian GTOs = contracted Cartesian GTOs
= contracted spherical-harmonic GTOs Q(IT



Primitive Cartesian GTOs

As already mentioned, the factorisation of the Cartesian GTOs is an important
property, _ 4 4
Xa = {2 exp(—az})} {yh exp(—ayi)} {74 exp(—az})}

We can thus focus our attention on only one Cartesian component, say z,

Gi(z,a,Ay) = xiA exp(—ozaci)

The self overlap of the = component is

-1 [« T
(Gi|Gy) = W\/;’ (Go|Go) = By

All we have used thus far is the definite integral

/°° oyt L35, 2n—1) [7
,Oox ‘ N (2a)" a

AT



Recurrence relations for Cartesian GTOs

The differentiation property of Cartesian GTOs is needed on several occasions,

0G; _ 0G;
0A, Oz

=2aGip1 —iGig

In words, differentation of a d,,,-type GTO with respect to « gives a linear combination
of p, and f,2,, etc.

For higher derivatives, we obtain

oG, (D
oAz~ \ 94,

9"Gin _ 0"Gi
9An 9An

) (QOéGZ'+1 —1 Gifl) = 2«

We thus find (besides G; 1 = 24 G;):
"G,

o4z AT

Gl =20G),  —iGl,,  with GI'=



Gaussian overlap distributions

e We define the Gaussian overlap distribution
which factorises as Qap(r) = Xa(r)x6(r)
Qap(r) = Gi(z,a, Az)Gj(x, B, By) - - = Qj(z,0, B, Ay, By) - ...
e Due to the GPT, Qf; may be written as
Q= K& 2k al exp(—nad), with n=a+ 4

K7, is the « component of the pre-exponential factor.

¢ In the above equation, we give = relative to A,, B, and P,. We therefore rewrite the
equation using
za=x—Ay=x—P,+ (P, —A;) =2 — P, + Xpa = zp + Xpa
$B::L‘fB$:$7Px+(meBz):xP+XpB

AT



Properties of overlap distributions

e We have the obvious relationships

SL’AQ% =0

xT xr
it 7Bl =

Q

o Differentiating the overlap distributions yields

852?7 xT . xT :ZI.;]
A, ~ 20 iy, G
e We furthermore note that
AQ? BiL’
XPA:PI*AIZO[ +6 *a—i_ﬁAz:
Ui Ui
Aw BZ
Xpp = P, — By = MAe t0B: ot Py
Ui Ui

x x
ijr1 Xapll; =0

xTr xTr

i1 — Qi
xT . x

2607 41 — 30

é(Bac - Ax) - *éXAB
n n

(0% «
*(Ax - B:r) = *XAB
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The Obara—Saika scheme for S;;

We consider the integral

This integral is invariant to a translation of the coordinate system along the z-axis,

o4, "o, ~°

This yields the franslational recurrence relation
208i41,5 —18i-1,; +2B8Sij41 — 7 5i,j—1 =0

This recurrence relation alone is not useful, because there are two terms with
“quantum number” i 4+ j + 1.
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The Obara—Saika scheme for S;;
e In order to be useful, the translational recurrence relation
208i41,5 — 15i-1,5 + 2B5i 41 — j Sij—1 =0
must be combined with the horizontal recurrence relation,
Si,j+1 - 5z‘+1,j = XABSij
e By doing this, we obtain the Obara—Saika (OS) recurrence relations for the Cartesian

overlap integrals, 1 . .
b integ Sit1; = XpaSij + o (¢Siz1,; +7Si-1)

1. .
Sij+1 = XppSi + m (iSi—1,5+JSij-1)
e We start with Sy = Kgb\/% and then compute

1
S10 = XpaSoo, S20 = XpaSio + %500, etc. AT



The Obara—Saika scheme for S;;

S()()

e The fundamental ideas are: 7\
SIO SOI
1. Translational invariance:
05, /0A, + 05y, /0B, =0 NN

e ”\S/ ”\S/ N

"y Y K “ ¥ o ¥ o

2. Horizontal recurrrence:
TR — TA = XAB

e Each S;; in the triangle is computed from one of the two above it and from the two
above that one.

e The target integral S;; may be generated in many different ways.

e Note that horizontal recurrrence relation can be applied to transfer “quantum
numbers” from i to j and vice versa for all kinds of basis functions, also contracted
Gaussians.

