Equation-of-Motion Coupled-Cluster Theory

Jürgen Gauss

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Excited States

Coupled-Cluster Theory and Excited States

CC theory effectively ground-state theory

- single-determinant reference
- difficulty to converge to higher-lying solutions

but

- sometimes possible to converge to excited-state solutions
- response theory (\rightarrow Olsen)
 - => excitation energies as poles of response function
- equation-of-motion ansatz
- − multireference CC treatments (→ Köhn)

similar issues exist in HF, DFT, ...

I.

Equation-of-Motion Ansatz

Equation-of-Motion Ansatz

Equation-of-Motion Ansatz

Motivation and Advantages

differences between ground and excited state more or less localized

to be described by ${\mathcal R}$

usual approach to ΔE_{exc}

- get E separately for all states
- take difference to get ΔE_{exc}
- balanced description?
- computational efficiency?
- not generally applicable

'direct' approach to ΔE_{exc}

- get E_{exc} and Ψ_{exc} via ground state
- description of (local) differences less demanding
- more balanced
- generally applicable

Equation-of-Motion Ansatz

equations for ${\cal R}$

• insert equation-of-motion ansatz into Schrödinger equation

 $H \mathcal{R} |\Psi_{gs}\rangle = E_{exc} \mathcal{R} |\Psi_{gs}\rangle$

• apply \mathcal{R} to the ground-state Schrödinger equation

$$\mathcal{R} H |\Psi_{gs}\rangle = E_{gs} \mathcal{R} |\Psi_{gs}\rangle$$

• subtract

$$(H \mathcal{R} - \mathcal{R} H) |\Psi_{gs}\rangle = \Delta E_{exc} \mathcal{R} |\Psi_{gs}\rangle$$
$$[H, \mathcal{R}] |\Psi_{gs}\rangle = \Delta E_{exc} \mathcal{R} |\Psi_{gs}\rangle$$

similarity to equation of motion for operators explains the name

II.

Equation-of-Motion CC Ansatz

Excited-State Wavefunction

EOM-CC Equations

equations for ${\cal R}$

• insert EOM-CC ansatz in Schrödinger equation

 $H \mathcal{R} \exp(T) |0\rangle = E_{exc} \mathcal{R} \exp(T) |0\rangle$

• exploit that \mathcal{R} and T commute

$$H \exp(T) \mathcal{R} |0\rangle = E_{exc} \exp(T) \mathcal{R} |0\rangle$$

• multiply from the left by exp(-*T*)

eigenvalue problem for a similarity-transformed Hamiltonian

EOM-CC Equations

further (optional) rewrite

• excited-state eigenvalue equation

 $\exp(-T)H\exp(T) \mathcal{R} |0\rangle = E_{exc} \mathcal{R} |0\rangle$

• apply \mathcal{R} to ground-state CC equation

 $\mathcal{R} \exp(-T)H\exp(T) |0\rangle = \mathcal{R} E_{gs} |0\rangle$

• subtract

 $(\exp(-T)H\exp(T) \mathcal{R} - \mathcal{R} \exp(-T)H\exp(T)) |0\rangle = \Delta E_{exc} \mathcal{R} |0\rangle$

rewrite using commutators

=>

 $\left[\exp(-T)H\exp(T), \mathcal{R}\right] |0\rangle = \Delta E_{exc} \mathcal{R} |0\rangle$

• define effective Hamiltonian $\bar{H} = \exp(-T)H\exp(T)$

 $[\bar{H}, \mathcal{R}] |0\rangle = \Delta E_{exc} \mathcal{R} |0\rangle$

commutator expression

EOM-CC Equations

Summary of EOM-CC Ansatz

• excited-state wavefunction

$$|\Psi_{exc}\rangle = \mathcal{R} \exp(T) |0\rangle$$

• excitation operator

 $\mathcal{R} = \mathcal{R}_0 + \mathcal{R}_1 + \mathcal{R}_2 + \ldots$

• equations for excitation energy and excitation operator

$$\overline{H} \mathcal{R} |0\rangle = E_{exc} \mathcal{R} |0\rangle$$

or

$$\overline{H}_N \mathcal{R} |0\rangle = \Delta E_{exc} \mathcal{R} |0\rangle$$

• without approximation equivalent to FCI

Effective Hamiltonian in EOM-CC

- effective Hamilton operator in EOM-CC
 \$\bar{H}\$ = \exp(-T) \$H\$ exp(\$T\$)
 defined via a similarity transformation
 similarity transformation
 \$\bar{A}\$ = \$B^{-1}\$ \$A\$ \$B\$ \$\bar{A}\$ eigenvalues are preserved
 non-Hermitian operator (operator exp(-T) is not unitary)
 - different left and right eigenfunctions/vectors
 - biorthogonality instead of orthogonality

