
Equation-of-Motion  
Coupled-Cluster Theory 

Jürgen Gauss 



Excited States 

solutions of the  
Schrödinger equation other  

than the ground state 

relevant for spectroscopy, photochemistry, ... 

-  excitation energies 

-  transition moments 

-  excited-state properties 

-  simulation of spectra 

excited  
states  

<=> 

�Eexc

��f | µ |�i�

�Eexc/�x



Coupled-Cluster Theory and Excited States 

CC theory effectively ground-state theory 

-  single-determinant reference                   

but 
-   sometimes possible to converge to excited-state solutions 

-   multireference CC treatments (à Köhn) 

similar issues exist in HF, DFT, ... 

-   equation-of-motion ansatz 

-  difficulty to converge to higher-lying solutions 

-   response theory (à Olsen) 
=>  excitation energies as poles of response function 



I.  
 
 

Equation-of-Motion Ansatz 



Equation-of-Motion Ansatz 

write excited-state wavefunction as 

|�exc� = R |�gs�



Equation-of-Motion Ansatz 

                                 

 

write excited-state wavefunction as 

excitation  
operator  

ground-state  
wavefunction  

excited-state  
wavefunction  

•  transforms ground-state into excited-state wavefunction   

•  describes differences in orbitals, correlation, ... upon excitation 

|�exc� = R |�gs�



Motivation and Advantages 

                                 

 

local excitation 
at chromophore  

differences between  
ground and excited state 

more or less localized  

molecule  

usual approach to ΔEexc 
 

-  get E separately for all states  

to be described by R   

-  take difference to get ΔEexc 

-  not generally applicable 

‘direct’ approach to ΔEexc 

-  get Eexc and Ψexc via ground state 

-  more balanced 

-  generally applicable 

-  description of (local) differences  
  less demanding -  balanced description? 

    

-  computational efficiency? 



Equation-of-Motion Ansatz 

                                 

 

equations for R 

•  apply R to the ground-state Schrödinger equation 

•  insert equation-of-motion ansatz into Schrödinger equation 

•  subtract 

similarity to equation of motion for operators explains the name 

R H |�gs� = Egs R |�gs�

H R |�gs� = Eexc R |�gs�

(H R � R H) |�gs� = �Eexc R |�gs�

[H,R] |�gs� = �Eexc R |�gs�



II.  
 
 

Equation-of-Motion CC Ansatz 



Excited-State Wavefunction 

EOM ansatz for excited-state wavefunction 

CC wavefunction  
for ground state 

excitation operator 

parameterization as  
for the cluster operator 

unknown parameters  
are the amplitudes of R 

exact parameterization of excited-state wavefunction 

|�exc� = R |�CC�

= R exp(T ) |0�

. . .

R = R0 + R1 + R2 + . . .

R0 = r0

R1 =
�

i

�

a

ra
i a†aai

R2 =
1
4

�

i,j

�

a,b

rab
ij a†aa†bajai



EOM-CC Equations 

equations for R 

•  insert EOM-CC ansatz in Schrödinger equation 

•  exploit that R and T commute 

•  multiply from the left by exp(-T) 

H R exp(T ) |0� = Eexc R exp(T ) |0�

H exp(T ) R |0� = Eexc exp(T ) R |0�

eigenvalue problem for a similarity-transformed Hamiltonian 

operator 
eigenfunction eigenvalue 

exp(�T ) H exp(T )R |0� = Eexc R |0�



EOM-CC Equations 

further (optional) rewrite 

•  apply R to ground-state CC equation 

•  subtract  

•  rewrite using commutators  

•  define effective Hamiltonian   

exp(�T )H exp(T ) R |0� = Eexc R |0�

R exp(�T )H exp(T ) |0� = R Egs |0�

(exp(�T )H exp(T ) R � R exp(�T )H exp(T )) |0� = �Eexc R |0�

H̄ = exp(�T )H exp(T )