(waxuhow) = Oulroxe) = Xas (ulxo) AT



Obara—Saika for multipole moments

The Obara—Saika scheme may be applied to multipole-moment schemes in a slightly
modified form,
Sey? = (Xalz& uE 28 1x0) = S5:5]1S0n

The x component is

oo

S5 = (Gl |Cy) = / e du

Translational invariance for this integral means that

0Ss, 9SG 0S¢

ij

aA$ + aBt ac:l; N

Furthermore, the horizontal recurrence relation for the order of the multipole operator
is (xc = za + Xac, etc.)

S5 = 850 + XacS[; = 57 11 + XpoSj; AT



Obara—Saika for multipole moments

e Putting it all together yields

1 o
g = XeaSj+ oo (zselj+gSZJ L+ ess)
1
¢ = XpBSj +5- (’LSel]-f—]Slj 1 +eS; N
. 1 o
S = XpoS§ +2 (iS5 1;+755, 1 +eS5 )

e These recurrence relations may be used in conjunction with the horizontal
recurrences
Sg“ =S, + XacS; = Si 41 + XBcSj;
and
Sij+1 = XaBSj; + 5741,
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Differential operators

e We now consider the integrals in a slightly modified form,

oc o o9

efg _
Dab - < ‘axe ayf 829|Xb>

Dg;Df,D3,,

e The z component is

Di; = (G / G de

e The trick we use here is that we can differentiate the Gaussian G;(z, «, 4,) with
respect to the electron coordinate x or the basis-function centre A,, because the
function depends on the difference (x — A;)

0Gi(x, 0, Ay)  0Gi(z,0,Ay)

Or N 0A, ﬂ(IT




Differential operators
e Since 0G;/0x = —0G;/0A, and 05,,/0A, = —05,;/0B,, we obtain
Df; = 0°8,5/0A; = (—1)°0°S;;/0B;

e Furthermore, since 0Xpp/0A, = —F/n and 0Xpp/0A, = a/n, we obtain the
Obara—Saika recurrence relations

1 . e . e e—
Dy = XpaD§+ 2 (iD§_,;+jD5; 1—28e D)

1 . e . (& e—
Dij = XesDjj+ % (i Dy ;+3 Dy +2ae DY)
Dt = 2aDf,, ; —iDf

e The horizontal recurrence relation becomes

D541 = Dijyj = XasDf; +e D! R



Momentum and kinetic-energy integrals

e Consider the one-electron integrals

P., = —i{xa|VIxe) (linear momentum)
Lu, = —i{xa|r X V|xs) (angular momentum)
1 o
Top = _§<XQ|A|XZ,> (kinetic energy)

e The z components of the momentum integrals, for example, may be computed from

Pz = —iSi;SuD}.,
Ly, = _1<Xa‘33g - ﬁy\xw =i (S‘l‘DlilSmn - D'l'SlilSwm)
e Jy Ox t *

e For the kinetic-energy integral, we obtain

1

Tab = *5

(D?jsklsmn + Sz]DilSmn + Sl_]Sk‘lD'?nn) A“(IT



Coulomb integrals over spherical Gaussians

e We consider the electrostatics of the (normalised) spherical Gaussian charge
distributions

)= (1) ewtw) = (8) o

e The normalisation means that

[ ootwyie = [ pyie =1

¢ The electrostatic potential at C due to p, is

e = [ 28

rc

(0,0,0)
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Coulomb integrals over spherical Gaussians

The energy of repulsion between the charge distributions p, and p, is

p
pq—// p\r— ddr

The difficulty with this integral and V,,(C) is that they do not factorise into products of
z, y and z components due to the distances (square roots) r¢ and |r — r/|.

Integrals over r* with k even are easy, those with & odd are difficult.

However, the integrals factorise again after the integral transform

1 1 ° 9 .9
— == —r2 t%)dt
ro ﬁ/,mexp( 6t)

This is the key step in treating Coulomb integrals.
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Coulomb integrals over spherical Gaussians

e Inthe integral V,,(C), we have a product of two Gaussians: p,(r) and exp(—r t?).
e This product yields a new Gaussian centred at
S = (nP +t*C)/(n + %)

according to the Gaussian-product theorem (GPT),

3/2 oo 2
Vp(C) = n_ {/exp[—(n + t%r%}dr} exp (— i R%C) dt

™ ) s n+ 2

e The spatial integral can easily be computed and we obtain

2773/2 = 2\—3/2 2 t
Vp(C) = N /0 (n+1t%) exp (nRPCW) dt

which can be solved after substituting u? = ¢2/(n + t2). AT




The Boys function

e Since dt = /(1 — u?)~*/2du, we obtain

4 1
V(€)= 2 [ exp(onmpcu)an

e The integration over all space (z, y and z from —oco to co) has been replaced by a
one-dimensional integration over a finite interval.

