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L.

What is Electron Correlation?



Correlation in Probability Theory

two variables x and y and probability densities P(x), P(y), P(x,y)

variables x and y independent if

P(x,y) = P(x)P(y)
otherwise

P(z,y) # P(z)P(y)

the variables are correlated




Electron Correlation: the Helium Atom
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Electron Correlation: the Helium Atom

nucleus .
— 1 — 1
helium atom: rlz/e cctrons
)
electron density p(r)
pair density p2(r1,ra)
° . 1
HF pair density p2(r1,r2) = — p(r1) p(rs)
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Electron Correlation: the Helium Atom

nucleus .
1
helium atom: l'12/6 cctrons
r,
electron density p(r)
pair density p2(r1,12)
1
exact pair density p2(ri,1r3) # = p(ry) p(rsa)

4




Electron Correlation: the Extreme Case

two interacting electrons two possible sites . .
probabilities:
one electron at @ 50 %

one electron at @ 50 %




Electron Correlation: the Extreme Case

two interacting electrons two possible sites . .
mean-field (HF) description not favorable!

both electrons at @ 25 %

both electrons at @ 25 %

one electron at @ and one at @ 50 %




Electron Correlation: the Extreme Case

two interacting electrons two possible sites . .

avoids unfavorable

correlated description combinations
both electrons at @ 0 %
both electrons at @ 0 %

one electron at @ and one at @ 100 %




Different Types of Electron Correlation

* Fermi correlation (exchange)

electrons of same spin avoid each other due to
the antisymmetry requirement (= Fermi hole)

already treated at HF level

independent of Coulomb interactions

e Coulomb correlation

electrons (independent of spin) avoid each other due to
the repulsive Coulomb interactions (= Coulomb hole)

not treated at HF level, requires post-HF methods




Electron-Correlation Energy

usual definition (Lowdin, 1955):

AECOT‘T — En’rl — EHF

e focus on Coulomb correlation

* Fermi correlation in E; already included

* HF for electron correlation reference point




Different Types of Electron Correlation

* dynamical correlation

electrons (independent of spin) avoid each other due to
the repulsive Coulomb interactions (= Coulomb hole)

* static (non-dynamical) correlation

(quasi-)degeneracy of Slater determinants/configurations

(I)l (I)Q




Single- and Multireference Methods

no static correlation

HF quality correct = good starting point for correlation treatment

one Slater determinants dominates

applies for many/most molecules in and
close to their equilibrium configuration

-> single-reference treatment

static correlation

multi-reference treatment required




11.

Importance of Electron Correlation



Magnitude of Correlation Energies

H,O HCN
Ep -76.068 -92.916

AE_ . -0.372 -0.518
AE -0.052 -0.044

rel

correlation energies typically < 1% of the total energies




Chemical Relevance of Electron Correlation

0.001 Hartree = 2.6255 kJ/mol

correlation energies strongly dependent on valence electrons

correlation effects always important when bonds are broken




Chemical Relevance of Electron Correlation

example: CO > C(CP) + OCP)

dissocation energy (D,) of CO

C O CO D, in a.u.
E(HF) -37.693774  -74.819232  -112.790997 277991
E(corr) -.151537 -.248978 -.536591 136076
E(total) -37.845307  -75.068210  -113.327588 414071




Chemical Relevance of Electron Correlation

example: CO > C(CP) + OCP)

dissocation energy (D,) of CO

C O CO D, in kJ/mol
E(HF) -37.693774  -74.819232  -112.790997 729.9
E(corr) -.151537 -.248978 -.536591 357.3
E(total) -37.845307  -75.068210  -113.327588 1087.2

electron-correlation effects are significant




111.

Perturbative Treatment of Electron Correlation:

Moller-Plesset Perturbation Theory



Hamilton Operator for Many-Electron Systems

non-relativistic Hamiltonian for atoms and molecules

one-electron terms
two-electron terms

prohibits exact solution
- electron correlation




Moller-Plesset Perturbation Theory

electron correlation small effect

-> treatment via perturbation theory on top of HF

perturbation theory:

zeroth-order = HF theory v — g HF

A . Moeller-Plesset
HO — Z F(a) EO — Z £ ansatz

= <\IJHF|[:I(O)+[:I/‘\IJHF>

electron correlation
in second order

— g0 4 g




MP2 Perturbation Theory

second-order perturbation theory

0) 71 4 (0 0) 71 4 (0
g@ — Y (@ [H|®”) (@ | o)
I;éy Eéo) — E_go)v\
other
HF wavefunction eigenfunctions

to H®

all Slater determinants constructed from

. . 0).
eigenfunctions to H®: occupied and virtual canonical HF orbitals




Excitation Level of Slater Determinants
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Slater-Condon Rules and Brillouin Theorem

Slater-Condon rules

rules for matrix elements involving two different Slater determinants

for H containing one- and two-electron operators
(®/[H|®;) # 0

only if @, and @, differ at most by a double excitation

Brillouin theorem

(Pup|H|®Y) = 0

.

singly excited determinant




MP2 Perturbation Theory

second-order perturbation theory

PO (@ | H|2Y) (@7 | H|20”)
- (0 _ (0
I#0 0 I

leads to antisymmetrized

g ) :
| (abl]ij)|? two-electron integral

indices of

occupied indices of orbital energy
spin orbitals virtual denominator

spin orbitals




Importance of Double Excitations

increment total
AE(MP2) -0.2040 -0.2040
AE(MP3) -0.0068 -0.2108
AE(MP4) -0.0052 -0.2160
AE -0.2170 -0.2170

Ccorr

H,0, cc-pVDZ basis

MP2 recovers typically more than 95 % of electron correlation

MP3 involves only doubles, singles and triples only at M P4




IV.
Exact Solution of the Correlation Problem:

Full Configuration Interaction



Exact Solution of Electron-Correlation Problem

define effective (zeroth-order) Hamiltonian

Hy = Z F(a) solve one-electron problem

o ~ (e.g., HF equations)

Fo, = € pp

Slater determinants
(take care of antisymmetry) l'
& 1 | | ,complete” one-electron basis
I = — == 1|¥I11 12 --- PIN : :
\/m —_ (spin orbitals)

J
(O, 7=1,..1

complete many-electron basis within given AO basis

{ep,p=1,...}




Exact Solution of Electron-Correlation Problem

expansion in a complete set of Slater determinants

(VA ZC](I)] = COCI)HF—I—ZC[(I)]
T 140

excited determinants

together with variational principle
ZHIJCJ = EC[ H]J = <@I‘ﬁ’¢J>
J

=> Full Configuration Interaction (FCI)




Excitation Level of Slater Determinants
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Full CI Approach

Full CI: * factorial growth of cost
* not practial, only for benchmarking

small molecules and basis (e.g., H,O, DZP)

benzene, DZP: = 10** determinants

typical examples: E(FCI), in a.u.
BH, TZP+ -25.243140
H,0, cc-pVDZ -76.243773

CO, cc-pVDZ -113.055853




V.

Truncated Configuration-Interaction Schemes



Full and Truncated CI Methods

Full CI: * factorial growth of cost
* not practial, only for benchmarking

=> truncate determinantal basis (approximation)




Excited Slater Determinants
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Truncated CI Methods

truncate determinantal basis (approximation)

chose determinants according to excitation level

double excitations are most important

=> truncated CI methods such as CISD

Vorsp = c¢o Pg + g cr Py
1€S,D

excited determinants restricted to single + double excitations




Solution of the CI Problem

CI problem: Hc = Ec

eigenvalue problem for matrix H

no direct diagonalization of H (too expensive)

Davidson scheme:

* diagonalize H in a (small) iterative subspace

* expand subspace until convergence

« computational cost due to product H - c




Convergence to FCI

example: H,O, cc-pVDZ

CI method Energy [a.u.]
CISD -76.231972
CISDT -76.234926
CISDTQ -76.243457
CI(5) -76.243640
CI(6) -76.243770
CI(7) -76.243772
CI(8) -76.243773
CI(9) -76.243773
FCI -76.243773




Computational Cost

approximation cost
CISD N
CISDT N8
CISDTQ N10
CI(5) N12

FCI




VI.