=> 
commutator 
expression 

[exp(�T )H exp(T ),R] |0� = �Eexc R |0�

[H̄,R] |0� = �Eexc R |0�

•  excited-state eigenvalue equation  



= 0 

EOM-CC Equations 

•  expand commutator 

•  insert resolution of identity 

•  define  

eigenvalue problem for excitation energy  

cont´d 

(H̄R � RH̄) |0� = �Eexc R |0�

(H̄ � �0|H̄|0�) R |0� �
�

P �=0

R |�P ���P | H̄ |0� = �Eexc R |0�

H̄N = H̄ � �0|H̄|0�

H̄N R |0� = �Eexc R |0�=> 

resolution of identity  
|0��0| +

�

P �=0

|�P ���P |

subtract CC ground-state energy  



Summary of EOM-CC Ansatz 

•  excited-state wavefunction 

•  excitation operator 

•  equations for excitation energy and excitation operator  

H̄N R |0� = �Eexc R |0�

H̄ R |0� = Eexc R |0�
or 

|�exc� = R exp(T ) |0�

R = R0 + R1 + R2 + . . .

•  without approximation equivalent to FCI 



Effective Hamiltonian in EOM-CC 

H̄ = exp(�T ) H exp(T )

•  effective Hamilton operator in EOM-CC 

-  defined via a similarity transformation 

-  non-Hermitian operator 

-   different left and right eigenfunctions/vectors  

-   biorthogonality instead of orthogonality  

Ā = B�1 A B
similarity  

transformation 
eigenvalues are  

preserved 

(operator exp(-T) is not unitary) 



Left-Side Eigenvalue Problem of EOM-CC  

left-side eigenvalue problem 

with de-excitation operator L = L0 + L1 + L2 + . . .

L1 =
�

i

�

a

lia a†iaa

L2 =
1
4

�

i,j

�

a,b

lijab a†ia
†
jabaa

L0 = l0

. . .

parameterization as  
for the Λ operator 

in CC gradient theory 

same eigenvalues as   
for right-side problem �0| L H̄ = �0 |L Eexc



Biorthogonality in EOM-CC  

biorthogonality requirement 

with A usually chosen to be one 

=>   EOM-CC energy expression 

i, j are state labels 

�0| Li Rj |0� = A �ij

orthogonality does not hold:  �0| Ri† Rj |0� �= �ij

= Ecc + �0| L H̄N R |0�

Eexc = �0| L H̄ R |0�



Ground-State Solution of EOM-CC 

right-side solution 

left-side solution 

CC equations 

Λ equations from CC gradient theory 

R = 1

L = 1 + �

 eigenvalue is 
coupled-cluster energy 

�0| (1 + �) (exp(�T )H exp(T ) � ECC) |�P � = 0

��P | exp(�T )H exp(T ) � ECC |0� = 0



Matrix Representation of EOM-CC  

projection onto excitation space 

eigenvalue problem for matrix 

insert resolution of identity  

��P | H̄ R |0� = Eexc ��P | R |0� P = 0, 1, . . .

�

Q

��P | H̄ |�Q� ��Q| R |0� = Eexc ��P | R |0�

H r = Eexc r
H̄

rP = ��P |R |0�
matrix H̄ eigenvector r 

H̄PQ = ��P | H̄ |�Q�



Matrix Representation of EOM-CC  

•  right-side eigenvalue problem 

H r = Eexc r

•  left-side eigenvalue problem 

•  biorthogonality 

•  energy expression 

lT H = lT Eexc

li
T

rj = �ij

state labels 

Eexc = lT H r



Truncated EOM-CC Approaches 

truncations in cluster  
and excitation operator 

T = T1 + T2

R = R0 + R1 + R2

= >   EOM-CCSD 

EOM-CCSD: 

-  difference to CISD  
-  size consistency/extensivity/intensivity 

diagonalization of the with exp(T1+T2)  
similarity-transformed Hamiltonian  
in the space of singles and doubles 

issues: 
diagonalization of untransformed Hamiltonian 

 in the space of singles and doubles  

projection on the space 
of singles and doubles 



excitation space   (i.e.,                   ) 

�

�����

E
0

. . .
0

�

�����

Superior Performance of EOM-CC 

0 

coupling between P and Q block 
determines size of Q contributions 

CISD: 

EOM-CCSD:    
similarity transformation reduces 
 coupling between P and Q space 

EOM-CCSD should perform better than CISD 

orthogonal complement        
(i.e.,                              )  

P Q 
0 

P 

Q   

diagonalization  
space 

H̄Q0

H̄P0 H̄PP H̄PQ

H̄QQH̄QP

H̄00 H̄0P H̄0Q

=> coupling is first order 

=> coupling is higher order 

��abc
ijk |H|�a

i � = �bc||jk�

��abc
ijk |H̄|�a

i � = H̄bcjk + . . .