e This integral is the Boys function F,,,(z) with m = 0,
1
F(x) = / 2™ exp(—axt?)dt, Fy(x) = 1/4£erf(ﬁ)
0 T

(erf is the error function).

e We can thus write _ |4 9
Vp(C) = . Fo(nRpe) A“(IT



Calculating the Boys function

e The Boys function can be computed efficiently by pretabulating F,,(xy) for a series
of grid points .

e For example, we can tabulate F,(zx) form =0,1,2,..., muax + 5 at regular
intervals 1 = 0.0,z = 0.1,23 = 0.2,..., T, = 2Mmax + 36.

e The Boys functions F,,,(z) may then be computed with machine precision from a
six-term Taylor expansion around xy,

Fo(x) = Fp(evr+Ax) = Fp(zk) — F,71+1(IA)A7 + FmH(Vrk)(Ar)

- éFerii(Ik’)(Al) + 5z Fm+4(va)(Al)4
F7
F(\ .
Fj The figure shows the
i grid points involved in
F computing F,(z) with
F,
F:] o r7 < x < Xg8.

! ST

Xy X5 Xg X,



Calculating the Boys function
We note in passing that the exponential exp(—z) can be computed similarly by
pretabulating exp(—xz) at a number of grid points xy.

This number can be chosen such that a four-term Taylor expansion is enough to
obtain machine precision.

At the grid points x, the Boys functions are computed by downward recursion,

Fo(z) 20 Fpi1(x) + exp(—x)
e 2m + 1 "

Fo(z)=0

F,.(z) can be set equal to zero for sufficiently large m.

For large =, we have

2m — 1! T
F(z) =~ ( 2m+1) ,/meH, (« large)

AT



The OS scheme for one-electron Coulomb integrals

e We write the Coulomb integral as

1 Qap(r)
O = (val) = [ 2 g = [ S gy
1 . .
@?—[&-l,jklmn = XPA@gklmn + 5= (i @zN—ijlmn +J Gg\fj—l,klmn)

1
N _ N AN . AN
O i1 kmn = XPBOujkimn T 5= (0011 jkimn T 7 ©5 -1 kimn)

 We obtain ©7;,,,,, from O = 27K/ Fy (115) and
2n
1
N+1

- XPCeijklmn - %(Z
2n
1

o XpQ@NJrl . 7(

ijklmn 2,,7
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The McMurchie—Davidson scheme

Before we turn our attention to the two-electron repulsion integrals, we note that the
following three integral-evaluation techniques are currently in use:

1. The Obara—Saika scheme
2. The McMurchie—Davidson scheme
3. Rys quadrature

The idea of the McMurchie—Davidson scheme is to expand the overlap distribution
Q. in Hermite Gaussians,
ity
QF = ZEZjAt, Ay = (0/0P,)" exp(—nzd)
t=0
and similarly for Q7, and Q7,,,.
In the McMurchie—Davidson (MD) scheme, integrals over Hermite Gaussians are

evaluated and transformed to the Cartesian Gaussian basis using the expansion
coefficients E}’. AT



The MD expansion coefficients

In order to compute the expansion coefficients E!7, we consider the incremented

distribution
i+j+1
_ i+1,j
Qf+1’j_§ E A
t=0

Of course, O, ; = zaQf; = zpQf; + XpaQ; , and furthermore
1
rpAy =t Ay 1 + %At+1
We thus obtain
itj iti+1

.. 1
.’EPQZIJ = ZEZ] (t At—l + %At-&-l) = Z
t=0 t=0

iy 1 ..
{(t +1)EY, + 277EZL} Ay

Here, we assume that E// =0 when ¢ <0 or t > i+ j.