Left-Side Eigenvalue Problem of EOM-CC

left-side eigenvalue problem

 $\langle 0 | \mathcal{L} \bar{H} = \langle 0 | \mathcal{L} E_{exc}$

same eigenvalues as for right-side problem

with de-excitation operator

 $\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_1 + \mathcal{L}_2 + \ldots$

$$\mathcal{L}_0 = l_0$$

$$\mathcal{L}_{1} = \sum_{i} \sum_{a} l_{a}^{i} a_{i}^{\dagger} a_{a}$$
$$\mathcal{L}_{2} = \frac{1}{4} \sum_{i,j} \sum_{a,b} l_{ab}^{ij} a_{i}^{\dagger} a_{j}^{\dagger} a_{b} a_{a}$$
$$\dots$$

parameterization as for the Λ operator in CC gradient theory

Biorthogonality in EOM-CC

Ground-State Solution of EOM-CC

Matrix Representation of EOM-CC

Matrix Representation of EOM-CC

Truncated EOM-CC Approaches

Superior Performance of EOM-CC

Size Intensivity

Size Intensivity of EOM-CC Excitation Energies

III.

Computational Realization of EOM-CC

Solution of EOM-CC Eigenvalue Problem

- full diagonalization of $\overline{\mathbf{H}}$ rarely possible and too expensive
- iterative determination of a few low-lying eigenvalues sufficient
 - Davidson scheme modified for non-Hermitian matrices
 - cost-determining steps are

for right side $\overline{\mathbf{H}} \cdot \mathbf{r} \triangleq \sum_{P} \overline{H}_{QP} r_{P} \quad Q = 0, 1, \dots$

for left side $\mathbf{l}^{\mathbf{T}} \cdot \overline{\mathbf{H}} = \sum_{P} l_{P} \overline{H}_{PQ} \quad Q = 0, 1, \dots$

• EOM-CC is a CI approach with H replaced by \overline{H}

Effective EOM-CCSD Hamiltonian

Diagramms for EOM-CCSD Hamiltonian

Diagrammatic Representation of \overline{H} ·r

Diagrammatic Representation of l^T·H

Computational Requirements

Complex Eigenvalues

general real matrices have

- a) real eigenvalues
- b) complex-conjugated pairs of eigenvalues

complex eigenvalues usually not a problem

- except close to degeneracies (Köhn, Tatji, 2007)

plausibility argument

Standard EOM-CC Approaches

truncation of the cluster operator T and excitation operartor \mathcal{R} :

cluster operator	excitation operator	approximation	cost
$T=T_1+T_2$	$\mathcal{R}=\mathcal{R}_0+\mathcal{R}_1+\mathcal{R}_2$	EOM-CCSD	N ⁶
$T=T_1+T_2+T_3$	$\mathcal{R}=\mathcal{R}_0+\mathcal{R}_1+\mathcal{R}_2+\mathcal{R}_3$	EOM-CCSDT	N ⁸
$T=T_1+T_2+T_3+T_4$	$\mathcal{R}=\mathcal{R}_0+\mathcal{R}_1+\mathcal{R}_2+\mathcal{R}_3+\mathcal{R}_4$	EOM-CCSDTQ	N ¹⁰
$\mathbf{T} = \mathbf{T}_1 + \mathbf{T}_2 + \dots + \mathbf{T}_N$	$\mathcal{R}=\mathcal{R}_0+\mathcal{R}_1+\ldots+\mathcal{R}_N$	FCI	

use always same truncation for T and \mathcal{R} , otherwise loss of size intensivity

EOM-CC versus CC Linear-Response Theory

• conceptional differences, differences in transition moments

Accuracy of EOM-CC Schemes

	¹ Π	¹ Д	1 ¹ Σ	2 ¹ Σ
CCSD	3.26	7.87	9.10	13.59
CCSDT	3.22	6.99	8.62	13.53
CCSDTQ	3.23	6.95	8.54	13.53
AEL	1.03	2.00	1.96	1.06

Singly and Doubly Excited States in EOM-CCSD

Historical Remarks

- EOM-CC and CC response theory

- CCSD linear-response implementation

Monkhorst, 1977 Paldus et al., 1978 Nakatsuji, 1978 Emrich, 1981 Mukherjee et al., 1982 Sekino, Bartlett, 1984

Koch et al., 1990

Stanton, Bartlett, 1993

Kowalski, Piecuch, 2001 Kucharski et al., 2001

Hirata et al., 2000 (via FCI) Hald et al., 2001 (via FCI) Kállay, Gauss, 2005

- EOM-CCSD implementation
- EOM-CCSDT implementations
- general EOM-CC implementation

III.