= 0

�a
i ,�

ab
ij

�abc
ijk ,�abcd

ijkl , . . .



Size Intensivity 

A* B 

rAB   →   ∞ 

excitation at A 
ground state at B 

A size-consistent/extensive method provides the same excitation energies  
independent whether the excitation energies are computed for the sub- 
system A or for the non-interacting supersystem consisting of A and B 

 a) individual quantum-chemical calculations for A     à   Eexc(A) 

 b) one quantum-chemical calculation for A+B             à   Eexc(A) 

 excitation energies are referred to as size intensive 

Koch, Jensen, Jørgensen, Helgaker, 1990  



�

���������

�

���������

Size Intensivity of EOM-CC Excitation Energies 

0 

0 0 

0 

0 0 0 

H̄AA

H̄BB

A B AB 

A 

B 

AB 

 
 

block structure of        for supersystem A+B H

AB-A, AB-B blocks  
zero because of  CC 
amplitude equations 

implies that 

=> 

EOM-CC excitation energies are size intensive 

H(A) r(A) = Eexc(A) r(A)

H(AB) r(A) = HAA(AB) r(A)

= (Eexc(A) + ECC(B)) r(A)



III.  
 
 

Computational Realization of EOM-CC 



•  full diagonalization of      rarely possible and too expensive 

Solution of EOM-CC Eigenvalue Problem 

•  iterative determination of a few low-lying eigenvalues sufficient 

-  Davidson scheme modified for non-Hermitian matrices 

-  cost-determining steps are 

for right side   

for left side 

H

H · r =̂
�

P

HQP rP Q = 0, 1, . . .

lT · H =̂
�

P

lP HPQ Q = 0, 1, . . .

•  EOM-CC is a CI approach with H replaced by  H



Effective EOM-CCSD Hamiltonian 

CCSD approximation   

three-body  
terms 

leading terms are Fock-matrix elements and two-electron integrals 

diagrammatic representation   

 
similar to H, use different symbol    

T = T1 + T2

Fpq = fqp + . . . Wpqrs = �pq||rs� + . . .

. . .e.g. 

new 

H̄ = exp(�T ) H exp(T )

H̄ =
�

p,q

Fpq{a†paq} +
1
4

�

p,q,r,s

Wpqrs{a†pa†qasar} + . . .



X

Diagramms for EOM-CCSD Hamiltonian  

same rules (i.e., consider open lines, excitation ranks, connectedness)    

example: 
one virtual line above, one virtual line below 

overall excitation level is zero 

all other terms excluded because of overall excitation level 

fai +
1
2

�

m

�

e,f

�im||ef�tef
jm +

1
2

�

m

�

e,f

�im||ef�tejtfm+
�

m

�

e

�im||je�temFij =

fN WN (fNT )c (WNT1)c (WNT2)c
1
2
(WNT 2

1 )c



Diagrammatic Representation of H.r   

singles 

doubles 

�

+ 1rst and 3rd diagram with opposite arrow directions 

+ 1rst, 2nd, 3rd, and 5th diagram  
with opposite arrow directions 



Diagrammatic Representation of lT.H �

+ 2rst and 4th diagram with opposite arrow directions 

singles 

+ 2nd, 3rd, 4th. and 7th diagram  
with opposite arrow directions 

doubles 

x 



storage      N4 

Computational Requirements 

one- and two-body terms 

three-body terms 

direct evaluation storage      N6 cost      N7 ???? 

factorization 

storage     N4 cost     N5 !!!! 