AT



The MD expansion coefficients

e We have established that
it+j+1

i+1,j
Vi, = E E; A
and iti+1

0= ; {(t + 1)ng+1 + %Et”_l + XPAE;J} A,

e We therefore arrive at the following McMurchie—Davidson recurrence relations for the
expansion coefficients:

41,7 ? l T
BN = Q—UEtJ_1+XpAEtJ+(t+1)Etjrl
i,j I ij ij
BT = oo B+ XenE + (4 DB,
B = K

AT



The McMurchie—Davidson scheme

e For all three Cartesian coordinates, we have

dN' [ 9N/ 8\ )
Atuv—AtAuAv— <(9Pw) (aPy> <6Pz> eXP(*W’P)

and i+ k+l m+n

Q=33 3 EVEIE A,

t=0 u=0 v=0

e Thus, using the MD scheme, the Coulomb integrals becomes

i+J k+l m+n A
1] mkl rmn tuv
z]klmn Z Z § E E E / r ——dr
=0 u=0 v=0 c

e Furthermore,

i Af’u v 271' 0 t 0 w 9 v ,
i (A () ()

AT



The McMurchie—Davidson recurrence relations

e The Coulomb integrals are written as

i+j k+l m+n

0 o E E E ij kl mmn tuv
G)ijklmn - Et Eu Ev / r dr
t=0 u=0 v=0 C
i+j k+l m+n

TS Y B R,

t=0 u=0 v=0

e Here, we have introduced the auxiliary integrals
R(J)\éo = (*QU)NFN(WR%C)

e Theintegrals RY,, are obtained from the recurrence relations

tuv

N _ N+1 N+1
Rt—i—l,uv =1 Rtfl,uv + XPC Rtuv

N _ N+1 N+1
Rt,u+1,v = u Rt,ufl,v + YPC Rtuv

Rivor1 = vRLLL 4 Zpc Ryt AT



GauB-Rys quadrature

e We have seen that the Coulomb integrals are obtained as a linear combination of
Boys functions
M

Oiktmn = > cNEN(MRDG), M =i+j+k+Il+m+n
N=0

where the coefficients ¢y depend on the exponents and coordinates involved.

e Since Fy(x) = j;jl 2N exp(—at?)dt, we may write
1
O jktmn = / Py (t%) exp(—nRpt?)dt
0

e pa(t?) is a polynomial in 2 of degree M. The integral can be evaluated from a
GauB-Rys quadrature with L = [21] + 1 quadrature points (roots ¢, and weights w,),
L

OFhtmn = ; w par (1) exp(—nREct3) AT



Two-electron Coulomb integrals

e We now turn our attention to the two-electron integral V,,, which is the energy of
repulsion between the (normalised) charge distributions p, and p,,

o ] [
Vi = \/‘f? [ Fa(@tp,eyar

e The charge distribution p,(r) is a Gaussian, Fo(gré) is an integral over a Gaussian,
and their product is again (an integral over) a Gaussian by virtue of the GPT.

e Integration over r’ yields

e The integration over r is easy and the integration over ¢
hidden in Fy(¢r2)] remains.
[ 0(¢rg)] A&AT



Two-electron Coulomb integrals

s ¢ nCt* R
Vmﬁ/o (77t+C)/p<nt+C «

e This integral can be written as

e We obtain

4w n¢
Vog = ?FO(WR%Q)a wETTe
which can be verified by substituting u? = U’ijc t2. w is the reduced exponent.
e Recurrence relations for Cartesian Gaussians other than s-type functions may be
obtained in a mannner similar to the one-electron Coulomb integrals, e.g., with the
auxiliary functions

275/2
9%000000-0000 = 7ngzK15zFN (WRI%‘Q)
) 3 + a C
ngvn+¢ A&AT



Two-electron Coulomb integrals

The two-electron Coulomb integrals are
-1 0
<ab|T12 |Cd> = Yabed = Giji’j/;klk/l’;mnm/n’
Since there are four Gaussians involved (x., Xx», Xc and xg4) the total number of

integrals scales as N*, where N is the size of the basis set.

When we increase the basis set in a series of calculations of the same small
molecule, there is little we can do about the O(N*) scaling.

When we run calculations on a series of molecules of different size (e.g., on the
alkanes CyHan 1) in a given Gaussian basis, then many two-electron Coulomb
integrals are very small and can be ignored.

In that case, the number of significant integrals scales as O(N?).
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Scaling of two-electron Coulomb integrals

¢ To facilitate the discussion, we consider two-electron Coulomb integrals over
(unnormalized) s-type Gaussians,

— 27T5/2 TYyz rYyz
Jabed = <ab|r121|cd> = @8000;0000;0000 = W az? ch FO(WRIZDQ)

e We note that

9 5/2 4 3/2 3/2 3/2
Wi — i E z and Sab — E K;'élz
névn+¢ ™ \n ¢ 7

e The two-electron Coulomb integral can thus be written as

4w
Gabed = - S(Lb S(:(IFO (wR%Q)
e

o We furthermore know that
1 /m
Fo(z) <1 and Fy(r) < 9\ = A“(IT



Scaling of two-electron Coulomb integrals

We find that the Coulomb integral is bounded by

4 1
Yabed < SabScd min (\/7, )

For large molecular systems, the number of nonzero overlap integrals S, scales as
O(N).