EOM-CC Transition Moments and the Importance of Connectedness

EOM-CC Transition Moments

transition moment between excited and ground state	$T_{i0} = \langle \Psi^i_{exc} \ \mu \ \Psi_{gs} \rangle$
in EOM-CC	$T_{i0}^{EOM} = \langle 0 \mathcal{L}^i \exp(-T) \mu \exp(T) 0 angle$
transition moment between ground and excited state	$T_{0i} = \langle \Psi_{gs} \ \mu \ \Psi_{exc}^i \rangle$
in EOM-CC T_{0i}^{EOM}	$= \langle 0 \ (1+\Lambda) \ \exp(-T) \ \mu \ \exp(T) \ \mathcal{R}^i \ 0 angle$
EOM-CC transition moments	are different $T_{i0}^{EOM} \neq T_{0i}^{EOM}$
physically relevant quantity	$ \mu ^2 = T_{0i}^{EOM} T_{i0}^{EOM}$ well defined

Size Consistency and Extensivity

Why is Connectedness important?

Why is Connectedness important?

Size Extensivity of CC Theory

Size Extensivity in EOM-CC Theory

• energy expression is not connected

$$E_{exc} = \langle 0 | \mathcal{L} \exp(-T) H \exp(T) \mathcal{R} | 0 \rangle$$

• \mathcal{R} and \mathcal{L} are linear parameterization of wavefunction

→ incorrect multiplicative behaviour of wavefunction

Multiplicative Behaviour in EOM-CC

EOM-CC Excitation Energies

$$E = \langle 0 | \mathcal{L} \exp(-T)(H^A + H^B) \exp(T) \mathcal{R} | 0 \rangle$$
$$\overline{H}^A + \overline{H}^B$$

$$= \langle 0 | \mathcal{L}^{A} (\overline{H}^{A} + \overline{H}^{B}) \mathcal{R}^{A} | 0 \rangle + \langle 0 | \mathcal{L}^{AB} \overline{H}^{B} \mathcal{R}^{A} | 0 \rangle$$

$$\langle 0 | \mathcal{L}^{AB} \mathcal{R}^{A} \overline{H}^{B} | 0 \rangle$$

$$= E^A_{exc} + E^B_{CC}$$

vanishes due to CC equations

EOM-CC excitation energies are size intensive

EOM-CC Transition Moments

EOM-CC Transition Moments

Connectedness in EOM-CC Theory

IV.

Approximate Treatment of Higher Excitations

Need for Higher Excitations

Iterative Approximations to EOM-CCSDT

main idea $\mathcal{R} = \mathcal{R}_0 + \mathcal{R}_1 + \mathcal{R}_2 + \mathcal{R}_3$ plus approximations in \overline{H} consistent with CCSDT-n define $\left(\overline{H}_{CCSDT-n}\right)_{IJ} \equiv \frac{\partial}{\partial t_J} \langle \Phi_I | (H \exp(T))_{c,CCSDT-n} | 0 \rangle$ CCSDT-n amplitude equation

- consistent with Λ equations for gradients and with CC-LR theory
- EOM-CC scheme with O(N⁷) cost and no storage of triples

=> EOM-CCSDT-n, n=1,2,3

Watts, Bartlett (1995,1997)

Accuracy of EOM-CCSDT-3

singlet excitation energies (in eV) of CH⁺ **1**Δ $1^{1}\Sigma$ **1∏** CCSD 3.26 7.87 9.10 CCSDT-3 3.24 7.27 8.78 CCSDT 3.22 6.99 8.62 AEL 1.03 2.00 1.96

approximate excitation level

calculations with 'DZP+diffuse' basis set

Accuracy of EOM-CCSDT-3

singlet excitation energies (in eV) of CH⁺ deviations from CCSDTQ

	¹ П	1	1 ¹ Σ
CCSD	0.03	0.95	0.56
CCSDT-3	0.01	0.32	0.24
CCSDT	-0.01	0.04	0.08

improved treatment of doubly excited states

accuracy of doubly excited states in EOM-CCSDT-3 similar to those (0.1-0.3 eV) for singly excited states in EOM-CCSD

CCn Hierarchy

- iterative approximations usually based on standard PT arguments

i.e., T₂ first order, T₁ second order, ...

response theory/excitation energy not consistent with standard PT

e.g., for a singly excited state, \mathcal{R}_1 zeroth order !!