Size Consistency and Size Extensivity



Separability for Non-Interacting Systems

non-interacting systems A and B

 additivity of energy

* multiplicative separability of wavefunction




Size Consistency

A
v

rAB —> 00

A method is termed size consistent if the sum of energies computed
for two non-interacting subsystems A and B is equal to the
energy obtained for the supersystem consisting of both A and B

Pople, Binkley, Seeger (1976)

a) individual quantum-chemical calculations forAand B - E, + E;

b) one quantum-chemical calculation for A+B 2> Eg

size consistency: E,, = E, + Eg




Size Extensivity

¥ B B B EEErER

A size-extensive method provides results that
scale linearly with the size of the system

Bartlett, Purvis (1978)

— formal definition, independent of non-interacting reference systems
— exploits full power in the context of diagrammatic techniques
— size extensivity implies size consistency, the reverse is not true

— ensures quality of results independent of size of systems




Size-Consistency Problem of Truncated CI

CISD approximation:

2 X Eyyp | Eyp..nr A
HF-SCF | -200.558 | -200.558 0.000
CISD -200.576 | -200.559 -0.017
~11 kcal/mol

calculations with tzp basis set

truncated CI methods are not size consistent




Empirical Size-Consistency Corrections

Davidson correction:

AEIDaxmldson — AEcor’r' (1 — Cg)

to be added to the CISD energy, approximately size consistent

Coupled-Pair Functional Methods:

restore approximate size consistency
by modifying the denominator in the energy expression to be minimized

CPF, ACPF, AQCC, ... due to Ahlrichs, Gdanitz, Szalay, Bartlett, ...




VII.

Exponential Ansatz for Wavefunction



Multiplicative Separability of the Wavefunction

non-interacting systems A and B

Hap = Ha + Hp
=> separation ansatz

EAB — EA + EB additive

AN

UVap = A ¥y Vg multiplicative

antisymmetrizer




Multiplicative Separability of the Wavefunction

H, molecule, minimal basis I 2

Verp = Pgr + ¢ Pp Opp dp

(not normalized)
HF double

determinant excitation

— (1 —+ %D)(I)HF

\ operator, generates a by ¢

weighted double excitations

H,: CID = FCI = exact solution




Multiplicative Separability of the Wavefunction

two H, molecules, minimal basis
H,(A) + Hy(B)

CID wavefunction

Veorp = (1 + Tpa + 7p.B) ®ur
but

A VerpaVeripp = A {1+ ™0.4) Purat {(1+7p8) Purp}
(

A

(1 —I—TD,A) (1 —|—7A'D,B) (I)HF

= (14+7pa+7pB+7D.A TD.B) Pur

/

quadruple excitation, missing in CID => problem




Multiplicative Separability of the Wavefunction

problem of CI:

excitations are additive

A

E TD,i
i=A,B,...

contradiction !?!

required is a product /

i=A,B,...




Multiplicative Separability of the Wavefunction

one, two, three, ... H, molecules

U, = (1 + 7p.a) Pur

Vo = (1 + 7pa) (1 + p.B) Pur

Us = (1 +7pa)(1 + 7o) (1 + Tpc) Pur
v = + Tpi) Pur

1=A,B,...




Exponential Form for the Wavefunction

proper form of wavefunction

v = H (1 + 7pi) Pur
i=A.B....

rewrite in exponential form

H (1 + 7pi) Qur exp( Z ™p.i) Pur
i=A.B,... i—A.B,...

multiplicative separability via additivity in exponent




Exponential of Operators

definition via a power series

A

) 1.
eXp(A):1+A+§A2+

exponential of a number -

exponential of an operator -

1 .
— A 4 A

3! n!

non-terminating power series
power series can terminate

depending on operator




Exponential Form for the Wavefunction

] @+ #p:) ®ur = exp( > 7p;) Pur
i=A,B,.. i=AB,..

proper counting

2
1 A 1 A 1 R
— ZTD’i = = TD,A TD,B + =~ TD.,B TD,A + ...
2 : 2 2
1
— 7A'D7A ’7A'D’B —+ ...
same excitation cannot . .
Tp.ATDA = 0

be applied twice




Exponential Form for the Wavefunction

exponential ansatz

excitations reference determinant
represented via an operator

proper multiplicative behaviour => size extensivity




Historical Remarks

* statistical physics
— power expansion of partition function for interacting gases

Ursell (1927), Mayer (1941)
* nuclear physics

— first use of exponential ansatz in quantum-mechanical context
— quantum-mechanical description of nuclear matter

F. Coester, H. Kiimmel (1958, 1960)
* electronic-structure theory

— application to the electron-correlation problem

=> coupled-cluster theory J. Cizek (1966)

— see also earlier work by Hubbard (1957) and Sinanoglu (1962)




Connected and Disconnected Excitations

v = ][] @+ %ps) @ar
i=A.B,...
Vv = oyrp + 7A'D,A Py + ... + 7A'D7A7A'D’B Pyr + ...
connected excitations disconnected excitations

(products of connected excitations)

CI does not differ between connected and disconnected excitations




VIII.

Coupled-Cluster Theory



Coupled-Cluster Ansatz for Wavefunction

ansatz for wavefunction

exp(T) |0)
\ reference

determinant

) =

cluster operator

Z br 71 — excitation operators

/ \ (in second quantization)

weighting factors < unknown parameters

sum over .
(amplitudes) to be determined

(all) excitations




Cluster Operator

classification of excitation T = T, + Ty + Ty + ...
Ty = Z Z td a single excitations
Ty = —ZZ tab azabaj double excitations
a,b 1,7

all possible excitations 1 = 11 + 1> + U3 + ... +1N

truncated schemes, e.g. T =17 + 15




Equivalence of CC and FCI parameterization

CC wavefunction CI wavefunction
v) = exp(T) |0) ) = C10)
Ty |0) singly excited C'1 |0)
(T + %Tf) 0) doubly excited Cs |0)
(T5 + ToTy + %Tf) 0)  triply excited Cs 10)
(Ty + T5T7 + %TQZ quadruply excited Cy |0)
+ %TETQ + %Tf‘) 0)

matching number of parameters

=>  CC ansatz parameterizes the exact wavefunction




Truncated Coupled-Cluster Wavefunctions

T = 15 truncation in the cluster operator

CCD = CC doubles

1
Weep) = 10) +T2(0) + T 210) + T
connected disconnected

double excitations quadruple, sextuple, ... excitations




Coupled-Cluster Ansatz

* ansatz for many-electron wavefunction

— able to parameterize exact solution
— multiplicatively separable = size consistency and extensivity

— unknown parameters: amplitudes in cluster operator

e determination of actual CC wavefunction

— determine amplitudes in cluster operator

— solve Schrodinger equation with CC ansatz

what is a suitable procedure and what to do in the case of approximations?