When the number of significant overlap integrals begins to increase as N, the
number of significant two-electron Coulomb integrals will begin to increase as N2.

Note that Rgé will not be smaller than 10~ in any practical calculation.

The number of significant two-electron Coulomb integrals will depend at least
quadratically on the size of the system.
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Prescreening of integrals

In large systems, the number of significant two-electron integrals increases only
quadratically.

In order to exploit this fact, we need a strict upper bound for the magnitude of the
integrals.

Such a bound is provided by the Schwarz inequality,

(abled)] < QuQea With  Qup = /(ablab) and  Qua = /(cdled)

Before an integral is computed, the product Q.,Q.q is compared with some
threshold 7. The integral is only computed if

Qachd >T

Typical values are 7 = 10~ — 10~8 for small molecules.

The upper bound is also useful when we ask how the integral contributes to the
energy or the Fock matrix.
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Prescreening of integrals

¢ In closed-shell Hartree—Fock theory, the Fock matrix is

B = s + 3 Daal2(a0|iX) — (sl )]
KA

e Using real basis functions, we have the following permutational symmetry among the
two-electron integrals:

(uvlrA) = (vulrX) = (vulAk) = (ulAr) = (KA ) = (RAlvp) = (Aklvp) = (Ar|uw)

e Hence, only ca. 1/8 of the total number of integrals is used:

F <+ Fuy + 4Dy (uv|sX)
Fix < Fox + 4D, (uv|£X)
Fuw < Fue — Dyx(pv|rA)
Fyux < Fua DM(/W\K/\)
Foi < Fue — Du(uv|sd)
Fyx < Fox — Dy(uv|eX) AT



Prescreening of integrals

The density matrix elements are known when the integrals are evaluated. They can
be incorporated in the prescreening tests.

The evaluation of the integral (uv|x)) is only needed if
Q/IVQH,)\DHMX >T

where
Dma,x = max {4|D;IV‘74‘D/‘E)\‘1 ‘D;UC|3 |Du)\|s ‘Dllﬂ‘ﬂ ‘Dz//\”

Concerning the Hartree—Fock energy, we could screen with
quQnAmaX {4|D;U/DKA|3 |D,uﬁDu)\|; |DDI1D}L)\‘} 2 T

but this leaves an unmonitored error in the Fock matrix.

This last screening is however useful for energy-related properties such as the
nuclear forces. AT



The direct SCF procedure

In conventional SCF procedures, the integrals are computed only once and stored on
disk for later use. In such procedures, the Schwarz screening helps to eliminate
integrals once and for all.

In direct SCF procedures, the integrals are re-evaluated in each SCF iteration.

The prescreening is then performed in conjunction with the density matrix, which is
usually done for batches of integrals,

Dyn = max | D, | QuN = max Q]
uweMveN weMveN

Furthermore, important savings in the number of calculated integrals may be
obtained by considering the change of the Fock matrix in two consecutive iterations.

The screening can then be performed using the change of the density matrix,

AD{) = D) — DY A&AT



The direct SCF procedure

In the direct SCF procedure, the Fock matrix in iteration
number i is computed from

F(l W ) + ZAD 2(pv k) — (uklvA)]

Only those integrals are required which are related to significant changes in the
density matrix from one iteration to the next.

Close to convergence, screening with AD() is extremely efficient.

Furthermore, if the Coulomb and exchange matrices are constructed separately, we
have the following two screening criteria:

Q;LVQK)\ {4‘Duv|a4‘DK}\|} >T
CJ;LZICJH)\ {‘Dpfila ‘D;L)\‘é ‘Dw;‘e ‘Dl//\|} 2 T

AT



The Rl approximation

The idea of the resolution-of-the-identity (RI) approximation is to avoid four-index (or
four-centre) two-electron integrals.