computational cost     N6 

all terms are as in CISD 

N5 

N5 

� �

� �

� �



Complex Eigenvalues 

general real matrices have 

 a) real eigenvalues 

 b) complex-conjugated pairs of eigenvalues 

complex eigenvalues usually not a problem 

-  except close to degeneracies  (Köhn, Tatji, 2007)  

plausibility argument 
�

a c
d ã

�

eigenvalues  
of a 2x2 matrix 

=> 

negative small 

�1,2 =
a + ã

2
±

�
(a� ã)2

4
+ cd

complex  
eigenvalues 

possible 
if 



Standard EOM-CC Approaches 
  

 truncation of the cluster operator T and excitation operartor R: 

cluster operator excitation operator approximation  cost 

T=T1+T2 R=R0+R1+R2 
 

EOM-CCSD N6 

T=T1+T2+T3 R=R0+R1+R2+R3 
 

EOM-CCSDT N8 

T=T1+T2+T3+T4 R=R0+R1+R2+R3+R4 
 

EOM-CCSDTQ N10 

… … … 

T=T1+T2+ … +TN R=R0+R1+ ... + RN  FCI 

use always same truncation for T and R, otherwise loss of size intensivity 



EOM-CC versus CC Linear-Response Theory 

linear-response theory 
ωexc 

ω 

frequency-dependent properties 

=> response equations 

response vector 

perturbation frequency 

excitation energies : poles of response function => resonances 
eigenvalue equation for  

excitation frequency 

•  same eigenvalue equation as in EOM-CC (except for irrelevant r0) 

•  conceptional differences, differences in transition moments 

��P |(H̄N � �)T x(�)|0� = ���P |Vx|0�

��P |(H̄N � �exc)R|0� = 0

α 



Accuracy of EOM-CC Schemes 

1Π 1Δ 11Σ 21Σ 
 

CCSD 3.26 7.87 9.10 13.59 
CCSDT 3.22 6.99 8.62 13.53 

CCSDTQ 3.23 6.95 8.54 13.53 

AEL 1.03 2.00 1.96 1.06 

singlet excitation energies (in eV) of CH+ 

approximate excitation level calculations with ‘DZP+diffuse’ basis set 



Singly and Doubly Excited States in EOM-CCSD 

1 Π state                         ground state                       1Δ state 

↑↓ 
↑↓ 

↑ 

  ↓ 

↑↓ 
↑↓ 
↑↓ 

↑↓ 
↑↓ 

↑ ↓ 

   

single excitation 
error ≈ 0.1 –0.3 eV 

easy 

  double excitation   
 error >  0.5 eV  

difficult 

R1 => excitation 
R2 => relaxation effects 

R2 => excitation 
R3 needed for relaxation effects 



Historical Remarks 
  

 

-  EOM-CC and CC response theory 

Monkhorst, 1977 
Paldus et al., 1978 

Nakatsuji, 1978 
Emrich, 1981 

Mukherjee et al., 1982 
Sekino, Bartlett, 1984  

-  EOM-CCSD implementation 

-  CCSD linear-response implementation  

-  EOM-CCSDT implementations  

-  general EOM-CC implementation  

Stanton, Bartlett, 1993 

Koch et al., 1990  

Kowalski, Piecuch, 2001 
Kucharski et al., 2001  

Hirata et al., 2000 (via FCI) 
Hald et al., 2001 (via FCI) 

Kállay, Gauss, 2005 



III.  
 

 

EOM-CC Transition Moments 

and the Importance of Connectedness 



EOM-CC Transition Moments 

transition moment between 
excited and ground state  

in EOM-CC 

transition moment between 
ground and excited state  

in EOM-CC 

EOM-CC transition moments are different 

physically relevant quantity  

Ti0 = ��i
exc| µ |�gs�

T0i = ��gs| µ |�i
exc�

|µ|2 = TEOM
0i TEOM

i0 well defined 

TEOM
0i = �0| (1 + �) exp(�T ) µ exp(T ) Ri |0�

TEOM
i0 = �0|Li exp(�T ) µ exp(T ) |0�

TEOM
i0 �= TEOM

0i



Size Consistency and Extensivity 

A B 

rAB   →   ∞ 

if 

a method is size consistent 

size extensivity:  correct linear scaling with system size 

→  connectedness of equations, ... 

EMethod

AB = EMethod

A + EMethod

B



Why is Connectedness important? 