Variational Coupled-Cluster Theory

determination of amplitudes via variation principle

- {0]exp(T)H exp(T)0)

minimization of E =

= olexp(TT exp(T))0)
CC wavefunction \
not normalized

adjoint of CC wavefunction

non-truncating operator
1 1
exp(T"YHexp(T) = H+TTH + HT + 5TT2H +TTHT + S HT® + ...

cost independent of choice of 7 always similar to FCI
=> not feasible for practical schemes

see work by Van Voorhis, Head-Gordon (2000),
recent work on quasi-variational CC by Knowles and co-workers (2010),
and work on XCC by Bartlett and Noga (1988)




Algebraic Equations via Projection

transform an operator equation into a set of algebraic equations

{(I)I,I:l’...} \
complete basis )Valent

(@ HIW) = E(®;0) [ =1,...

matching number of equations and wavefunction parameters (amplitudes)




Coupled-Cluster Theory

* insertion into Schridinger equation
H exp(T) |0) = E exp(T) |0)
* multiplication from the left with exp(-7)
exp(=T) H exp(T) [0) = E|0)
e projection onto reference determinant

— CC energy E = (0] exp(=T) H exp(T) |0)

* projection onto excited determinants

— CC equations 0 = (®p| exp(—T) H exp(T) |0)

non-linear equations for amplitudes




Standard CC Theory

* untruncated CC approaches

matching number of equations and parameters (amplitudes)
— projection on all excited determinants
— same number of excitations as in many-electron basis

* truncated CC approaches

— projection on all excited determinants -> unsolvable problem
— project only on those determinants for which excitations are in 7

T =T, > projectonto $p

T =T + T5 =2 project onto ®g, Py

Schrodinger equation can no longer be solved in an exact manner




Incomplete Projection

0 = (®p| exp(=T) H exp(T) [0)

solving CC equations

(@p| exp(=T) H exp(T) |®0)

Hpqg

analysis of matrix

truncated CC

full CC
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Coupled-Cluster Equations

0

E = (0] exp(—=T) H exp(T) |0)

(®p| exp(=T) H exp(T) |0) P

How do we continue from here?




Coupled-Cluster Equations

»Simplifications”

Baker-Campbell-Hausdorff expansion

exp(=T) H exp(T) = H + [H,T] + %[[H,T],T] + ...

expansion in terms of commutators




Normal Ordering

in the normal-ordered product form of an operator, N(A), all
annihilation operators are to the right of the creation operators

N(ayala,) = —alaya,

sign: (-1)? with p as number of required transpositions
to reach normal ordering

advantage of normal ordering

(VACIN(...alaq...)[VAC) = 0  exceptN(...) = number

expectation values of normal-ordered operators are simple to evaluate!




Normal Ordering via Commutators

Aat — oaa allial — aata af
(plq,ay = Gplag,ay]yay ApQy.QqQ

_ - St il s At o ata o ot

= Ogrlap,agly — dgragap + |ap,apliaqay + apapagag

A

Ogsliy — Opsla, + alala,a,




Contractions

contraction of a pair of operators

general definition bec = bec — N(be
'[ AI /,\'_L !
specific cases a, ag =0 y, ay= 0
| I ! !
y A + _ A /\T . ", ;r A /\T
ap a; = ay a, N(apa,)
= Opg

#0 only, if operators are not in normal order




Wick’s Theorem

an arbitrary product of creation and annihilation operators
X = ...&Taq&Tas...
is equal to the normal-ordered product, N(X), plus all

normal-ordered products of X that contain one, two,
three, ... contractions of two operators

. R o

X = NX)+ ) NX) + ) NX) + ...




Wick’s Theorem: Example

— N(&p&q&idi) - &i&i&p
+N( ayaqalal) +0
[T )
+N(aya,alal) + Opr@
[ )
+N(aya,alal) psCl
NS )
+N(a, aalal) OqrC
NS )
+N(a, ajalal) + 0450
NP L
+N(aya, alal) + 0
n
N ( ayiy afal) +0
pE—
NS
+N(a,agalal) +0psOgr
A
+N(a,azalal) —084s0pr




Quasi-Particle Formalism

as reference for

VAC) N-electron systems
not useful
useful for N-electron systems,
IHF) = |0) as only changes wrt

HF reference are considered

=> particle-hole formalism




Quasi-Particle Formalism

_ HF state al |0) a; |0) .

S =

g 2

o R

o; l g

article
P \m
______________________ e e e e
llk /I\ s—
/

g A hole A 8

oa | T | E

-

3 I t 1

(e}

Fermi vacuum particle creation hole creation




Quasi-Particle Formalism

new definition of creation and annihilation operators

; X . -t hole creation
b, = a; b; = a, and annihilation

bo = Gq particle creation
and annihilation

unchanged anti-commutator relations

usual convention:

indices i,j,k, ... occupied; a,b,c, ... virtual; p,q,r, ... generic




Hamilton Operator in Normal-Ordered Form

H = Eur + »_ fpofp'a} +

p,q

1Y tvallrs) {platsr)

S ohdiliy — 3 h
4] i

e
O3 Gl ity

o 52 il

—

O3 Gl itk

6,0k,

p7q7,r.78

i x iz (willgi){pt its }
—> Y (pilled) {pa}

Fock matrix

fog = Tpq + Z (pillqi)




Hamilton Operator in Normal-Ordered Form

H = FEpgp
+ Z fzg{z jt + Z fw{z af

i Z faz{a it + Z fab{aTb}
+Z Z (i5]| k1) {z”fj*lk} + 5 Z (ij]|ka){i'j ak}

i,k i,J,k,a

1 1
L . ) 4ty 4 .. S
23 Galljg) (et} + L 3 Gl (o

i,j,k,a iaj;CL?b

% > {abllig){a'bli} + Y (aillbj){ali'jb}

i,j,a,b i7j7avb

% S (ail[be){alilch} +% > (abl|ci){a'blic}

i,a,b,c i,a,b,c

4& Z (abl|cd){a'bdc}

a,b,c,d




Hamilton Operator in Normal-Ordered Form

= Epr + fN-I-WN

A

two-body
HF energy one-body operator
operator
HN = H — <O|H|O>

= v+ Wy




Coupled-Cluster Equations

»Simplifications”

e normal-ordered representation of commutators

[A,B] = AB — BA

_ {AB) — {BA} +{AB} — {BA)

\. J
Y

= 0




Coupled-Cluster Equations

»Simplifications”

T only consists of quasi-particle creation operators

—
{TH} = 0, etc.

M Il
—  [H,T] = {HT)} + {HT} + ...

exp(—T) Hexp(T) = H
N




CCD Equations

E = (0] (H exp(T))e |0)
0 = (®p| (H exp(T)). |0)
with
H = FEyrp + fn + Wy T = 15
normal-ordered Hamiltonian only double excitations

and projection on doubly excited determinants ®p = ®3°




Excitation Rank

count excitation levels

projection on @, defines overall excitation levels

T, corresponds to an n-tuple excitation
fn corresponds to excitation by -1,0, 1

W, corresponds to excitation by -2,-1,0, 1, 2

example

WN T2 T2

- corresponds to 2+2+(-2,-1,0,1,2) = (2,3.4,5,6) excitations

no contribution to projection on @, but for those on @, @ ...




CCD Approximation

H = FEpr + fv + Wy T = 15
CCD energy
E = (0] (H exp(T))c [0)
1
=> E = <O‘ H -+ (HTQ)C -+ 5((HT2)CT2)C + ...

=> E = EHF + <0‘(WNT2)0’0>




CCD Approximation

H

amplitude equations

0

= Fkgr + v + Wn T = 1o

projection on doubly

/ excited determinants

= (@p| (H exp(T)). [0)
= (@p| H + (HD). + S (HT) Do) + - [0

= (Pp|Wn + (fnT2)e + (WNT3).

T %((WNTQ)c)T2)C‘O>




Connectedness

consider connectedness of terms

at most two connections for f,

at most four connections for W,

possible excitation

fy:  no connection (-1,0,1)
one connection (-1,0)
two connections (-1)

W, no connection (-2,-1,0,1,2)
one connection (-2,-1,0,1)
two connections (-2-1,0)
three connections (-2,-1)

four connections (-2)




CCSD Equations

H = FEypr + fnv + Wy T = T +15
1
E = FEgr + (O0/(fnT1)e + WNT2): + 5((WNT1)C)T1)C |0)

projection on singly excited determinants

0 = (Ps|fn
+ (fNTl)c + (WNTl)c =+ (fNTQ)c + (WNTQ)C

+ %((fNT1>cT1)c + %((WNTl)CTl)C

. . 1
singly excited + (WNT)eT1)e + = (WnTL)T1)e)T)e |0)
determinants 3!