In a naive approach, we can insert an approximation to the unity operator
represented in an orthonormal auxiliary basis {¢p},

1~ lop)(ep|
5

We then obtain, for example,

(uv|RA) = Y (uv|P)(PrX),  (PrA) = /@P(l)xn(l)m(l)dﬁ
P

(uv|P) is a three-index two-electron repulsion integral,

v|P) = L(Dxw (1)rst o p(2)dridrs
(u|P) //x()x() or(2) Sar



RI approximation with non-orthonormal basis

If we approximate the unity operator by a projection operator onto a non-orthonormal
auxiliary basis {xp}, then we have

1~ [xp)Spolxel
P.Q

Note that Sgé is a matrix element of the inverse overlap matrix,
Spe=(87") PQ

We obtain
(uv|RA) ~ Z uv|P)S QH)\>
P

It has turned out that the most accurate Rl approximation is obtained by using
the Coulomb metric. AT



RI approximation with Coulomb metric
e Using the Coulomb metric, we approximate the unity operator as follows:

T~ Ixp)(PIQ) (xal,
PQ

where .
(xol = [ xe(@ridr,

¢ Note that (P|Q)~" is a matrix element of the inverse of the two-index Coulomb
integrals,

(PIQ)'=(C)py:  Cro= / / xp(1)riy xq(2)dridrs
e We obtain

(vlr) = 3" (ur| P)(PIQ) ™ Q)
PQ AT



RI approximation with Coulomb metric
Alternatively, we expand the orbital product x.x» in a basis {xr},

XiXA R XnXa = Y CB\xp
P

We then minimise the self-repulsion of the error,
(KA — /5|/-$z\ - /Z\) = min
This immediately leads to the set of linear equations

Y (PIQ)eE = (Plrd) VP = =3 (PIQ)7(QlN)
Q Q

Hence, () = Y (| P)ei = S (uv|P)(PIQ) " (QIkA)

P PQ

AT



Robust fitting

e The RI approximation can be inserted in such a manner, that the error in the target
integral is only quadratic in the error of the fit,

(uv|KA) ~ Z(’”’ PlrA) + Z(MV‘Q)C&A - Z c’,ﬁ"(P|Q)c’g‘
Q

PQ
e For Coulomb integrals, as before, this leads to
(uv|rX) =Y (uv|P)(PIQ) ™ (QrN)
PQ

e The robust fitting is, however, important for other two-electron integrals, for example
those over the operator f(ri2),

(1] f(r12]6)) ~ Zc (P|f(rizl5N) +ZW|fﬁz\Q = (PIf(ri2]Q)cts
" «IT



Various applications of the Rl approximation

The Rl approximation is for example used to accelerate the calculation of the
Coulomb operator J (RI-J approximation), especially in DFT.

The Rl approximation can also be used to accelerate the calculation of the exchange
operator K (RI-JK approximation) in Hartree—Fock theory or DFT with hybrid
functional (e.g., B3LYP).

Finally, it can also be used to approximate integrals of the type (I A|JB), where I, J
are occupied Hartree—Fock orbitals and A, B are virtual Hartree—Fock orbitals. These
integrals occur in the MP2 and CC2 theories.

Clearly, different basis sets are needed to approximate orbital products of the types
erer (RI-J), orx, (RI-JK) and ¢rpa (cbas in Turbomole).

These three types of auxiliary basis sets have been designed and optimised for the

Turbomole basis sets.
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RI-J approximation

In the RI-J approximation, the electron density is expanded in an appropriate
auxiliary basis,

Jus = (pv|p) ~ Z | P)ch ZZ pv|P)cE Doy
—ZZ (1| P)(P|Q) ™ (Q|rA) D

PQ kA
The formal scaling is no longer N4 but rather N3, assuming that the auxiliary basis
increases linearly with system size.

It is possible to obtain accurate results (with an error of ca. 0.1 mE,, per atom) with
auxiliary basis sets that are about three times larger than the orbital basis.

Asymptotically, the construction of the Coulomb matrix will scale as N2, as before,
but with a much smaller prefactor.
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RI-J K approximation

In the RI-J K approximation, the Rl approximation is not only used for the Coulomb
matrix but also for the exchange matrix,

Kuy =) Dax(pslvd) = Y (1| P)(P1Q) ™ (QIvA) Dia

KA PQ kA

The formal scaling is still N4, as before.

The RI-JK approximation is very useful when relatively large basis sets are used, for
example when the Hartree—Fock calculation is followed by a post-Hartree—Fock
treatment.

Similar algorithms have been developed for the RI-MP2 and RI-CC2 methods. The
formal scaling is still N° for these methods, as before, but with a much smaller
prefactor.
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