=> CCn hierarchy with n=2,3,...

(treat single excitations as zeroth order)

CC2: approximation to CCSD, widely used for "cheap" excitation energies CC3: approximation to CCSDT, economical triples treatment

Jørgensen and co-workers, 1995

Accuracy of EOM-CC3

singlet excitation energies (in eV) of CH⁺ deviations from CCSDTQ

	¹ П	<u>1</u> Д	1 ¹ Σ
CCSD	0.03	0.95	0.56
CCSDT-3	0.01	0.32	0.24
CC3	0.01	0.31	0.24
CCSDT	-0.01	0.04	0.08

similar performance of CC3 and CCSDT-3

Perturbative Triples to EOM-CCSD

Accuracy of Non-Iterative Triples

singlet excitation energies (in eV) of CH⁺

	¹ П	1	1 ¹ Σ
CCSD	3.26	7.89	9.11
CCSD(T)	3.24	7.25	8.75
CCSD(Ĩ)	3.22	7.24	8.75
CCSDT-3	3.24	7.28	8.78

similar performance as CCSDT-3

cost-efficient treatment of triples

(unfortunately) no commonly accepted standard

V.

Analytic Derivatives in EOM-CC Theory

EOM-CC Lagrangian

Stationarity Conditions

Z-Equations in EOM-CC

$$\begin{array}{c|c} \langle 0 \mid \mathcal{L} \left[\bar{H}, \tau_{I} \right] \mathcal{R} \mid 0 \rangle &+ \langle 0 \mid \mathcal{Z} \left[\bar{H}, \tau_{I} \right] \mid 0 \rangle &= 0 \\ \\ & & \\ & \\ &$$

$$\Rightarrow \quad \langle 0 | \Xi | \Phi_I \rangle + \langle 0 | \mathcal{Z} (\bar{H} - E_{CC}) | \Phi_I \rangle = 0$$

similar to Λ equations for CC ground state

diagrammatic representation of Ξ

(e.g., Ξ_1 , two open lines pointing downwards, at least one of them connected to \overline{H})

$$\Xi_{1} \stackrel{\circ}{=} X \left(\underbrace{1}_{+} + \underbrace$$

Implementation of EOM-CC Gradients

- solve CC equations
- solve eigenvalue equation for ${\cal R}$
- solve linear equation for \mathcal{L}
- solve linear equation for Z
- compute density matrices and gradient

cost about twice of EOM-CC energy computation

historical remarks:

Stanton (theory) 1993; Stanton and Gauss (CCSD implementation) 1994; Kállay and Gauss (general CC implementation) 2004

Accuracy of EOM-CC Geometries

VI. EOM-CC for IPs, EAs, ...

Ionization and Electron Attachment

EOMIP-CC Ansatz

EOMIP-CC Equations

EOMIP-CCSD Eigenvalue Problem

- solution of the eigenvalue problem using the Davidson procedure
- diagrammatic representation of $\overline{H}{}^{\cdot}r$ contraction

- computational cost of EOMIP-CCSD step of O(N⁵)
- left eigenvalue problem is treated similarly

Accuracy of EOMIP-CC Schemes

ionization potentials (in eV) of N₂

	² ∑ ⁺ _u	² Π _u	² ∑ ⁺ _g
CCSD	18.47	16.93	15.18
CCSDT	18.36	16.64	15.10
CCSDTQ	18.28	16.63	15.06
FCI	18.28	16.63	15.06

frozen-core calculations with cc-pVDZ basis set

EOMEA-CC Ansatz

Other Flavours of EOM-CC

Summary and Outlook

- **EOM-CC** enables the treatment of other states than the ground state
- **EOMEE-CC** standard for computation of excitation energies
- **EOMIP-CC** option for open-shell systems
- EOMSF-CC, ... option for (some) multireference systems
- close relationship to CC linear-response theory

not discussed

- higher-order EOM-CC properties and transition moments
- simulation of spectra based on EOM-CC computations
- ..