CCSD Equations

H = FEypr + fnv + Wy T = T +15

projection on doubly excited determinants

0 = <(I)D|WN + (WNTl)c + (fNTQ)c + (WNTQ)C
+ %((WNTl)ch)c + ((fNT2>cT1)c + ((WNT2>CT1)C

1
5((WNT2)CT2)C

_|_
doubly excited  + i(((I/I/]\,Tg)CTl)C)Tl)C -+ l(((VVJ\IT1)CT1)C)T1)C
_I_

determinants 21! >
1 ((WNT)Th)e) Th)e) T e [0)

fnT1 and (((fNT1)eT1)eTy) e cannot contribute due to the connectness requirement




Why do the CC Equations Terminate?

each 7 must be ,,connected” to H

H only contains up to two-body operators

—> at most 4 quasi-particle annihilation
operators available for contractions

- at most 4 7 operators can be
,,connected” with H

=> (H exp(7)), contains at most quartic terms!




Size Extensivity

CC equations contain only ,,connected” terms

correct (linear) scaling with

N .. .
size extensivity size of systems/number of electrons

ensures that quality of results is independent of size

connected terms linear scaling

disconnected terms quadratic, cubic, ... (unphysical) scaling




Size Extensivity

disconnected term (WT), connected term (WT),
system A
one contribution one contribution
(W from A, T from A) (W from A, T from A)
system A+B

four contributi ibuti
ur contribution two contribution

W from A, T from A
(W from A, T from B (W from A, T from A
W from B, T from A’ W from B, T from B)

W from B. T from B)

quadratic scaling (wrong!) linear scaling




Detailed Expressions for the CC Equations

e algebraic analysis via Wick’s theorem

— tedious, not recommended

— suitable for computer algebra

 analysis by means of diagrammatic techniques

— simple access via graphical representations

— automatic elimination of non-contributing term

— (better) suitable for computer algebra




1X.

Diagrammatic Techniques in CC Theory



Diagrammatic Representation: Operators

operators foq {a;r? aq} N fn
(pa||rs){afalasa,} — W
tab{a aza] a;} o T

/

product of creation and
matrix element

annihilation operators

graphical representation N §
symbol with vertices ,
number of vertices = W

number of p*q pairs - : . .




Diagrammatic Representation: Operators

QP-creation/annihilation operators — lines

QP-creation operators (QPC) — lines above vertex

QP-annihilation operators (QPA) —— lines below vertex

RV

2 QPC 2 QPA 1 QPC and QPA

arrow direction

particles (virtual orbitals) { upwards

holes (occupied orbitals) + downwards




Diagrammatic Representation: Operators

at each vertex there is one incoming and one outgoing line
(conservation of particle number)

alai al:a;;

(non existing)

Y eV

correct wrong




Diagrammatic Representation of the
Hamilton Operator

LAY,

(ab||ij){alafa;a;}

(abl|ci){al abazac

-

(ai||be){al a! acab}

(ial|jk){ala}ara;)

(at||bj) {a

o

(ab||cd){a} abadac}

ajab}

A

zkaa,{a a) aaak}

(ij]ab){a}a

abaa}




Diagrammatic Representation of the
Cluster Operator

Y4

t¢ {aba;}

VY

tiy {aya

T
A0

}

i

VAERY

abce
ik

{afajalara;a;)

etc.




Diagrammatic Representation: Contractions

product of two operators A and B

j@v

°/

A

left operator (A4) above right operator (B)




Diagrammatic Representation: Contractions

normal-ordered product form according to Wick’s theorem

all ,,diagrams”, in which the two operators are
connected via none, one, two, ... lines

connection = contraction

connection only possible in the case of same directions of arrows

connections only between QPC in B and QPA in A




Diagrammatic Representation: Contractions

example open lines
(remaining QPC and QPA)

sy T
AB " \ | internal line
R

no contraction one contraction




Diagrammatic Representation: Contractions

example
(@] (fn T1)c|0) 2 open lines




Connected, Disconnected, Linked, Unlinked

open

closed

connected

disconnected

linked

unlinked

with open lines

no open lines

all parts of the diagram are
connected via lines

not all parts of the diagram
are connected via lines

closed and ,,connected”

closed and ,,disconnected”




Diagrammatic Representation of the CCD Model

CC energy: ( ) _________ ( )
CC equations: : j




Algebraic Analysis of Diagrams

Each line of the diagram corresponds to an index.
The indices of the open lines correspond to the
»target“indices (i, j, k, ... in the case of holes and a, b, c, ..
in the case of particles), the indices of the internal lines
correspond to the ,,summation” indices (m, n, o, ... in the
case of holes and e, {, g, ...in the case of particles)

a 1 b ] target indices

""" A
c m \/
n summation indices




Algebraic Analysis of Diagrams

The symbols for the operators are replaced
by the corresponding matrix elements.

out
> ________ . . f(out,in)
in

. out2
n2
Outl\/_/ ______ _\_\/m —  (outl out2 || inl in2)
. out2

outl \/ \/mZ—’ outl out2
nl 1n?2




Algebraic Analysis of Diagrams

sum over all indices of the internal lines

target indices

a 1 b ]
"""" f
e m o [ °
n summation indices

=> YOt 2 (mnllef)

mnef




Algebraic Analysis of Diagrams

n equivalent lines (same arrow direction, connection
to same operator symbols) yield a factor of 1/n!

target indices

summation indices

equivalent lines — factor 1/2

=> - ZZ tos, t17 (mnllef)

mnef




Algebraic Analysis of Diagrams

n equivalent operators (connected to the
same operator(s) via lines of the same
arrow direction) yield a factor of 1/n!

Voo 0y
N/

equivalent T, operators

=> factor 1/2




Algebraic Analysis of Diagrams

the sign of a diagram is given as (-1)"*/ with 4 as the number
of ,,internal hole lines” and / as the number of ,,Joops”

a 1 b ]
-------- f
C 4 im
S

loop internal hole lines

=> negative sign




Algebraic Analysis of Diagrams

sum over all non-equivalent permutations of the indices
of the open hole and particle lines, respectively

non equivalent W equivalent

——P_ (ab) ZZ tee ti;b (mnllef)

mnef

sign: (-1)” with p as the parity of permutation
P_(ab) Z(a,b) = Z(a,b) — Z(b,a)




Diagrammatic Representation of the CCD Model

CC energy: ( ) _________ ( )
CC equations: : j




CCD: Algebraic Expressions

CC energy:

Zz (1j]|ab) t ”]'

ab

CC equations:
0 = (ab||zj) + P_(ab) Z Jae f(b — P_(ij) Z Jmi T, ,,,/

( m

+ = Z (mnl|ij) t ’,’,],',, + EZ (le"f>ff
' (ab) ZZ mbHGJ tim

m e

4 L o

B _P (lb Z Z n)nH f /lnf// IL// o zp_(lj) Z Z <77I’7?H6’.' IL,,{ IL,’,,}
mn ef mn  ef

4+ = ZZ (mnl|ef) t" t :f + P ' (ab) ZZ (mnllef) j’,’,, /,,

mn ef mn ef




X.