A B 

rAB   →   ∞ 

two operators 

unwanted, not connected 

product of operators 

connected: common indices via contraction(s) 

X Y = XA Y A + XB Y B

+ XA Y B + XB Y A

X = XA + XB

Y = Y A + Y B



Why is Connectedness important? 

A B 

rAB   →   ∞ 

connected: common indices via contraction(s) 

commutator of two connected operators is connected 

→  size extensivity ... 

two operators 

X = XA + XB

Y = Y A + Y B

[X, Y ] = [XA, Y A] + [XB , Y B ]



Size Extensivity of CC Theory 

h�P | exp(�T )H exp(T ) |0i = 0

CC equations 

BCH formula  à  commutator expansion 

fully connected 

size extensivity of CC theory 



Size Extensivity in EOM-CC Theory 

•  energy expression is not connected 

E
exc

= h0| L exp(�T )H exp(T ) R |0i

•  R and L are linear parameterization of wavefunction 

à incorrect multiplicative behaviour of wavefunction 



Multiplicative Behaviour in EOM-CC 

A* B 

rAB   →   ∞ 

excitation at A 
ground state at B 

right-hand side wavefunction 
not a problem 

left-hand side wavefunction truncation is a problem ! 

to consider in the following: 

L  is not connected 

RA�B = RA � 1B

LA�B = LA � (1 + �)B

LA,LABRA



EOM-CC Excitation Energies 

vanishes due to CC equations 

EOM-CC excitation energies are size intensive 

E = �0| L exp(�T )(HA + HB) exp(T ) R|0�

H
A + H

B

= �0| LA(HA + H
B)RA|0� + �0| LABH

BRA|0�

�0|LAB RA H
B |0�

= EA
exc + EB

CC



EOM-CC Transition Moments 

excited state on the left, ground state on the right 

size-consistency analysis 

o.k. 

TEOM
i0 = �0|Li exp(�T ) µ exp(T ) |0�

= �0|Li µ̄ |0�

TEOM
i0

AB
= �0|LiA (µ̄A + µ̄B) |0�

no contribution 

vanishes 

+ �0| LiAB(µ̄A + µ̄B) |0�



EOM-CC Transition Moments 

ground state on the left, excited state on the right  

size-consistency analysis no contribution 

non-vanishing contribution 
  problem! 

TEOM
0i = �0| (1 + �) exp(�T ) µ exp(T ) Ri |0�

= �0| (1 + �) µ̄ Ri |0�

TEOM
0i

AB
= �0| (1 + �A) (µ̄A + µ̄B) RiA|0�

no contribution 

+ �0| LAB(µ̄A + µ̄B) RiA|0�



Connectedness in EOM-CC Theory 

h0|L X R|0i
problem due to  

L  not  
connected 

product   
not connected 

but no problem for CC properties 

h0|(1 + ⇤) X |0i

not connected connected 



IV.  
 
 

Approximate Treatment of Higher Excitations 



Need for Higher Excitations 

higher excitations (triples) important for  

high-accuracy prediction of excitation energies 

adequate description of doubly excited states 

full inclusion of triples via EOM-CCSDT too expensive  

=>  iterative approximations to EOM-CCSDT 

=>  CCn hierarchy 

=>  perturbative corrections on top of EOM-CCSD 



Iterative Approximations to EOM-CCSDT 

Watts, Bartlett (1995,1997)  

main idea  

R = R0 + R1 + R2 + R3
plus approximations in H  
consistent with CCSDT-n  

_ 

=> EOM-CCSDT-n, n=1,2,3   

-  EOM-CC scheme with O(N7) cost and no storage of triples 

-  consistent with Λ equations for gradients and with CC-LR theory 

�
H̄CCSDT-n

�
IJ

� �

�tJ
��I |(H exp(T ))c,CCSDT-n|0�

define  

CCSDT-n amplitude equation 



Accuracy of EOM-CCSDT-3 

1Π 1Δ 11Σ 
CCSD 3.26 7.87 9.10 

CCSDT-3 3.24 7.27 8.78 
CCSDT 3.22 6.99 8.62 

AEL 1.03 2.00 1.96 

singlet excitation energies (in eV) of CH+ 

calculations with ‘DZP+diffuse’ basis set 
approximate excitation level 



Accuracy of EOM-CCSDT-3 

1Π 1Δ 11Σ 
CCSD 0.03 0.95 0.56 

CCSDT-3 0.01 0.32 0.24 
CCSDT -0.01 0.04 0.08 

singlet excitation energies (in eV) of CH+ 

deviations from CCSDTQ 

improved treatment of doubly excited states 

accuracy of doubly excited states in EOM-CCSDT-3 similar 
to those (0.1-0.3 eV) for singly excited states in EOM-CCSD 