Computational Realization of CC Approaches



Solution of CC Equations

* no direct solution of (non-linear) CC equations possible

=> jterative schemes

* rewrite CC equations

CCD: 0 = (eater—ei—sty) + Zi(E)
zeroth-order term higher-order terms

* iterative sequence

p(n+1) ijb(t%b(n)) — computed with

a
tij IR —— old amplitudes

new amplitudes

initial guess via MP2, convergence acceleration using DIIS




zeroth-order term

/

CC equations:

. ao ]- cf
(mnlls) i+ 52 Gabllef) €]

mmn

(ab) YD ! mbe’J
m e
1

(ab) DY (mnllef) tif, 1) — SP-(id) 30D mnllef) 1] 43,

mn ef mn ef
( ¢ .bf
+t1 ZZ (mallef) 150, ¢+ 5P P-(ab) 32 7 Gmnllef) 5, 1

mn ef e

higher-order terms



Computational Cost

Z (mnl|if) 20 = qujb . targetindices ij,a,b

m<n do it for all i<j and a<b

1 2 %1 2
\ 9 72 nocc 72 Nvirt

summation overm<n = % n_, >

=> total costis 1/8 n_** N,. 2

virt

CCD

- : 4 % 2 2 % 4 3%
linear terms: 1/8 n,.** Ny T8 n . * Nyiew T DNy ™ Nyige

=> N° computational cost

non-linear terms: Z Z (mnllef) t2° tfjf — ijb N8 cost???

m<ne<f

3




CCD equations:

linear terms

Vo= tablle) £ P ab_me t ~ P—“J)Z f"”lt('[']’)//
i ‘Z (mnlig) th, + —Z (abllef) ¢

mn

(ab) ZZ mbuez]
(ab) ZZ (mnllef) ti], t] — lp—(’i])zz (mnllef) ¢! o0

mn  ef mn  ef

al ( (1( bf
+ - ZZ (mnllef) t), z}f P( )P_(ab)ZZOnnHef) im t}lfl

mn  ef mn ef




CCD equations:

e

1
N ab
4+ = E (mnl|ij) t,),

mn

' (ab) ZZ mbHe] t

m

+ iz (@bllef) 1]

ab
Ij E fm/ le/

non-linear terms

/

Z Z (mnllef)

mn ef

(mnl|ef) t2 ¢

mn 1/

mn 1}

lL”f 2L( b .

—P—(?J) Z Z <'T7'2/72,-’ |€f> tjn t‘mj

mn ef

()Y ) ¢

mn ef

bf




Factorization of Terms

SN (mnllef) teb, ] =z

m<n e<f

one-step evaluation => N?® computational cost

0 S (mnllef) tf — v

e<f . .
factorization

mn yab ab
b) Z Yii" U = 445

m<n

two-step evaluation => 2 N°computational cost




Definition of Intermediates

- straightforward implementation (term by term)

Z (mn|ij) + Z Z (mnllef) t ef tab

m<n m<n e<f s

tCLb

mn

N cost 2 N6 cost /

« via intermediates

~—

intermediate Winnij =
e<f
N6 cost

E : YA ab
Wmnzj tmn

contraction N° cost

(mnllij) + Y (mnllef)ts]

3 N° cost

> 2 NS cost




CCD Formulated via Intermediates

, 1 o ab
CC energy: AE = 2> > (ijllab) tf]

1,7 a,b

CC equations: N -
0 = (abl|ij) + P_(ab) Z Fae 5 = P_(i) Y Fmi tor;

+ = Zwmm] tab 12 (abl|ef) t7

+ P_(ij)P_(ab) ZZ meej i

intermediates:

N | —

~ 1
Fmi = fmi + 5 ZZ (mnl|ef) Winnij = (mnlij) +

> (mnllef) t
noef

e, f
~7'~—ae = fae — %ZZ (mnllef) t%{n meej = (mbllej) + ZZ (mnllef) t n
m,n f n f

N | —




Computational Cost

leading terms of CCD + CCSD

linear terms: 1/8 n, **N, 2 +1/8 n, 2*N.*+ n > *N

virt virt cc virt

non-linear terms: 1/8 nocc4 * Nvirt2 + nocc3 % Nvirt3

total: 1/4 n, **N,>+1/8 n, 2*N,.*+2n, . *N_3

virt virt virt

=> N¢ computational cost

less than 2 times as expensive as CID and CISD (linear terms only!)




Standard CC Approaches

truncation of the cluster operator T:

cluster operator approximation | cost

T=T,+T, CCSD N©
T=T,+T,+T, CCSDT N8
T=T,+T,+T,+T, CCSDTQ N0

T=T,+T,+T;+T,+T;| CCSDTQP N1z

T=T,+T,+ ... +Ty FCI




Accuracy of CC Methods

deviation from FCI (in mH) for CO

CI CcC
SD 30.804 12.120
SDT 21.718 1.009
SDTQ 1.775 0.061
SDTQP 0.559 0.008
SDTQPH 0.035 0.002

calculations with cc-pVDZ basis, frozen core

E(FCT) = -113.055853 H




Historical Remarks

— CC theory

— first CC computations
(semiempirical, min. basis)

— CCD implementation

— CCSD implementation
— efficient closed-shell CCSD

— CCSDT implementation

- CCSDTQ implementation

— general CC models

Cizek, 1966

Cizek, 1966
Cizek, Paldus, Shavitt, 1972

Pople and co-workers, 1978
Bartlett, Purvis, 1978

Purvis, Bartlett, 1982

Schaefer and co-workers, 1987
Noga, Bartlett, 1987
Scuseria and Schaefer, 1988

Oliphant, Adamowicz, 1991
Kucharski, Bartlett, 1991

Olsen, 2000, Kallay, Surjan, 2001, Hirata, 2003




XI.

Approximate Treatment of Higher Excitations



Need for Higher Excitations

High-Accuracy Calculations:

1 kJ/mol or better in thermochemical applications

0.1 pm accuracy in computed bond distances

require considerations of excitations beyond singles and doubles

=> triples, quadruples, ...




CCSDT Equations

H = Egr + fnv + Wy T = 17 +15 + 13

E = Egr + (O(fnT1)e + (WNT2)e + %((WNTl)c)Tl)c 0)

projection on singly excited determinants

additional term
0 =({®s| fv due to T,

+(fnT1)e + (WNTY).

FUNTR)e + (W T)e + 5 (NTDT)e + 5 (W) 70,

+H(WnT2)Th)e + %(((WNTl)ch)c)Tl)c + (WnT3).|0)




CCSDT Equations

H = Egr + fnv + Wy T = 17 +15 + 13

projection on doubly excited determinants

0 = (dp| Wy
additional terms
+H(WnTh)e due to T,
1
FUNT2)e + (WNT)e + S (WNT1).Th). /
1
+(<fNT2)CT1)c + ((WNTQ)CTl)c + 5(((WNT1)CT1)CT1>C

+(fnT3)e + (WATS),

—*—%((WNTQ)CTQ)C + %(((WNTQ)CT1)0T1>C + %((((WNTl)CTl)C )ch)c
+((WnT5)c11)|0)




CCSDT Equations

H = FEgr + fn + Wn T = Ty + Ty + 15

projection on triply excited determinants

0 = <¢T‘(WNT2)C + (fNTB)c + (WNTS)C + ((WNT2)CT1)C
1

+((fNT3)Th) e + 5((fNT2)CT2)c + %((WNT2)CT2)C + (WNT3)c 1Y)

+%(((WNT2)CT1)CT1)C + (WNT5)c12)c + %(((WNT2)CT1)CT1)C

5 (WNT)T)T e+ (WN)To)e )3T, 0

shorthand notation

in the sense that all Ts are

WnTo) Ty = 1577 ),
(WnT3)cTh) (WNT>Th) connected to fy or Wy




CCSDT Equations

projection on triply excited determinants

0 = <(I)T’ (WNTZ)C + (fNT3)c + (WNT3)C
FOVNTLT)e + (NTVTe + 5 (N2

1 1
+ §(WNT22)C + (WNT5Th)e + §(WNT2T12)C

1 1
+ (WNT3T2). + §(WNT22T1)C+§(WNT3T12)C

1
+ 5 (WNTRTY)e [0)
,problems” with CCSDT CCSD for comparison
« computational cost : N3  computational cost : N°
* storage of triples amplitudes: N° * storage of doubles amplitudes: N*

two orders of magnitudes more expensive




Iterative Approximations to CCSDT

additional approximations in the amplitude equations

— no storage of amplitudes for highest excitation

— reduced scaling in computational cost

=> CCSDT-n (Il=1-3) Bartleztltgzg;d ({gév;;rkers

=> CC3 (within CCn hierarchy) ~ JorEensen tod somvorkers




Iterative Approximations to CCSDT

triples equations

0 = (Pr| WnT)e + (fnT3)e + (WNT5),

+ (WNTTy)e + (fNT3TY)e + %(fNTQ)

1
é(WNTQ) + (WNT5T1)e + §(WNT2T12)C

1 1
+ (WNT5T). + E(WNT22T1)C + §(WNT3T12)C

1
+ 5 (WNTRTT). 0)

N8 terms: to be skipped in all cases




Iterative Approximations to CCSDT

reduced scaling
all N3 terms involve contractions with 7} in the triples equations

only remaining term with 7,

(fvT;). =2 T;equation; (catep+ec—ceit+ej+ek) ff,ﬁ

scaling of remaining terms

terms in the T3 equations: N7  (dominates cost)
((Wy+ W\ T)T;). =2 T, equation: N7 (dominates cost)
(Wy T;)., 2 T,equation: N6

overall cost : O(N7) per iteration




Iterative Approximations to CCSDT

storage of 7; amplitudes

abe (1a(n) pab(n)
abe(n+1) o (t )7tijb )

$! =
1k (€i+ej+ek—€a—€b—¢€c)

/ N

compute the triples ,,on the fly" independent of 7,

followed by immediate
calculation of 7; contribution
to singles and doubles

(without storage)




Iterative Approximations to CCSDT

triples equations

CCSDT-1: — CCSDT-3: = + =— + =
CCSDT-2: == + = CC3: = 4 =




Accuracy of Approximate Treatments of Triples

deviation from FCI and CCSDT (in mH) for CO

A(FCT) A(CCSDT)
CCSD 12.12 11.11
CCSDT-1 0.13 -0.88
CCSDT-2 1.52 0.51
CCSDT-3 1.47 0.46
CC3 0.12 -0.89

calculations with cc-pVDZ basis, frozen core



Non-Iterative Approximations to CCSDT

two-step procedure:

e perform CCSD calculation
T=T,+ T,

 add perturbative corrections due to 7,
E = E(CCSD) +AE(T)

use of converged T, and T, amplitudes

—» CCSD+T(CCSD), CCSD(T), ....




Coupled-Cluster and Perturbation Theory

perturbative expansion of CC energy and equations

Hy = Euyr + fn E=E9 + g + g@ 4+
HY = Wy T =7 + 7@ 4+ 76 4+

— recovers Moller-Plesset (MP) perturbation theory

— CCSD contains all second- and third-order terms,
lacks some higher-order terms

— CC sums certain terms (via iterative solution)
to infinite order

— correct CC energy for missing terms using
perturbation theory




Coupled-Cluster and Perturbation Theory

perturbative triples correction to energy

(2)
AEr = (0| T8 fx T |0)
\
second-order T;, from MP4

compute T; with converged CCSD amplitudes
AEp = (0| TI fy T3 |0)
defines CCSD+T(CCSD)

Urban, Noga, Cole, Bartlett, 1985




Coupled-Cluster and Perturbation Theory

additional consideration of a singles contribution

2
AE = 0 7% wy 72 |0y

fifth-order term!

triples correction to energy (converged amplitudes)

ABr = (0| (T4 fv + T Wy) T5 |0)
defines CCSD(T)

Raghavachari, Trucks, Pople, Head-Gordon, 1989




CCSD(T)

perturbative corrections on top of CCSD

e fourth-order contribution

wify = P(ij/k)P(ab/c) {Z (bellek) i — ) (mel|jk) t%ﬁ%}

e m

computed with CCSD amplitudes
o fifth-order contribution

AE7(5 : Wi T
T<) N % sz:kw%:c (8¢—|—€j+8k—6a—85—€c)
wite = P(ij/k)P(ab/c) (belljk) t¢

permutation operator: P(pq/r) Z(pqr) = Z(pqr)+ Z(qrp) + Z(rpq)




CCSD(T)

computational cost

wibe = P(z’j/k)P(ab/c){Z (bellek) tge = (mcl|jk) ta;g}

m

one summaton index (e or m)
=> cost scale with n, >N, *

virt

six target index (i,j,Kk,a,b,c)

CCSD(T): cost N per iteration, N7 for non-iterative step

no need to store 7; amplitudes




Accuracy of Approximate Treatments of Triples

deviation from FCI and CCSDT (in mH) for CO

A(FCT) A(CCSDT)
CCSD 12.12 11.11
CCSDT-1 0.13 -0.88
CCSDT-2 1.52 0.51
CCSDT-3 1.47 0.46
CC3 0.12 -0.89
CCSD(T) 1.47 0.46
CCSD+T -0.05 -1.06

calculations with cc-pVDZ basis, frozen core



Further Developments

perturbative triples
« A-CCSD(T)
replaces Tg by As
slightly more stable
« CCSD(T-n), n=2,34....
most rigorous treatment
n=4 required to match CCSD(T)

perturbative quadruples

. CCSDT(Q)
non-iterative N° analogue to CCSD(T)

« CCSDT(Q-n), n=2,34....

most rigorous treatment

Crawford, Stanton, 1999
Kucharski, Bartlett, 1999

Eriksen et al., 2014

Bomble et al., 2005

Eriksen et al., 2015




XII.

Computational Thermochemistry:
A Pertfect Playground for CC Theory



Computational Thermochemistry

quantum-chemical calculation of thermochemical
energies via energy differences

most often computed:

atomization energies heats of formation

calculation involves:

electronic part non-electronic part

e.g. vibrational corrections




Chemical Accuracy

accuracy required for realistic chemical predictions

1 kcal/mol = 4.184 kJ/mol
4.33-102 eV

350 cm!

1.59 mHartree

sub-chemical accuracy: 1 kJ/mol and better

density-functional theory not accurate enough




Approximate Quantum Chemistry

electron correlation

FCI

CC

[ CCSDTQ
CCSDT
CCSD(T)

L CCSD

<

HF-SCF

cc-pVDZ

FCl/infinite basis

cc-pVTZ cc-pvVQZ cc-pVSZ

basis set




Approximate Quantum Chemistry

electron correlation

i
FCl/infinite basis
— X
AN
N
N
N
N
™.

..........

basis set




Basis-Set Extrapolation: HF Energy

E

-112.780

-112.785

-112.790

extrapolation of HF-SCF energy

s

TZ QZ 57 6Z.

E(HF-SCF /aug-cc-pVXZ) = E°(HF-SCF) + a exp(—bX)

/

extrapolated value

a, b, and Eco(HF-SCF) from
3 HF-SCF energies

D. Feller, J. Chem. Phys. 98, 7059 (1993)




Basis-Set Extrapolation: Correlation Energy

-0.405
extrapolation of CC energy

-0.410

-0.415

QZ 57 67 77 8Z

AE>*(CC) = AFE(CC/aug-cc-pVXZ) — %

/ ¢ and AEoo(CC) from

2 CC energies
extrapolated value

Helgaker et al., J. Chem. Phys. 106, 9639 (1997)




High-accuracy Extrapolated Ab-initio Thermochemistry

HF-SCF
+ ACCSD(T)
+ACCSDT

+ACCSDTQ
+ ACCSDTQP

+ scalar relativistic

+ SO splittings
+ ZPE (anharm.)
+ DBOC

extrapolated (Q356)
extrapolated (ae, 56)
extrapolated (fc, TQ)
fc, cc-pVDZ
fc, cc-pVDZ
CCSD(T)/aug-cc-pCVTZ
MRCISD/cc-pVDZ+PP
CCSD(T)/cc-pVQZ
CCSD/aug-cc-pCVQZ