CCn Hierarchy 

Jørgensen and co-workers, 1995 

-  iterative approximations usually based on standard PT arguments 

i.e., T2 first order, T1 second order, ... 

-  response theory/excitation energy not consistent with standard PT  

e.g., for a singly excited state, R1 zeroth order !! 

=>  CCn hierarchy with n=2,3,... 

(treat single excitations as zeroth order) 

CC2: approximation to CCSD, widely used for „cheap“ excitation energies 

CC3: approximation to CCSDT, economical triples treatment 



Accuracy of EOM-CC3 

1Π 1Δ 11Σ 
CCSD 0.03 0.95 0.56 

CCSDT-3 0.01 0.32 0.24 
CC3 0.01 0.31 0.24 

CCSDT -0.01 0.04 0.08 

singlet excitation energies (in eV) of CH+ 

deviations from CCSDTQ 

similar performance of CC3 and CCSDT-3 



EOM-CCSD(T) 

Perturbative Triples to EOM-CCSD 

Watts, Bartlett, 1995, 1997 

idea lowest-order  
correction to R3 

energy correction 

issues: approximations for denominator 

approximations for H 
_ 

EOM-CCSD(T) 

˜

typically via  
orbital-energy differences 

as in CCSDT-1, CCSDT-3, CC3 
derives from CCSDT-1 

derives from CCSDT-3 

see also CCSDR(3) from CC-LR, Christiansen, Koch, Jørgensen (1996)  

Rabc
ijk =

��abc
ijk | H̄ (R1 +R2 |0�
Dabc

ijk + �ECCSD
exc

denominator 

�E = �0| (L1 + L2) H̄ R3 |0�



Accuracy of Non-Iterative Triples 

1Π 1Δ 11Σ 
CCSD 3.26 7.89 9.11 

CCSD(T) 3.24 7.25 8.75 
CCSD(T) 3.22 7.24 8.75 
CCSDT-3 3.24 7.28 8.78 

singlet excitation energies (in eV) of CH+ 

similar performance as CCSDT-3 

cost-efficient treatment of triples 

˜

(unfortunately) no commonly accepted standard 



V. 
  

Analytic Derivatives in EOM-CC Theory 



EOM-CC Lagrangian 

EOM-CC is bivariational wrt to R and L  

EOM-CC energy 

CC equations as constraints 

biorthonormality =>    EOM-CC Lagrangian 

Lagrange multipliers 

LEOM�CC = �0|L exp(�T )H exp(T )R|0� � � (�0|LR|0� � 1)

+
�

I

ZI ��I | exp(�T )H exp(T )|0�

for simplicity orbital relaxation is ignored 

but EOM-CC is  not variational wrt to T 



Stationarity Conditions 

wrt to R- and L-amplitudes 

=>  CC equations 

linear equations for Z 

wrt to t-amplitudes 

stationarity  =>  (2n+1) rule for T-, R- and (2n+2) for L- and Z-amplitudes 

wrt to Z-amplitudes 

=> EOM-CC eigenvalue equations with   ε  =  EEOM-CC  

�LEOM-CC

�tI
= 0

Z =
∑

I

ZI τI

� 0 = �0|L [H̄, �I ] R|0� + �0|Z [H̄, �I ] |0�



= 1  

Z-Equations in EOM-CC 

similar to Λ equations for CC ground state 
=> 

diagrammatic representation of Ξ 
(e.g., Ξ1, two open lines pointing downwards, at least one of them connected to H)  

_ 

Ξ1 =̂ + x ... 