Tajti et al., J. Chem. Phys. 121, 11599 (2004)

Bomble et al., J. Chem. Phys. 125, 064108 (2006)

Harding et al., J. Chem. Phys. 128, 114111 (2008)




HEAT: Atomization Energy of CO

HF-SCF 730.13 extrapolated (Q56)
ACCSD(T) 356.53 extrapolated (ae, 56)
ACCSDT -2.37 extrapolated (fc, TQ)
ACCSDTQ 2.22 fc, cc-pVDZ
ACCSDTQP 0.13 fc, cc-pVDZ
scalar relativistic -0.65 CCSD(T)/aug-cc-pCVTZ
SO splittings -1.20 MRCISD/cc-pVDZ+PP
ZPE (anharm.) -12.99 CCSD(T)/cc-pVQZ
DBOC 0.02 CCSD/aug-cc-pCVQZ
Sum (Theory) 1071.83

all energies in kJ/mol
Experiment 1072.13+£0.09

Harding et al., J. Chem. Phys. 128, 114111 (2008)




Statistical Evaluation

High-accuracy Extrapolated Ab-initio Thermochemistry

atomization energies of

N,, H,, F,, CO, O,, C,H,, CCH, CH,, CH, CH,,
CO,, H,0,, H,0, HCO, HF, HO,, NO, OH

mean error max. error RMS error

-0.24 0.87 0.42

Harding et al., J. Chem. Phys. 128, 114111 (2008)




XIII.
Closed- and Open-Shell CC Methods



Closed- and Open-Shell Systems

1T

closed shell

=> RHF reference

spin-adapted
CC formalism

FEIT

high-spin
open-shell

= UHEF, ROHF reference

spin-orbital
CC formalism

TETT

low-spin
open-shell

multi-
=> determinantal
description

no routine
CC treatment




Closed-Shell CC Approaches

restricted HF reference

1 _ _
0) = —
0) N P11 ON/2PN /2]
doubly occupied \

spatial orbitals

o spin orbital

B spin orbital
=> relationships among two-electron integrals
(pqlrs) = (pglrs) = (pqlrs) =

(pqllrs) = (pq|rs) — (pq|sT)




Closed-Shell CC Approaches

non-vanishing spin cases for amplitudes

a __ a ab __ ab ab __ ba __ __4ba __ _ jab

1 (¥

oLl BB oLl BRBB afaf Bapa appfa  Paap
in addition ty) = t?f - tf]a t%b = t?%

only aa (singles) and afaf} (doubles) required




Closed-Shell CC: Spin Integration

closed-shell CCD

* consider only afafp amplitude equations
0 = (®ff] exp(~To) H exp(T») |0)

* consider only non-zero contributions based on spin cases

+Z Fae 10+ w+

* rewrite all terms using oo and afap quantities

A ae YA) ae
mee] tzm + Wy mbeéj t'Lm

1 ae ea ea
— 2(2 meej ngéj) (2 tz'm o tzfn) + 5 mefi] t

=> (CCD equations in terms of qu,<P(_1‘I'§>a and tiajb




Closed-Shell CCD

e amplitude equations
0 = {(ablij) + P_(ab) Z faetef’ — P_(iy Z Fomi tfr%
+ Z Wi twn =+ Z (ablef) 15!
T P—l— La jb ZZ {Qmeé + meeg)( tae B t?nez)
1 — ae YA ae
+ 5 ngéj mi ngéi mj]
* actual (optimal) computational cost

1
2 OCC]'V-2

* automatically spin adapted

1
3 4
virt -+ 4 nocc]'\Iv1rt -+ Z nochvurt




Open-Shell CC Approaches: UHF-CC

unrestricted HF reference

1 different spatial
0) = S ... % Q_ﬁf gB]ﬁV | parts for a and
Vv (No + Ng)! ) ’ B spin orbitals
non-vanishing spin cases for amplitudes
a b ab b b b b

ol BB aaao.  PPEP afof  PoPa oppa  Paaf

oo and BP (singles) and aaoa, PP, and afaP (doubles) required




Open-Shell CC Approaches: UHF-CC

spin-integrated UHF-CCD equations

aooo /BRPRP spin cases

0 = (ablij) + P_(ab)y  Faetll — P_(if) Y Foi to,

e

+ ) Wonij toh, + > {ablef) t5]

m<n e<f

+ P_( (ZZ mbeitim + ZZ mbej zm)

equations are not spin adapted!




Open-Shell CC Approaches: UHF-CC

afaf spin case

0 = (ablif) + Y Facli] + Y Foalif — D Funity; — > Faj ti

+ Z Winnij t%—)ﬁ + Zé<a6|6f> t%f

m,n - e,f - ) - _
+ 2D Wasejtim + D20 Waeitim + D>, Wracilyy;
+ ZZ Wmaév:ti% + ZZ Wmaejtfrg_n + ZZ Wm@éitg%

actual (optimal) computational cost

5 3
“n* N2 . + 20n3 N3 . + 5 n2 . Nyire

2 occ~ 'vir occ

4-5 times more expensive than RHF-CCD/CCSD




Open-Shell CC Approaches: ROHF-CC

restricted open-shell HF (ROHF) reference

1 - - same spatial
0) = P11 ... ON. D1 ... dn,| partsfor aand
\/(Na + NB)! ’ B spin orbitals

oo and B (singles) and aaaa, BEPRPR, and afaf (doubles) required

actual (optimal) computational cost
2.5 nOCC4NViI"[2 +20 nOCC3NViI't3 +1.5 n0002 Nvirt4

essentially the same cost as UHF-CC




Spin-Orbital Based CC Methods

* T contains spin-orbital excitations

* no spin properties enforced

-since [S%,T] # 0 in case of open-shell systems

= truncated CC wavefunctions no spin eigenfunctions

« UHF-CC
<SQ>UHF 7& S(S —+ 1) and <52>C’C 7£ S(S -+ 1)
« ROHF-CC

(S romr = s(s+1) but (S%cc # s(s+1)




Spin-Adaption in CC Theory

 generators of the unitary group

(S*,E¢] = 0 with Ef = Z a’ _a;,

aoc

o=a,3

e closed-shell CC \

. . summation
— T can be rewritten in terms of Ef‘

over spins
— spin adaptation trival

 open-shell CC

— usage of E: leads to non-commuting excitation operators
Tio= ) ) 6B, . = [ELEY = 6uE) —6,E}

singly occupied orbital appears as occupied and virtual




Current Status of Open-Shell CC Theory

« spin-orbital approaches (UHF, ROHF reference)

— standard choice

* unitary-group based approaches Janssen, Schaefer, 1991
— rigorously spin adapted Li Paldus. 1994
— complicated, automatized implementations
* partially spin-adapted approaches Janssen, Schaefer, 1991
— open-shell orbital(s) not spin adapted K owles, Hampel, Werner, 1993
— much simpler Neogrady, Urban, Huba¢, 1994

* spin-restricted approaches
— exact CC spin-expectation value Szalay, Gauss, 1997
* spin-free combinatoric approaches

~ unitary group based, spin adapted Datta, Mukherjee, 2008
— modified exponential ansatz




XIII.
Analytic Energy Derivatives in CC Theory



CC Lagrangian

* CC theory is nonvariational

— direct differentiation of CC energy involves derivatives of amplitudes

=> computationally inefficient!!