disconnected 

�0| L [H̄, �I ] R |0� + �0| Z [H̄, �I ] |0� = 0

�0| � |�I� + �0| Z (H̄ � ECC) |�I� = 0

�0| � |�I�

+ + 



Implementation of EOM-CC Gradients 

-   solve CC equations 
-   solve eigenvalue equation for R 

-   solve linear equation for L 
-   solve linear equation for Z 
-   compute density matrices and gradient 

cost about twice of EOM-CC energy computation 

Stanton (theory) 1993; Stanton and Gauss (CCSD implementation) 1994;  
Kállay and Gauss (general CC implementation) 2004  

historical remarks:  



Accuracy of EOM-CC Geometries 

1Π 1Δ 11Σ 
CCSD 1.2409 1.1953 1.2491 

CCSDT 1.2511 1.2163 1.2780 
CCSDTQ 1.2517 1.2191 1.2758 

AEL 1.03 2.00 1.96 

excited singlet states of CH+, distances in Å 

approximate excitation level calculations with ‘DZP+diffuse’ basis set 



VI. 
  

EOM-CC for IPs, EAs, ... 



Ionization and Electron Attachment 

ionization     

electronic  
excitation     

electron  
attachment     

reference 
state 

target states 

=>  EOMIP     
=>  EOMEA     

=>  EOMEE     



EOMIP-CC Ansatz  

ionization operator 

. . .

wavefunction for 
ionized state 

diagrammatic representation 

|�ion� = R |�CC�

R = R1 + R2 + . . .

R1 =
�

i

ri ai

R2 =
1
2

�

i,j

�

a

ra
ij a†aaiaj



EOMIP-CC Equations  

initial work by Mukherjee and co-workers, 1979;  
Mattie and Bartlett, 1994; Stanton and Gauss, 1994  

equivalent to the (0,1) sector of Fock-space CC (Lindgren, 1979)  
and CC Green’s function approach (Nooijen and Snijders, 1993) 

usual EOM procedure 

or 

projection on ionized states (e.g., CCSD:              ) 

H̄ R |0� = Eion R |0�

H̄N R |0� = �Eion R |0�

�i,�a
ij

H r = Eion r



EOMIP-CCSD Eigenvalue Problem   

singles 

doubles 

•  solution of the eigenvalue problem using the Davidson procedure 

•  computational cost of EOMIP-CCSD step of O(N5)  

•  left eigenvalue problem is treated similarly  

•  diagrammatic representation of H.r contraction 
_ 



Accuracy of EOMIP-CC Schemes 

2Σ+
u 

2Πu 
2Σ+

g 

CCSD 18.47 16.93 15.18 
CCSDT 18.36 16.64 15.10 

CCSDTQ 18.28 16.63 15.06 
FCI 18.28 16.63 15.06 

ionization potentials (in eV) of N2 

frozen-core calculations with cc-pVDZ basis set 



EOMEA-CC Ansatz  

very similar to EOMIP-CC 

. . .

wavefunction for 
electron-attached state 

|�ea� = R |�CC�

R = R1 + R2 + . . .

R1 =
�

a

ra a†a

R2 =
1
2

�

i

�

a,b

rab
i a†aaia

†
b

Nooijen, Bartlett (1996); equivalent to the (1,0) sector of Fock-space CC  

cost for EOMEA-CCSD is O(N5) 

attachment operator 



Other Flavours of EOM-CC 

(EOMSF)     (EOMDIP)     

reference 
state 

target  
states 

spin flip     double ionization     

Levchenko, Krylov (2004) 
Wladyslawski, Nooijen 

(2002)  
Bartlett & co-workers  

(2011)    

useful for     

bi-, triradicals, ...      

possibly useful for     

multireference 
problems     



Summary and Outlook 

  

 •   EOMEE-CC standard for computation of excitation energies  

•   EOMIP-CC  option for open-shell systems 

•  higher-order EOM-CC properties and transition moments  

•   EOM-CC enables the treatment of other states than the ground state  

•   EOMSF-CC, ...  option for (some) multireference systems   

•   close relationship to CC linear-response theory 

not discussed 

•  simulation of spectra based on EOM-CC computations 

•  ... 