— efficient formulation of CC gradients via so-called CC Lagrangian

* CC Lagrangian Lagrange multipliers

Loe = (0] exp(=T)H exp(T)[0) + Y A (®1] exp(—T)H exp(T)[0)

/ I e

energy CC equations as constraints




Lambda Operator

Lo = (0]exp(=T)H exp(T)[0) + )~ Ar (®r]exp(—T)H exp(T)|0)

1
compact notation /

Lee = (0] (1+A) exp(=T) H exp(T) |0)
A deexcitation operator A = A + Ay + ...
ZZAZ azaa Ay = —ZZ)\ab a, aaa ap
7 a 1,7 a,b

diagrammatic representation 7§ 4 ; /1: )




Stationarity Conditions

wrt A-amplitudes

OLcc
OANT

=0 = 0 = (®;|exp(—=T)H exp(T)|0)
CC equations

wrt t-amplitudes

OLcc
Oty

—0 = 0= {0](1 + A) (exp(-T)Hexp(T) — E)|®;)

A equations

stationarity => (2n+1) rule for t-amplitudes and (2n+2) for A-ampliutudes




CC Gradients

* differentiate CC Lagrangian wrt perturbation x

Lee = (0 (1+A) exp(=T) H exp(T') |0)

* exploit (2n+1) and (2n+2) rule

g_f = (0| (1 + A) exp(-T) %—Z exp(7T’) |0)

no perturbed t- and A-amplitudes required!




CCD Gradients

cluster operator T =T,

Lambda operator A = A

CCD Lagrangian

Leep = (0] (14 Ag) exp(—T32) H exp(13) |0)

CCD amplitude equations
0 = (®p| exp(—T2) H exp(T2) |0)

CCD lambda equations
0 = (0] (1 + Ag) (exp(—T3) H exp(Tz) — Eccp) |Pp)




A Equations for CCD: Diagrams




A Equations for CCD: Algebraic Form

0 = (ij|lab) + P_(ab) Z A - ZZ (mnl|af) t! }

m.n f

— P_(ij) > A {fom + ZZ i, (inllef)}

m n o e.f

+ < ZA%" (ijllmn) + Z Gjllef) o]}

mm

+ — Z )\,} fH(lb + Z IHNH(lb /nn}

mn

+ P_( ' (ab) ZZ AL egllmb) + ZZ (nj||fb) t! }

m (&

B %P(ab) ZZ (i7]leb) T/an )‘(I,”f” 5 ' (iJ) ZZ (mjl|ab) fmf” )\m

mn  ef mn ef

(perturbation independent) linear equations for A amplitudes




Density Matrices in CC Gradient Theory

introduction of density matrices

g_f 0] (1 + A) exp(—=T) %—ZI exp(T") |0)

of pQH?“8>
- Zqu a;;q n Z Lpgrs

P.q p q,7,s .\
/ reduced two-particle

reduced one-particle density matrix
density matrix (0[(1 + A) exp(—T){a;;a];asar} exp(T)|0)
(0[(1 + A) exp(=T){a}aq} exp(T)|0)

gradients in terms of integral derivatives and density matrices




Diagrams for CCD Density Matrices

 one-particle density matrix

D

 two-particle density matrix

= ) A

y

mm\/v V.oV
IS u




Algebraic Expressions for CCD Density Matrices

 one-particle density matrix

1 .
Dy = 2 e

m e, f

 two-particle density matrix
Lijri = —Z A ef

Lajiv = ZZ At tbe
Dijar = tabJr ZZ Aoy

mnef

——P_ (ab) > > AT

mnef

geb gaf _

mn i)

Z Z )\mn tbe

m,n e

Fabcal — _Z )\ th

Uopi; = Az)
1
ef ab ae ,bf
i + 5= (i) P-(ab) ;zf: AT e ¢
SP_Gi) ST A g
m7n €7f




CC Gradients with Orbital Relaxation

extended Lagrangian = CC Lagrangian + orbital constraints

Lee = (0] (1+A) exp(=T) H exp(T) |0)

~ Lagrange
multipliers

+ QZZ Dai fai + leq (Z C;l;pS,UJ’/CVq - 5pq>
a / P,q v /

Brillouin condition orthonormality of MOs

CC energy and CC equations

stationarity conditions = elimination of MO derivatives




CC Gradients with Orbital Relaxation

parameterization of orbital changes

C:L — Z Cug qu matrix T occ-occ  |oce-vrt
q vit-occ | vrt-vit
stationarity requirements general (non-unitary) transformation
| = — Ia
( ) airab —
oL
2) G =0 = Iyt I
oL
3) 8TC C = 0 = Z-vector equations for D,,
oL
(4) cc = 0 — ]z'j

0T,




Z-Vector Equations for CC Gradients

Z-vector equations

Y > Dewml(aellim) + (amllie) + Oae Sim (€0 — )] = —Xai

with 1

Xoi = 7 3 Cingr {apllar) + Trip (arllap)

p,q,r

1 , .
= 1 Capar pllar) + Torap (arllip)

p,q,r

+ 5" Dyy (Gpallaiy + (pillga))

p,q

linear equations for orbital relaxation contribution to D ;




CC Gradients with Orbital Relaxation

differentiation of ,,extended* CC Lagrangian

Hamiltonian with

/ AOQO derivative integrals

OLcc = (0] (1 + A) exp(=T) H* exp(T) |0)

ox

+ 22 Y DuY e {3hw Z DSCF /M!Vm } .
() a w,v

+ leq Zcupa—gcyq\
P.q [TRY

AQ derivative integrals

contains no derivative of wavefunction parameters




AQO Formulation of CC Gradients

differentiation of ,,extended* energy functional

Z D, fzgf; + = Z Lpors (pq|lrs)® Z Ipg Sy,
P.q

p,qrs

integral derivatives contain no MO derivative contributions

reformulation in AO representation

% - T (G eror o) s, 20l 5,
uv

M?lj?O—?p

density matrices and intermediates back transformed to AQO basis




Implementation of CC Gradients

required steps for gradients

CC and A equations (~ N%,N3,...)

CC density matrices (~ N%,N3,...)

!

MO — AO transformation of density matrices (~ N°)

l

contraction with integral derivatives (no storage, ~ N¥)

computational cost do not scale with vV,



Historical Remarks

— CC Lambda operator
— Z-vector method

— Lagrangian technique

— CCSD gradients
— open-shell CCSD gradients
- CCSD(T) gradients

— CCSDT gradients

— general CC gradients

Arponen, 1983
Adamowicz, Bartlett, 1984

Handy, Schaefer, 1984

Jorgensen, Helgaker, 1988

Schaefer and co-workers, 1987

Gauss, Stanton, Bartlett 1991

Scuseria, 1991, Lee, Rendell 1991
Watts, Gauss, Bartlett, 1992

Gauss, Stanton 2001

Kallay, Szalay, Gauss, 2003




Accuracy of CC Geometrical Parameters

calculated r(OH) for H,O (in A)

CI CC
SD 0.96131 0.96435
SD(T) 0.96575
SDT 0.96251 0.96583
SDTQ 0.96593 0.96614
SDTQP 0.96606 0.96616
SDTQPH 0.96616 0.96616

FCI 0.96616

calculations with cc-pVDZ basis




XIV.
Availability and Applicability



Standard CC Approaches

6
CCSD N many programs such as

ACES2, ACES3, CFOUR, DALTON, GAUSSIAN,
GAMESS, MOLCAS, MOLPRO, NWCHEM,

7
CESDA)  N” - gRea, PSI, PySCF, Q-CHEM, TURBOMOLE, ...

CCSDT N8 ACES2, CFOUR, NWCHEM

CCSDT(Q) N?
CFOUR, MRCC

CCSDTQ N10




XV.
What is Still Missing?



Further Topics (not covered)

large molecules (linear scaling)

e.g., local CC methods (= F. Neese) multi-reference treatments
e.g., Mk-MRCC, ic-MRCC (not routine!)

explicitly-correlated CC methods properties via CC methods

R12-CC and F12-CC analytic CC derivatives
response theory

(= T. Helgaker, J. Olsen)
higher excitations in CC theory

general CC excited states via CC methods
automatized implementation equation-of-motion (EOM) CC
string-based methods CC response theory (=2 Friday)

other open-shell CC methods
relativistic effects EOM-IP-CC

4- and 2-component CC (= L. Visscher) Fock-space CC




